感应耦合电能传输系统开放式平台的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应耦合电能传输(Inductive Coupled Power Transfer,简称ICPT)技术为一种新型的能量接入技术,该技术在工业领域中的应用有了许多成功的案例,随着社会科技的不断进步,以及人们对供电系统环保性的要求越来越重视,ICPT的应用将会越来越广泛,目前,感应耦合电能传输技术已经得到多方面的关注和研究,目前,对它的研究,一直处于基础理论、拓补结构和实验装置环节的研究,感应耦合电能传输系统的开放式平台,是根据现阶段感应耦合技术发展的需要而提出的。本文主要是感应耦合电能传输系统开放式平台的设计,研制出一种感应耦合电能传输系统的开放式平台。
     本文在分析了课题背影的前提下,通过介绍了ICPT的基本工作原理,分析了ICPT系统的参数指标,综合考虑ICPT系统的特点以及开放式系统的概念,提出了本开放式平台的设计的具体要求,给出了平台的总体方案设计。
     对于开放式平台来说,硬件采集电路是不可或缺的,文中主要以FPGA作为整个采集系统的控制中心,FPGA是目前市场上较为流行的一种硬件设计芯片,在通过与其它硬件芯片的配合,设计出本文所需要的硬件采集电路。通过对目前市场上软件编程语言的对比,采用图形化编程语言LabVIEW作为本开放式平台的软件,由于LabVIEW具有强大的数据处理模块和数据处理能力,以及其编程的高效和直观的特点,使开发软件模块大大节省了时间。文中还给出了具体的参数算法,通过软件实现对数据的处理,在上层软件应用平台中主要实现对数据的采集、系统的性能分析、数据的处理等功能模块,其中,实现了上位机与USB接口通讯、各数据的采集与波形显示、谐波的分析和频谱分析、各功率参数的测量等功能,人机界面良好,最后通过具体波形来验证上位机各软件的各种功能。
There are many cases of successful application in industry for Inductive coupled power transfer (Inductive Coupled Power Transfer, simply called as ICPT) technology which is a new type of energy access technology. With the advancement of the social technology and more and more attention being paid on the environmental protection of power supply by people, ICPT will become more and more popular in society application. At present, although ICPT technology has accepted more and more concern and research from many fields, which research has been always in these fields,basic theory, topology structure and experimental device. However, the open platform of ICPT system is proposed according to the development requirement of the present Inductive Coupled Technology. This article mainly aims at the design of the open platform of ICPT system and develops a platform of ICPT system.
     This article analysis the proposed background of subject, the basic principle of ICPT and the performance parameters, comprehensive consider the characteristics of ICPT system and the concept of open systems, propose the specific requirements of the design of this platform and the overall program.
     As far as the open platform, Hardware acquisition circuit is necessary. In this article, we design a hardware circuit required by acquisition system though FPGA and other hardware chip, FPGA which is a very popular design chip in present market is a central control of overall acquisition system. We choose Graphical programming language LabvIEW as open platform software by comparing with other software in market. Because LabvIEW has many advantages, for example, very powerful Data processing module, capability in processing data, efficient programming and intuitive, it significantly save times. We also give parameter algorithm, process data through software. The upper layer software platform mainly realizes data acquisition, analysis of system performance and data process. We also design Labview application program and achieve good man-machine interface, for example, communication between PC and USB interface, data acquisition and waveform display, harmonic analysis and spectral analysis and the measurement of power parameters. Last, all kinds of functions of PC software is verified through Specific waveform.
引文
[1]王智慧.基于包络线调制的非接触电能传输模式研究[博士].重庆:重庆大学, 2009.
    [2]周文琪.感应耦合电能传输系统的特性与设计研究[博士].浙江:浙江大学, 2008.
    [3]唐春森.非接触电能传输系统软开关工作点研究及应用[博士].重庆:重庆大学, 2009.
    [4] Madawala U K, Thrimawithana D J, Nihal K. An ICPT-supercapacitor hybrid system for surge-free power transfer[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3287~3297.
    [5] Wang C S, Covic G A, Stielau O H. Investigating an LCL load resonant inverter for inductive power transfer applications[J]. IEEE Transactions on Power Electronics, 2004, 19(4): 995~1002.
    [6] Hsu J.-U.W., Hu A.P., Swain, A.A Wireless Power Pickup Based on Directional Tuning Control of Magnetic Amplifier [J]. Industrial Electronics, IEEE Transactions.56(7):2009: 2771~2781
    [7] Hsu J U, Hu A P, Si P, et al. Power Flow Control of a 3-D Wireless Power Pick-up[A]. 2nd IEEE Conference on Industrial Electronics and Applications, 2007. ICIEA 2007[C]. 2007. 2172~2177.
    [8] Covic G A, Boys J T, Kissin M L, et al. A three-phase inductive power transfer system for roadway-powered vehicles[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3370~3378.
    [9] Hu A P. Selected resonant converters for IPT power supplies[Ph.D]. Auckland: The University of Auckland, 2001.
    [10] Sekitani T, Takamiya M, Noguchi Y, et al. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches[J]. Nature Materials, 2007, 6(6): 413~417.
    [11] Sakamoto H, Washimiya S. Magnetic coupled power and data transferring system with a detachable transformer[J]. IEEE Transactions on Magnetics, 1996, 32(5): 4983~4985.
    [12] Yoshioka D, Sakamoto H, Ishihara Y, et al. Power feeding and data-transmission system using magnetic coupling for an ocean observation mooring buoy[J]. IEEE Transactions on Magnetics, 2007, 43(6): 2663~2665.
    [13] Matsuda Y, Sakamoto H. Non-contact magnetic coupled power and data transferring system for an electric vehicle[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 2853~2855.
    [14] Sakamoto H, Harada K, Matsuda Y, et al. Hybrid magnetic component for high-performance power system[J]. Journal of Magnetism and Magnetic Materials, 2004, 272-76: 2276~2278.
    [15] Sakamoto H, Harada K, Abe H, et al. A magnetic coupled charger with no-load protection[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2057~2059.
    [16] Sato F, Adachi S, Matsuki H, et al. The optimum design of open magnetic circuit meander coil for contactless power station system[A]. Magnetics Conference, 1999. Digest of INTERMAG 99. 1999IEEE International[C]. 1999. R9.
    [17] SatoF,MatsukiH, Kikuchi S, et al. A new meander type contactless powertransmissionsystem-active excitation with a characteristics of coil shape[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2069~2071.
    [18] Hatanaka K, Sato F, Matsuki H, et al. Characteristics of the desk with cord-free power supply[A]. Magnetics Conference, 2002. INTERMAG Europe 2002. Digest of Technical Papers. 2002 IEEE International [C]. 2002. V6.
    [19] Kojiya T, Sato F, Matsuki H, et al. Automatic power supply system to underwater vehicles utilizing non-contacting technology[A]. OCEANS '04. MTTS/IEEE TECHNO-OCEAN '04[C]. 2004. 2341~2345.
    [20] Miura H, Arai S, Kakubari Y, et al. Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts[J].IEEE Transactions on Magnetics, 2006, 42(10): 3578~3580.
    [21] Nishimura M, Kawamura A, Kuroda G, et al. High efficient contact-less power transmission system for the high speed trains[A]. Power Electronics Specialists Conference, 2005. PESC '05. IEEE 36th[C]. 2005. 547~553.
    [22] Hirai J, Tae-Woong K, Kawamura A. Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive[J]. IEEE Transactions on Power Electronics, 2000, 15(1): 13~20.
    [23] Byungcho C, Jaehyun N, Honnyong C, et al. Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 140~147.
    [24] Aristeidis Karalis J D J M. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics, 2008, 323(1): 34~48.
    [25] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. SCIENCE, 2007, 317(5834): 83~86.
    [26]苏玉刚,王智慧,孙跃等.非接触供电移相控制系统建模研究[J].电工技术学报, 2008, 23(7): 92~97.
    [27] Wang Z H, Sun Y, Su Y G, et al. Study on soft-switched inversion topology of contactless power transfer system[A]. 7th World Congress on Intelligent Control and Automation, 2008. WCICA 2008[C]. Chongqing, China: 2008. 3136~3139.
    [28]戴欣,黄席樾,孙跃.自治分段线性振荡系统的离散映射数值建模与稳定性分析[J].自动化学报, 2007, 33(1): 72~77.
    [29] Tang C S, Sun Y, Su Y G, et al. Determining multiple steady-state ZCS operating points of aswitch-mode contactless power transfer system[J]. IEEE Transactions on Power Electronics, 2009, 24(1-2): 416~425.
    [30]戴欣,孙跃.单轨行车新型供电方式及相关技术分析[J].重庆大学学报(自然科学版), 2003, 26(1): 50~53.
    [31] Su Y G, Tang C S, Wu S P, et al. Research of LCL resonant inverter in wirelesspower transfer system[A]. International Conference on Power System Technology, 2006. PowerCon 2006[C]. Chongqing, China: 2006. 794~799.
    [32] Su Y G, Deng B, Tang C S, et al. Study on phase shift control method in contactless power transfer system[J]. Dynamics of Continuous Discrete and Impulsive Systems - Series B - Applications & Algorithms, 2006, 13E: 3281~3284.
    [33]孙跃,戴欣,苏玉刚等.广义状态空间平均法在CMPS系统建模中的应用[J].电力电子技术, 2004, 38(3): 86~88.
    [34]孙跃,王智慧,戴欣等.非接触电能传输系统频率稳定性研究[J].电工技术学报, 2005, 20(11): 56~59.
    [35] Dai X, Huang X. Study on dynamic accurate modelling and nonlinear phenomena of a push-pull soft switched converter[A]. 1st IEEE Conference on Industrial Electronics and Applications[C]. Singapore: 2006.
    [36] Liu X, Hui S Y R. Simulation Study and Experimental Verification of a Universal Contactless Battery Charging Platform With Localized Charging Features[J]. IEEE Transactions on Power Electronics, 2007, 22(6): 2202~2210.
    [37]武瑛,严陆光,徐善刚.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报, 2004, 24(5): 63~66.
    [38]周雯琪,马皓,何湘宁.感应耦合电能传输系统不同补偿拓扑的研究[J].电工技术学报, 2009, 24(1): 133~139.
    [39]韩腾,卓放,闫军凯等.非接触电能传输系统频率分叉现象研究[J].电工电能新技术, 2005, 24(2): 45~47, 76.
    [40]盛松涛,杜贵平,张波.感应耦合式无接触电能传输系统设计[J].通信电源技术. 2007, 24(5):33~36
    [41]刘建,王慧贞.基于UC3861控制的松耦合谐振变换器[J].电力电子技术, 2008, 42(1): 84~86.
    [42]徐磊.并联谐振型非接触通用供电平台设计与实现[硕士].河南:郑州大学, 2006.
    [43]董慧芬.感应电能传输技术的研究[硕士].河北:河北工业大学, 2002.
    [44]刘志宇.感应充电实验系统研究[硕士].北京:清华大学, 2004.
    [45]郭琳娜,基于虚拟仪器的开放式综合测试技术研究[硕士],陕西:西北工业大学,2006.
    [46] Golden E Herrin. Open Modular Architecture Controllers (OMAC),Modem Machine Shop,1996(4):160~162
    [47] Golden E Herrin, Manufacturing Engineering,l998(7):86~89
    [48] Larry D.Broc, "TRANSITION TO AN OPEN SYSTEM ARCHITECTUR",The Charles Stark Draper Laboratory, Inc,Cambridge,MA,2000(I):I一2
    [49]陈国东,非接触电能传输系统恒流技术研究[硕士],重庆:重庆大学,2008.
    [50]董军,非接触电能传输系统AC/AC变换器的研究[硕士],重庆:重庆大学,2009.
    [51]齐婉玉,孟英红,沈满,用DS18B20进行温度检测的方法与技巧[J],仪器仪表学报,2003(4)235~236.
    [52]侯爱琴,唐得刚,郊伟,多通道14位ADC MAX 125及其应用[J],电子测量技术,2002(5)32~34.
    [53]耿三均,基于FPGA的多平台虚拟仪器研究设计[硕士],武汉:武汉理工大学,2009.
    [54]诸一栋,基于FPGA的数据采集系统研究[硕士],吉林:长春理工大学,2009.
    [55]刘砚一,基于FPGA的USB接口数据采集系统研究[硕士],江苏:南京林业大学,2007
    [56]刘波,基于FPGA的地面检测设备的设计与研制[硕士],北京:中国科学院.2009.
    [57]罗向东,基于FPGA与CY7C68013A的USB接口系统设计[J],科技广场,2010(6)96~98
    [58] Cypress Semiconductor Corporation. CY7C68013EZ-USBFX2?USB Microcontroller. www.cypress.com.2002
    [59]戴鹏飞,王胜开,王格芳,测试工程与labvIEW应用[M],北京:电子工业出版社,2006.5
    [60]周蓓霞,便携式虚拟谐波分析仪的开发与研究[硕士],内蒙古:内蒙古工业大学,2006.
    [61]张直平,李芳辰.城市电网谐波手册[M].北京:中国电力出版社,2001.2.
    [62]程雪敏,基于LabVIEW信号分析系统的设计[硕士],江苏:苏州大学,2008.
    [63]张希,基于LabVIEW的电能质量监测系统[硕士],陕西:西安科技大学,2009
    [64]武剑,基于FFT和小波变换的虚拟谐波分析系统的设计与研究[硕士],内蒙古:内蒙古工业大学,2009.
    [65]李胜贤,虚拟仪器平台在线监测系统开发中的应用[J].仪表技术.2000(2):29~30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700