三联吡啶吩噻嗪类配合物的设计、合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光功能配合物在功能材料领域有着举足轻重的地位,是目前材料领域研究的热点之一。把无机材料与有机材料的特性集于一体的功能性有机-无机复合材料将会表现出优良的热稳定性和光学活性,因此,设计功能性的有机配体,进而构筑功能性的配合物实现有机-无机的杂化或复合,优化它们的性能,将是目前也是未来很长一段时间内材料科学发展的一个重要方向。
     本文是以功能性配体的设计与合成为出发点,通过目标分子的设计,合成出一系列以吩噻嗪为母体和具有良好的刚性平面、配位能力强的多氮杂环类化合物2,2':6',2"-三联吡啶基团结合,合成功能性的有机配体;将这些有机配体与一些无机纳米粒子结合,以期得到结构新颖、性质优良的新型配合物。主要的研究内容如下:
     1.在大量文献调研的基础上,简要介绍了功能性配合物的研究进展,着重介绍了4'位取代2,2':6',2"-三联吡啶配合物以及吩噻嗪类衍生物的研究进展,提出了将2,2':6',2"-三联吡啶基团和吩噻嗪基团结合构筑的新型功能性有机配体的思想。
     2.通过取代、酰化、关环等一系列反应将两种基团结合,设计合成了两种功能性有机配体:10-己基-3-(4-乙烯基-2,2':6',2"-三联吡啶基)-吩噻嗪配体(L1)和10-己基-3-(2,2':6',2"-三联吡啶基)-吩噻嗪配体(L2)。并利用红外光谱、核磁振氢谱、质谱、元素分析等分析手段表征了它们的组成和结构,其中L1还通过单晶X-射线衍射测定了晶体结构。
     3.以L1、L2配体为母体,与无机纳米粒子ZnS、CdS通过溶剂热法得到了4种结构新颖的配合物,并解析了其中三种配合物的晶体结构,晶体结构中显示,这几种配合物都是双端基硫的结构,两个硫原子不仅作为端基与中心的金属离子配体,而且呈现出负一氧化态(S1-)。该氧化态的硫呈端基配位模式实属少见,本文用电荷自调整理论给予了合理的解释。
     4.研究了配体及配合物的光学性质,包括:紫外-可见吸收光谱、单光子荧光光谱、固体荧光光谱和热重分析。结果显示几种物质都具有较好的光学活性,尤其是L1和L2两种配体。热重分析表明几种化合物都具有很高的分解温度,在高温下,配合物比配体显示出更好的热稳定性。另外,还研究了其中一种配合物的单光子荧光生物显影,发现它是细胞透过性的。
     总之,研究表明,本文合成的两种配体都具有很好的光学活性,合成的几种配合物结构新颖,具有较好的光学性质,而且这几种化合物都具有很好的热稳定性,基本上能满足对有机-无机复合材料的要求,是具有潜在应用价值和前景的光功能材料。
Optical functional complexes have a significant place in the field of functional materials, which have attracted considerable interest. The feature set of the functional organic-inorganic hybrid materials will show higher thermal stability and excellent optical activity compared with their separateness. The design of functional organic molecules further to build functional complexes can implement the organic-inorganic hybrid and optimize their performance, which are significant in the future development of materials science.
     Here, we designed and synthesized a series of phenothiazine derivatives, combined with a good rigid plane and strong coordination ability of heterocycle 2,2':6',2 "-terpyridine to functional organic molecules. And then we synthesized the complexes combined the ligands with inorganic nanoparticles. Main research results obtained are concluded as follow.
     1. Based on a great deal of related literatures, we surveyed the research progress of functional complexes, mainly focused on development of the 4'-substituted 2,2':6',2 "-terpyridine complexes and phenothiazine derivatives. New concepts and design of the novel ligands combined with 2,2':6',2 "-terpyridine with phenothiazine unit were proposed.
     2. Through the substitution, acylating and ring closing reaction, we successfully synthesized the two novel ligands:3-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl) styryl)-10-hexyl-10H-phenothiazine(L1) and 10-hexyl-3-(2,6-di(pyridin-2-yl) pyridin-4-yl)-10H-phenothiazine(L2). All the synthetsized ligands, as well as the complexes, are characterized by IR,1HNMR, MS, elemental analysis and X-ray diffraction analysis methods.
     3. A novel series of sulfur-terminal complex are obtained by a facile solvothermal process through combining the ligands with ZnS and CdS nanoparticles. The unique feature of this new reaction design is that the inorganic nanoparticles ZnS, CdS were used as a precursor and bulky chromophoric ligands L1, L2 as an ancillary ligand, respectively. Significantly, the two sulfur atoms in the complexes are identically in minus oxidation state (S-1) and coordinated to M(Ⅱ) atom as terminal ligands, which has been rarely reported before. As a matter of fact, the versatility of the two terminal sulfur atoms was active related to biological system.
     4. A systemic investigation on the properties of the ligands and complexes were carried out, such as UV-Vis, SPEF, Photoluminescence and TGA. The results show that these compounds have displayed high optical activity, in particular for the two ligands. TGA has shown their good thermal stability. The compounds decompose at high temperature, while the complexes are more stable than their ligands. In addition, the biological imaging for the selected complex was studied.
     From the results obtained above, it can be conluuded that the target compounds have excellent optical properties and display high thermal stability. They may be potential candidates for optical functional materials.
引文
[1]a) Huang Y.W., Yan Y., Smarsly B.M., et al. Helical supramolecular aggregates, mesoscopic organisation and nanofibers of a perylenebisimide-chiral surfactant complex via ionic self-assembly. [J]. J. Mater. Chem.,2009,19,2356-2362; b) Halasyamani P.S., Poeppelmeier K. R., Preface:Overview of the Forum on Functional Inorganic Materials [J]. Inorg. Chem., 2008,47,8427-8428; c) Zhang X.J., Chen Z.K., Loh K.P., Coordination-Assisted Assembly of 1-D Nanostructured Light-Harvesting Antenna. [J]. J. Am. Chem. Soc.,2009,131, 7210-7211.
    [2]Pope M., Kallmann H.P, Magnante P., electroluminescence in organic crystals. [J]. Chem. Phys.,1963,38,2042-2044.
    [3]Tang C.W, VanSlyke S.A. Organic electroluminescent diodes. [J]. Apple. Phys. Lett.,1987,51, 913-915.
    [4]游效曾,孟庆金,韩万书,配位化学进展[M].高等教育出版社,2000.
    [5]Hamada Y, Sano T,. Fu J.H, et al. Organic light-emitting diodes using 3-or 5-hydroxy-flavone metal complexes [J]. Appl. Phys. Lett,1997,71,3338-3340.
    [6]Hamada Y, Sano T, Fujita M, et al. Blue electroluminescence in thin films of azomethin-zinc complexes. [J]. Jpn. J.Appl..Phys.1993,32,511-513.
    [7]Kido J, Nagai K, Ohashi Y, Electroluminescence in a terbium complex. [J]. Chem. Lett.,1990, 220,4,657-660.
    [8]Tao D.L, Xu Y.Z, Zhou F.S, et al. Spectroscopic and TEM studies on poly vinyl carbazoleyterbium complex and fabrication of organic electroluminescent device. [J]. Thin Solid. Films.,2003,436,281-285.
    [9]Gao D.Q., Bian Z.Q., Wang K.Z., et al. Synthesis and electroluminescence properties of an organic europium complex. [J]. Journal of Alloys and Compounds.,2003,358,188-192.
    [10]Nigel A., Male H., Oleg V.S., et al. Enhanced electroluminescent efficiency from spin-coated europium organic light-emitting device. [J]. Synth. Met.,2002,126,7-10.
    [11]Bian Z.Q., Gao D.Q, Wang K.Z., et al. Purered organic electroluminescent devices using a novel europium complex as emitting layer. [J]. Thin Solid Films.,2004,460,237-241.
    [12]Frazier C.C., Harvey M.A., Cockerham M.P., et al. Second-harmonic generation in transition-metal-organic compound. [J]. J. Phys. Chem,1986,90,5703-5704.
    [13]He R.S., Gvishi, Prasad P.N., et al. Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials. [J]. Opt.Comm.,1995,117,133-136.
    [14]Beljonne D., Bredas J.L., Theoretical investigation of two-photon absorption and third-harmonic generation in a long thiophene oligomer:α-heptathiophene. [J]. Opt. Soc. Am.(B).,1994,11,1380-1387.
    [15]Roux J.F., Coutaz J.L., Barny P.L., Chastaing E., Two-photon-absorption-induced luminescence in organic waveguide couplers. [J]. Opt. Soc. Am.(B).,1995,12,428-433.
    [16]Cheng L.T., Tan W., Stevenson S.H, Meredith G.R, Rikken G., Marder S.R., Experimental investigations of organic molecular nonlinear optical polarizabilities.1. Methods and results on benzene and stilbene derivatives. [J]. J. Phys. Chem.,1991,95,10631-10643.
    [17]Zhou.Y F., Meng F Q., Zhao X., Xu D. and Jiang.M H. Two-photon absorption properties of a new series of 2CTσ chromophores. [J]. Solid State Comm.,2000,116,605-608.
    [18]Albota M., Bejionne D., Bras J L., Ehrlich J E, Fu J Y., Heikal A A., Hess S E. Design of organic molecules with large two-photon absorption cross sections. [J]. Science.,1998,281, 1653-1656.
    [19]a) Bozio R,. Ferrante C, Zerbetto M. One-and Two-Photon Absorption and Emission Properties of a Zn(Ⅱ) Chemosensor. [J]. J. Phys. Chem., A.,2006,110,6459-6464; b) Jian F.F., Xiao H.L., Zhao P.S., et al. Synthesis, characterization and nonlinear optical effects of M4(μ4-O) core complexes with large two-photon absorption cross-sectionElectronic supplementary information (ESI) available:ORTEP diagram,1R spectra, solution UV-vis spectra, TG and DTG curves of the clusters; perspective view of the crystal packing in the unit cell. [J]. J. Mater. Chem.,2006,16,3746-3752.
    [20]Das S., Nag A., Bharadwaj P.K., Zinc(Ⅱ) and Copper(Ⅰ) Mediated Large Two-Photon Absorption Cross Sections in a bis-Cinnamaldiminato Schiff Base.[J]. J. Am. Chem. Soc.. 2006,128,402-403.
    [21]Oar M.A., Dichtel W.R., Prasad P.N., Light-Harvesting Chromophores with Metalated Porphyrin Cores for Tuned Photosensitization of Singlet Oxygen via Two-Photon Excited FRET. [J]. Chem. Mater.,2006,18,3682-3692.
    [22]a) Xue Z.M., Tian Y.P., Jiang M.H., et al. One-and two-photon excited dual fluorescence properties of zinc(ii) and cadmium(ii) complexes containing 4-dipropylaminobenzaldehyde thiosemicarbazone. [J]. Dalton Trans.,2003,3,1373-1378; b) Li S.L., Tian Y.P., Jiang M. H.,et al. Preparation, characterization, two-photon absorption and optical limiting properties of a novel metal complex containing carbazole. [J]. Opt. Mater.,2006,28,897-903; c) Zhou H.P., Tian Y.P., Jiang M.H., et al. Synthesis, crystal structures, and two-photon absorption properties of dithiocarbazate Zn(Ⅱ) and Pd(Ⅱ) complexes. [J]. J. Mol. Stru.,2007,826, 205-210.
    [23]Halper S.R., Malachowski M.R., Delaney H.M., Cohen S.M., Heteroleptic Copper Dipyrromethene Complexes:Synthesis,Structure,and Coordination Polymers. [J]. Inorg. Chem.2004,43,1242-1249.
    [24]Kaes C., Katz A., Hosseini M.W., BIPyridine:The Most Widely Used Ligand. A Review of Moleeules ComPrising at Least Two 2,2'- Bipyridine Units. [J]. Chem. Rev.,2000,10, 3553-3590.
    [25]Andres P.R., Schubert U.S., New Functional Polymers and Materials Based on 2,2':6',2"-Terpyridine Metal Complexes. [J]. Adv. Mater.,2004,16,1043-1068.
    [26]Hofmeiera H., Schubert U. S.,Recent Developments in the Supramolecular Chemistry of Terpyridine-metal Complexes. [J]. Chem. Soc. Rev.2004,33,373-399.
    [27]Heller M., Schubert U.S., Syntheses of Functionalized 2,2':6',2"-Terpyridines. [J]. Eur. J. Org. Chem.2003,947-961.
    [28]Schubert U., Esehbaumer S.C., Macromolecules Containing Bipyridine and Terpyridine Metal Complexes:Towards Metallosupramolecular Polymers. [J]. Angew. Chem. Int. Ed., 2002,41,2892-2926.
    [29]Fallahpour, Reza-Ali., Synthesis of 4'-Substituted-2,2':6',2"-Terpyridines. [J]. Synthesis., 2003,2,155-184.
    [30]Baranoff E., Collin J.P., Flamigni L., Sauvage J.P., From Ruthenium(Ⅱ) to Iridium(Ⅲ):15 Years of Triads based on Bis-terpyridine Complexes. [J]. Chem. Soc. Rev.,2004,33, 147-155.
    [31]Constable E.C.,2,2':6',2"-Terpyridines:From Chemical Obscurity to Common Supramolecular Motifs. [J]. Chem. Soc. Rev.,2007,36,246-253.
    [32]Iiollins C., Synthesis of Nitrogen Riog Compounds. [M]. Van Nostrand, London,1924,227.
    [33]Cargill Thompson A.M.W., The synthesis of 2,2':6',2"-terpyridine ligands--versatile building blocks for supramolecular chemistry. [J]. Coord. Chem. Rev.,1997,160,1-52.
    [34]Charles Chamchoulmis, Pierre G. P.,J. Chem. Research (S).,1998,180-181.
    [35]Cargill Thompson A.M.W., Constable E.C., Harverson P., Phillips D., et al., J. Chem. Res., 1995,122,835-842.
    [36]Fallahpour, Reza-Ali., Synthesis of 4'-Substituted-2,2':6',2"-Terpyridines. [J]. Synthesis., 2003,2,155-184.
    [37]ConstableE. C., Harverson P., Convergent Synthesisof an Octadecaruthenium Metallodendrimer. [J]. Inorg. Chim. Acta.,1996,252,9-11.
    [38]Andres P.R., Schubert U.S., Formation of Metallo-Polymers and Macrocycles by Complexation of Alkyl-Linked Di-Terpyridines with Iron(Ⅱ) Ions. [J]. Synthesis.,2004,8, 1229-1239.
    [39]Wang P., Moorefield C.N., Panzer M., Newkome G.R., Helical and Polymeric Nanostructures Assembled from Benzene Tri-and Tetracarboxylic Acids Associated with Terpyridine Copper(Ⅱ)Complexes. [J]. Chem. Commun.,2005,5,465-467.
    [40]Zhou X.P., Ni W.X., Zhan S.Z., Ni J., Li D., Yin Y.G., From Encapsulation to Polypseudorotaxane:Unusual Anion Networks Driven by Predesigned Metal Bis(terpyridine) Complex Cations. [J]. Inorg. Chem.,2007,46,2345-2347.
    [41]Gao Y.H., Wu J.Y., Li L., Li Y.M., Tian Y.P., et al., A Sulfur-Terminal Zn(Ⅱ) Complex and Its Two-Photon Microscopy Biological Imaging Application. [J]. J. Am. Chem. Soc.,2009,131, 5208-5213.
    [42]Gao Y. H., Wu J.Y., Zhao Q., Zheng L.X., Tian Y. P., et al., Solvent-resolved fluorescent Ag nanocrystals capped with a novel terpyridine-based dye. [J]. New J. Chem.,2009,33, 607-611.
    [43]Gao Y.H., Zhou W., Li L., Wu J.Y., Tian Y.P., et al., Polymorphism in a Highly Conjugated Organic Compound:Strong Photoelectric Response [J]. Cryst. Growth Des.,2009,9, 253-257.
    [44]a)Li D.M., Lv L.F., S P.P., et al. The facile synthesis of novel phenothiazine derivatives for blue, yellow-green, and red light emission. [J]. Dyes and Pigments.,2009,83,180-186; b) Sainsbury M. In:Sainsbury M, editor. Rodd's chemistry of carbon compounds. [J]. Amsterdam.,.1998,4,575-608.
    [45]Yang L., Feng J.K., Ren A.M., Theoretical Study on Electronic Structure and Optical Properties of Phenothiazine-Containing Conjugated Oligomers and Polymers. [J]. J.Org. Chem.,2005,70,5987-5996.
    [46]Tian Y.P., Zhang M.L., Yu X.Q., et al. Two novel two-photon polymerization initiators with extensive application prospects. [J]. Chem. Phys. Lett.,2004,388,325-329.
    [47]Cho M.J., Kim J.Y., Kim J.H., et al. [J]. Bull Korean Chem Soc,2005,26,77-78.
    [48]Ueki T., Aoki S., Ishii K., et al. Effect of a Modification Site on the Electron-Transfer Reaction of Glucose Oxidase Hybrids Modified with Phenothiazine via a Poly(ethylene oxide) Spacer. [J]. Langmuir.,2004,20,9177-9183.
    [49]Cho D.W., Fujisuka M, Sugimoto A, et al. Photoinduced Electron Transfer Processes in 1,8-Naphthalimide-Linker-Phenothiazine Dyads. [J]. J. Phys. Chem. B.,2006,110, 11062-11068.
    [50]Ito T., Kondo A., Terada S, et al. Photoinduced Reductive Repair of Thymine Glycol: Implications for Excess Electron Transfer through DNA Containing Modified Bases. [J]. J.Am.Chem.Soc.,2006,128,10934-10942.
    [51]Imabayashi S.I., Ban K., Ueki T., et al. Comparison of Catalytic Electrochemistry of Glucose Oxidase between Covalently Modified and Freely Diffusing Phenothiazine-Labeled Poly(ethylene oxide) Mediator Systems. [J]. J. Phys. Chem B.,2003,107,8834-8839.
    [52]Vinayakan R, Shanmugapriya T., Nair P.V., et al. An Approach for Optimizing the Shell Thickness of Core-Shell Quantum Dots Using Photoinduced Charge Transfer. [J]. J. Phys. Chem C.,2007,111,10146-10149.
    [53]Yin S.G., Wedel A.,et al. Synthetic and electroluminescent properties of polymer containing phenothiazine and oxadiazole units. [J]. Synthetic Metals.,2003,137,1145-1146.
    [54]Wu T.Y., Chen Y., Synthesis and characterization of novel luminescent polymers with alternate phenothiazine and divinylbenzene units. [J]. Polymer Chemistry.,2002,40, 4452-4462.
    [55]Wu T.Y., Chen Y., Poly(phenylene vinylene)-Based Copolymers Containing 3,7-Phenothiazylene and 2,6-Pyridylene Chromophores:Fluorescence Sensors for Acids, Metal Ions, and Oxidation. [J]. Polymer Chemistry.,2004,42,1272-1284.
    [56]Wu T. Y., Chen Y., Synthesis and optical and electrochemical properties of novel copolymers containing alternating 2,3-divinylquinoxaline and hole-transporting units. [J]. Polymer Chemistry.,2002,40,4570-4580.
    [57]Han Y.S., Kim S.D., Park L.S., et al. Synthesis of conjugated copolymers containing phenothiazinylene vinylene moieties and their electrooptic properties. [J]. Polymer Chemistry.,2003,41,2502-2511.
    [58]Kong X.X., Kulkarni A.P., Jenekhe S.A., Phenothiazine-Based Conjugated Polymers: Synthesis, Electrochemistry and Light-Emitting Properties. [J]. Macromoles.,2003,36, 8992-8999.
    [59]Hwang D.H., Kim S.K., Park M.J., Conjugated Polymers Based on Phenothiazine and Fluorene in Light-Emitting Diodes and Field Effect Transistors. [J]. Chem. Mater.,2004,16, 1298-1303.
    [60]Kim G.W., Cho M.J., Yu Y.J., et al. Red Emitting Phenothiazine Dendrimers Encapsulated 2-{2-[2-(4-Dimethylaminophenyl)vinyl]-6-methylpyran-4-ylidene}malononitrile Derivatives. [J]. Chem. Mater.,2007,19,42-50.
    [61]Park M.J., Lee J., Park J.H., et al. Synthesis and Electroluminescence of New Polyfluorene Copolymers with Phenothiazine Derivative:Their Application in White-Light-Emitting Diodes. [J]. Macromolecules.,2008,41,3063-3070.
    [62]Ordway D., Viveiros M., Leandro C., Bettencourt R., Almeida J., Martins M., Kristiansen J.E., et al. Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. [J]. Antimicrob.Agents Chemother.,2003,47,917-922; b) Stoppani A.O., The chemotherapy of Chagas disease. [J]. Med. B. Aires.,1999,59,147-165.
    [63]Motohashi N., Kawase M., Saito S., Sakagami H., Antitumor potential and possible targets of phenothiazine-related compounds. [J]. Curr. Drug Targets.,2000,1,237-245.
    [64]Daniel W.A., Mechanisms of cellular distribution of psychotropic drugs. Significance for drug action and interactions, Prog. Neuropsychopharmacol. [J]. Biol.Psychiatry.,2003,27, 67-70.
    [65]a) Wang J., Ozsoz M., Cai X.H., et al., Interactions of Antitumor Drug Daunomycin with DNA in Solution and at the Surface. [J]. Bioelectrochem.Bioenerg.,1998,45,33-40; b) Wang Z.X., Liu D.J., Dong S.J., Voltammetric and Spectroscopic Studies on Methyl Green and Cationic Lipid Bound to Calf Thymus DNA. [J]. Biophysical Chem.,2000,87,179-184.
    [66]Rhee H.W., Choi S.J., Yoo S.H., A Bifunctional Molecule as an Artificial Flavin Mononucleotide Cyclase and a Chemosensor for Selective Fluorescent Detection of Flavins. [J]. J.Am. Chem. Soc.,2009,131,10107-10112.
    [1]Daniel W.A., Mechanisms of cellular distribution of psychotropic drugs. Significance for drug action and interactions, Prog. Neuropsychopharmacol. [J]. Biol. Psychiatry.,2003,27,65-73.
    [2]Rhee H.W., Choi S.J., Yoo S.H., A Bifunctional Molecule as an Artificial Flavin Mononucleotide Cyclase and a Chemosensor for Selective Fluorescent Detection of Flavins. [J].J.Am. Chem. Soc.,2009,131,10107-10112.
    [3]Kim G.W., Cho M.J., Yu Y.J., et al. Red Emitting Phenothiazine Dendrimers Encapsulated 2-{2-[2-(4-Dimethylaminophenyl)vinyl]-6-methylpyran-4-ylidene}malononitrile Derivatives. [J]. Chem. Mater.,2007,19,42-50.
    [4]Park M.J., Lee J., Park J.H., et al. Synthesis and Electroluminescence of New Polyfluorene Copolymers with Phenothiazine Derivative:Their Application in White-Light-Emitting Diodes. [J]. Macromolecules.,2008,41,3063-3070.
    [5]Goodall W., Williams J.A.G., A new highly fluorescent terpyridine which responds to zinc ions with a large red-shift in emission [J]. Chem.Commun.,2001,2514-2515.
    [6]Gao Y. H., Wu J.Y., Zhao Q., Zheng L.X., Tian Y. P., et al. Solvent-resolved fluorescent Ag nanocrystals capped with a novel terpyridine-based dye. [J]. New J. Chem.,2009,33, 607-611.
    [7]Laughlin L.J., Eagle A.A., George G.N., et al. Synthesis, Characterization, and Biomimetic Chemistry of cis-Oxosulfidomolybdenum(Ⅵ) Complexes Stabilized by an Intramolecular Mo(O)=S···S Interaction. [J]. Inorg. Chem.,2007,46,939-948.
    [8]Doonan C.J., Nielsen D.J., Smith P.D., et al. Models for the Molybdenum Hydroxylases: Synthesis, Characterization and Reactivity of cis-Oxosulfido-Mo(Ⅵ) Complexes. [J]. J. Am. Chem. Soc.,2006,128,305-316.
    [9]Doonan C.J., Rubie N.D., Young C.G., et al. Electronic Structure Description of the cis-MoOS Unit in Models for Molybdenum Hydroxylases. [J]. J. Am. Chem. Soc.,2008,130, 55-65.
    [10]Gao Y.H., Wu J.Y., Li L., Li Y.M., Tian Y.P., et al., A Sulfur-Terminal Zn(Ⅱ) Complex and Its Two-Photon Microscopy Biological Imaging Application. [J]. J. Am. Chem. Soc.,2009,131, 5208-5213.
    [11]Sheldrick G.M., SHELXTL V.5.1 Software Reference Manual, BrukerAXS, Inc., Madison, WI, USA,1997.
    [12]Raebiger H., Lany S., Zunger A., Charge self-regulation upon changing the oxidation state of transition metals in insulators. [J]. Nature.,2008,453,763-766.
    [13]R. Resta, Physical chemistry:Charge states in transition. [J]. Nature.,2008,453,735-735.
    [1]Meyers F., Marder S.R., Pierce B.M., Bredas, J.L. Electric-Field Modulated Nonlinear-Optical Properties of Donor-Acceptor Polyenes-Sum-over-States Investigation of the Relationship Between Molecular Polarizabilities (Alpha, Beta, and Gamma) and Bond-Length Alternation. [J]. J. Am. Chem. Soc,1994,116,10703-10714.
    [2]宁永成:有机化合物结构鉴定与有机波谱学(第二版).[M].北京,科学出版社,2001.
    [3]Drexhage K.H., Structure and Prooerties of Laser Dyes. In Dyes Lasers; Schafer, F. P. Ed., Springer-Verlag:Berlin,1990, Chapter 5.
    [4]高远浩.功能性三联吡啶衍生物有机-无机复合材料的设计、合成和光学特性研究.[D].合肥:安徽大学化学化工学院,2009.
    [5]a) Fromherz P., Monopole-Dipole Model for Symmetrical Solvatochromism of Hemicyanine Dyes. [J]. J. Phys. Chem.,1995,99,7188-7192; b) Narang U., Zhao C.F., Bhawalkar J.D., Bright F.V., Prasad P.N., Characterization of a New Solvent-Sensitive Two-Photon-Induced Fluorescent (Aminostyryl)pyridinium Salt Dye. [J]. J. Phys. Chem.,1996,100,4521-4525.
    [6]胡张军.光功能含N、O、S杂原子有机配体及其配合物材料的设计、合成与性质研究[D].合肥:安徽大学化学化工学院,2008.
    [7]李东梅.吩噻嗪衍生物及其配合物的设计、合成与性质研究.[D].合肥:安徽大学化学化工学院,2009.
    [8]a) Grabowski Z.R, Rotkiewicz K., Siemiarczuk A., Cowley D.J, Bau-mann W., Nouv. J. Chem.,1979,3,443-454; b)吴世康,具有荧光发射能力有机化合物的光物理和光化学问题研究.[J].2005,17,26-48.
    [9]a) Grabowski Z.R., Rotkiewicz K., Rettig W., Structural changes accompanying intramolecular electron transfer:fo-cus on twisted intramolecular charge-transfer states and structures. [J], Chem. Rev.,2003,103,3899-4032; b) Ren Y., Xin Q., Tao X.T., Wang L., Yu X.Q., Yang J.X., Jiang M.H., Novel multi-branched organic compounds with enhanced two-photon absorption benefiting from the strong electronic coupling. [J]. J Chem. Phys. Lett.,2005,414,253-258.
    [10]Wang C.K., Macak P., Luo Y., Agren H., Effects of π centers and symmetry on two-photon absorption cross sections of organic chromophores. [J]. J. Chem.Phys.,2001,114, 9813-9821.
    [11]Stiefel E.I., Matsumoto K., Transition Metal Sulfur Chemistry:Biological and Industrial Significance (ACS Symposium Series 653), American Chemical Society, Washington, DC, 1996.
    [12]Holm R. H., Kennepohl P., Solomon E.I., Structure and functional aspects of metal sites in biology. [J]. Chem. Rev.,1996,96,2239-2314.
    [13]Lipscomb W.N., Norbert S., Recent Advance in Zinc Enzymology. [J]. Chem. Rev.,1996,96 2375-2434.
    [14]Bertini I., Gray H.B., Stiefel E.I., Valentine J.S., Biological Inorganic Chemistry:Structure and Reactivity. University Science Books, Sausalito, CA,2007.
    [15]Vahrenkamp H., Transitions, Transition States, Transition State Analogues:Zinc Pyrazolylborate Chemistry Related to Zinc Enzymes. [J]. Acc. Chem. Res.,1999,32, 589-596.
    [16]K. Peariso, C. W. Goulding, S. Huang, R. G. Matthews, J. E. Penner-Hahn, Characterization of the Zinc Binding Site in Methionine Synthase Enzymes of Escherichia coli:The Role of Zinc in the Methylation of Homocysteine. [J]. J. Am. Chem. Soc.,1998,120,8410-8416.
    [17]Balzani V., Credi A., Venturi M., Photochemistry and photophysics of coordination compounds:An extended view. [J]. Coord. Chem. Rev.,1998,171,3-16.
    [18]Che C.M., Wan C.W., Lin W.Z., Zhou Z.Y., Lai W.Y., et al. Highly luminous substituted bipyrroles. [J]. Chem. Commun.,2001,1,721-722.
    [19]GAUSSIAN98 References in http://www.gaussian.com
    [20]P. Chakrabarti, Biochemistry.1989,28,6081-6085.
    [21]Soohyun Lee., Justin Thomas K.R., Thayumanavan S., et al., Dependence of the Two-Photon Absorption Cross Section on the Conjugation of the Phenylacetylene Linker in Dipolar Donor-Bridge-Acceptor Chromophores. [J]. J. Phys. Chem. A.,2005,109,9767-9774.
    [22]Kanis, D. R., Ratner, M. A.; Marks, T. J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. [J]. Chem. Rev. 1994,94,195-242.
    [23]Bre'das, J.L., Adant, C.; Tackx, P.; Persoons, A. Third Order Non-Linear Opticsl PoJymers. [J]. Chem. Rev.1994,94,243-278.
    [24]Mukamel S., Takahashi A., Wang,H.X.; Chen G.., Electronic Coherence and Nonlinear Susceptibilities of Cojugated Polyenes. [J]. Science.,1994,266,250-254.
    [25]Dalton L.R. Rational design of organic electro-optic materials. [J]. J. Phys. Cond. Mater., 2003,15,897-934.
    [26](a) Porres L., Mongin O., Katan C., et al., Enhanced Two-Photon Absorption with Novel Octupolar Propeller-Shaped Fluorophores Derived from Triphenylamine. [J]. Org. Lett.,2004, 6,47-50; (b) Katan C., Terenziani F., Mongin O., et al., Effects of (Multi)branching of Dipolar Chromophores on Photophysical Properties and Two-Photon Absorption. [J]. J. Phys. Chem A.,2005,109,3024-3037.
    [27]Drobizhev M., Karotki A., Dzenis Y., et al., Strong Cooperative Enhancement of Two-Photon Absorption in Dendrimers. [J]. J. Phys. Chem. B.,2003,107,7540-7543.
    [28]Alameddine B., Savary S., Aebisher O., et al., Synthesis of Perfluoroalkylated Bulky Triarylamines. [J]. Synthesis.,2007,2,271-276.
    [29]Hagiya K., Mitsui S., Taguchi H., A Facile and Selective Synthetic Method for the Preparation of Aromatic Dialdehydes from Diesters via the Amine-Modified SMEAH Reduction System. [J]. Synthesis.,2003,823-828.
    [30](a) Allain C., Schmidt F., Lartia R., et al., Vinyl-Pyridinium Triphenylamines:Novel Far-Red Emitters with High Photostability and Two-Photon Absorption Properties for Staining DNA. [J]. ChemBioChem.,2007,8,424-433; (b) Lartia R., Allain C., Bordeau G., Synthetic strategies to derivatizable triphenylamines displaying high two-photon absorption. [J]. J. Org. Chem.,2008,73,1732-1744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700