强化木地板液体耐磨层的制备及耐磨性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强化木地板作为一种新型环保建材产品,近年来已经成为室内地面装饰材料的主流产品,而其高档耐磨表层纸80%依赖进口,价格昂贵,制约国产强化木地板的发展。针对这一现状,本课题引进超细粉体材料和“液体耐磨”工艺研制一种集装饰功能与高耐磨性能于一体、生产成本很低的耐磨层,对其制备过程进行了比较系统的研究,并初步探讨了液体耐磨层的耐磨机理及磨损机理。
     首先研究了超细粉体Al_2O_3在水中的分散行为,结果表明:浓度5wt%超细Al_2O_3,pH=9,阴离子型分散剂用量为0.4wt%,超声分散120min,超声波分散水温40℃,此时可获得稳定的超细粉体Al_2O_3水分散液。
     然后,用偶联剂KH-550对超细粉体Al_2O_3进行表面改性,红外光谱和热分析表明,偶联剂KH-550成功与超细粉体Al_2O_3表面产生了共价键吸附,其吸附量约2.0%~4.0%。
     接着,研究了超细粉体Al_2O_3分散于三聚氰胺甲醛树脂中,制取耐磨胶乳液。研究表明:配胶温度60℃、搅拌时间25min、搅拌速度300转/min、树脂含量50%,乳化剂用量1.0%,固化剂用量0.5%,脱模剂用量0.5%,Al_2O_3用量10%~20%,贮存温度20~40℃,为最佳的配胶条件。电镜扫描照片表明此时超细粉体Al_2O_3在三聚氰胺甲醛树脂中的分散均匀。
     最后,论文研究了液体耐磨层的耐磨性能,并探讨了其耐磨机理及磨损机理。研究表明,当耐磨材料Al_2O_3用量增加到15.4g/m~2时,初始磨点(IP值)和最终磨点(FP值)分别提高至4000转和5200转以上,达到国家标准规定家庭用的耐磨转数的要求。对耐磨机理及磨损机理进一步研究表明:液体耐磨层耐磨性依赖于树脂基体、增强材料和界面粘结性能的优劣,而磨损过程,发生由基材到填料的选择性磨损,实现了磨损机理由粘着磨损向磨料磨损的转变。
Laminate-timber floor is a new environment-friendly building material, soit is popular in late years as new decorative material used to the indoor-ground.However, the wear resisting overlay of laminate-timber floor is expensive and80% excellent-quality products depend on the import products and contrainedthe development of laminate-timber floor in china. Aimed at this situation, thispaper introduces superfine powdered materials and liquid wear resistant coatingto develop a new low-costing wearing coat with decorative function and highwear-resiting property. The process of manufacture was systematicallyresearched, and then we studied the mechanism of wear-resisting and wear-outof liquid wear-resistant coating.
     Firstly, superfine-alumina aqueous dispersion was studied.The resultsshowed that when condition was dispersant W-518=0.4wt%, pH=9,superfine-alumina content=5wt%, ultrasonic for 120minutes, temperature=40℃, excellent stable superfine-alumina aqueous dispersion can be acquired.
     After that, the surface modification of superfine-alumina with silanecouling reagent KH-550, was studied. According to the spectra of FTIR, TG andDTA, it was inferred that the KH-550 was covalent bond on the surface ofsuperfine-alumina pariticles, Adsorptive capactity was about 2%~4%.
     Continued, wear-resisting latex can be prepared by mixingsuperfine-alumina with melamine resin, was studied. The results showed thatwhen condition was temperature=40℃, stirring time=25minutes, stirringspeed=300r/min, resin content=50%,emulsity agant=1%, solidified agent=0.5%,mold releasing agent=0.5%, superfine-alumina content=10~20%, storagetemperature=20~40℃, excellent wear-resisting latex can be acquired. Datefrom SEM indicated that superfine-alumina uniform dispersion in melamineresin.
     At last, we studied the properties and mechanism of wear-resisting andwear-out of liquid wear-resistant coating. The results showed that liquidwear-resistant coating initial wear point is 4000r and final wear point is 5200rwhen superfine-alumina amount coated on the paper reach to 15.4 g/m~2. Thatmeasure up to the national standards of used in household indoor-ground. Theresults also showed that abrasion resistance of liquid wear-resistant coatingdepond on perfbrmance of parent material, reinfarced material、interfacebetween resins and inorganic antifriction materials. In the wearing process, Wearmaterials were chosen from resin to superfine powdered materials. The coating's abrasion mechanism is conversed from adhere wearing to abrasive stuff wearing.
引文
[1] 吕绵基,强化木地板生产工艺概述[J],人造板通讯,2005,8:15~17
    [2] 高振忠,木质地板生产与使用[M],北京:化学工业出版社,2004:137~200
    [3] 苏克,中国强化木地板[M],北京:中国建材工业出版社,2001:100~200
    [4] 强化木地板,http://knology.chinaccm.com/phrase-2006022014322100322.html
    [5] 吕斌,唐召群,复合强化地板生产工艺特点、性能及安装[J],林产工业,1998,1:36-38
    [6] 吴智慧,复合木地板的生产工艺技术[J],林产工业,1997(2):41-43
    [7] 孙友富,郭琪伟,木质地板生产技术[J],林业科技开发,1999(5):19-21
    [8] 欧阳琳,精制复合木地板的生产[J],木材工业,1993(4):40-42
    [9] 程波,强化复合地板的市场前景及美德公司经营策略分析[C],对外经济贸易大学工商管理硕士(MBA)学位论文,2002,4
    [10] Funalka, M., et al., Wood Science and Technology, 1988, 21: 261-279
    [11] Chow, S., Wood Science and Technology, 1993, 17: 1-11
    [12] Olivares, M., et al., Wood Science and Technology, 1988, 22: 157-165
    [13] GuJiyou, Mitsuo H, Mitsuhtro, etal, J. Jap. Wood Research, 1992, 41: 1151
    [14] Forintek Canada Corp, Wood-based panel products, Reports. 1999: 119-128
    [15] 2001~2005中国强化木地板报告综述部分[J],地板商情,2006,3:25-30
    [16] 中国强化木地板市场状况及发展趋势,http://www.go315.org/manual/fitment/q-flooff200611109/4919.html
    [17] 彭华福,我国强化地板市场营销战略研究[J],林产工业,2005,6:12-14
    [18] 强化木地板发展趋势——提高综合性能与整体优势,http://www.cnbeb.com/news-news.asp?id=3911
    [19] 原料紧张市场竞争激烈 地板业 谁能笑到最后,http://www.chinalxjj.cn/newsview.asp?articleid=1959
    [20] Amano, Masaharu, Wear-resistant overlay forming method and wear-resistant composite members, United StatesPatent , Appl. No: 624554
    [21] Lex,Joseph, Wear-resistant glossy laminates, United States Patent, Appl. No: 188879
    [22] Neuhaus,et al, Composite material for plain bearing elements with an overlay of aluminum-based bearing material, United States Patent, Appl. No: 484223
    [23] 宋德龙,张睿玲,贺文明,表层耐磨纸的生产技术及市场需求[J],中华纸业,2002,8:32-37
    [24] 陆赵情,张美云,花莉,强化木地板耐磨纸的生产[J],纸和造纸,2003,3:55-57
    [24] 李晓秀,湿法耐磨层技术在强化木地板中的应用[J],林业科技,2001,5:4-6
    [25] 何成道,鉴别浸渍耐磨装饰纸真伪的重要性及方法[J],人造板通讯,2002,12:12-14
    [26] 荆宏龙,徐国财,李爱元等,超细粉体的分散及超细复合材料的成型技术[J],材料导报,2001,15(9):62-64
    [27] 童祜篙,颗粒粒度与比表面测量原理[M],上海科学技术文献出版社,1989:68-72
    [28] 曹红亮,超细透明耐磨涂料的研制[C],南京工业大学硕士论文,2003,5
    [29] 巩强,超细Al_2O_3制备透明耐磨涂料的研究[C],南京工业大学硕士论文,2004,4
    [30] 刘阳桥,高濂,PBTCA稳定Al_2O_3悬浮液及沉积物分形特性的研究[J],无机材料学报,2000,15 (5):855-861
    [31] Makito Kitayama, et al. J. Am. Ceram. Soc., 1996, 8: 2003-2011
    [32] 刘安华,刘长生,吴璧耀等,接枝共聚改性炭黑的分散稳定性[J],涂料工业,1997,2:13-14
    [33] 万德立,王勇,白清东,超细粉体在水性介质中的分散及改性技术[J],国外建材科技,2005,1:25-28
    [34] 覃兆海,陈馥衡,谢毓元,超声波在有机合成中的应用[J],化工进展,1998,1:63-73
    [35] 宋晓岚,王海波,吴雪兰等,超细颗粒分散技术的研究与发展[J],化工进展,2005,1:47-52
    [36] 王广阔,马建伟,超声波对超细材料分散性能影响的研究[J],材料导报,2005,5:160-165
    [37] Sandlera.J, Shaffera .M S P, Prasseb T, et al, Development of a dispersion process for carbon nanotubes in an epoxy matrix and theresulting electrical properties[J], Polymer, 1999, 40: 5967-5971.
    [38] Suslick Kenneths, Ultrasound: its chemical, physical, and biological effects[M], New York: VCHPublishers, 1988. 290.
    [39] Mehmet Akalin. Nigar Merdan, Efects of ultrasonic energy on the wash fastness of reactive dyes[J], Ultrasonics, 2004, 42(1-9): 161
    [40] Kenneth S, Suslick, Gareth J Price, Annual Review Material Science, 1999, 29: 295
    [41] 林本兰,沈晓冬,崔升,水基YiO_2超细浆体的制备及其分散稳定研究[J],2006,5:2314-2317
    [42] Pavolva-Vere·vkina O B, Kul kova N V, Politova E D, et al, Preparation cf YhermostableHighly Dispersed Titanium Dioxide from Stable Hydrosols[J], colloide Journal, 2003(65), 2: 252-255.
    [43] Akio Nasu, Yasufumi Otsubo, Rheology and UV protection properties of suspensions of fine titanium dioxides in a siliconeol[J], Journal of Colloid and Interface Science, 2006, 296: 558-564.
    [44] 汤枫秋,黄校先,郭景坤,三氧化铝表面化学特性的研究[J],陶瓷学报,1998,19(3):121-124
    [45] 崔海萍,闫军,陈颖,NTC40l对超细氧化铝粉体表面改性的研究[J],新技术新工艺,2005,7:68-70
    [46] Mahfuz H, Rangari V, Islam M, et al, Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams[J], Composites: PartA, 2004, 35(4): 453-460
    [47] 马正先,韩跃新,印万忠,超细氧化锌的表面改性[J],矿冶,2004,6:50-52
    [48] J esionowski T, Krysztafkiewicz Influence of silane coupling agents on surface properties of precipitated silica[J], Applied Surface Science, 2001, 172(1-2): 18-32.
    [49] 周燕,邓建成,管小艳,硅烷偶联剂对超细氧化锌表面改性的机理研究[J],湘潭大学自然科学学报,2006,26(4):53-56
    [50] Gonzfilez J, Albano C, Ichazo M, et al, Effects of Coupling agent on mechanical and morphological behavior of the PP/HDPE blend with tWO different CaCO3 [J], European Polymer Journal, 2002, 38(12): 2465-2475.
    [51] 姚超,丁永红,林西平等,超细YiO_2有机表面改性的研究[J],无机化学学报,2005,5:638-642
    [52] 于世林,李寅蔚,波谱分析法[M],重庆:重庆大学出版社,1994,12
    [53] ZHENG Shui-lin, Surface Modification of powder, Baijing: China building materials industy press, 1995.
    [54] 冯启明等,几种非金属矿粉体的硅烷偶联剂表面改性研究[J],非金属矿,1999,6:68-69
    [55] Kumar S A,. Narayanan T S N S, Progress in OrganicCoatings, 2002, 45: 323.
    [56] 张红春,邵广义,刘绍春等,固化剂PTSA在浸渍纸生产中的应用[J],林业科技,2001,1:43-45
    [57] 肖安国,张儒祥,郝爱平等,超细SiO2和CaCO3改性脲醛树脂甲醛含量及性能研究[J],湖南文理学院学报(自然科学版),2006,12:39-41
    [58] 金昌升,强化木地板耐磨性能及国产化耐磨纸的研究[J],林产工业,2006,33(5):25-28
    [59] 池永亮,浸渍纸的主要性能指标对强化木地板压帖质量的影响[J],人造板通讯,2005,12(7):20-23
    [60] 苏英,新型复合强化地板的研究[C],武汉理工大学硕士论文,2002.5
    [61] 汤戈,王振家,马全友等,超细Al_2O_3粉末改善环氧树脂耐磨性的研究[J],热固性树脂,2002,1:4-8
    [62] 王振家,高岩,马全友等,MWCNTs/E51复合涂层的耐磨性能研究[J],表面技术,2004,33(5):30-31
    [63] 金华军,王树奇,陈康敏等,TiC/Ni3Al表面复合涂层及其耐磨性[J],稀有金属材料与工程,2006,35(2):198-201
    [64] 辛礼兵,磨损机理的研究与探讨[J],安徽职业技术学院学报,2006,4:11-14
    [65] 刘耀辉,杜军,代汉达等,Al_2O_3和C短纤维混杂增强铝基复合材料高温耐磨性能的研究[J],机械工程学报,2003,39(11):95-99
    [66] 梁淑华,范志康,时惠英等,超细Al_2O_3颗粒增强铜基复合材料的研究[J],复合材料学报,1998,15(3):44-48
    [67] 何春霞,顾红艳,超高分子量及超细Al_2O_3填充复合材料摩擦磨损性能的研究[J],摩擦学报,2002,22(1):32.
    [68] 熊党生,离子注入超高分子量聚乙烯的摩擦磨损性能分析[J],摩擦学学报,2004,24(3):244-246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700