Bola型组氨酸基表面活性剂(H_2D)及其复配体系的气/液界面吸附
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂具有的洗涤、润湿、乳化、分散和起泡等实际应用功能均与它在界面的吸附特性有关,对界面吸附行为的研究一直是相关科学家关注的重要课题。对于Bola型表面活性剂界面吸附行为的研究工作目前只是停留在其吸附平衡时的状态,对其动态吸附过程及其在外力扰动下的吸附研究还未见报道。
     本论文选用具有生物相容性的氨基酸基Bola型表面活性剂,1,12-二组氨酸基十二二铵盐(H_2D)为研究对象,利用表面张力、动态表面张力、表面扩张粘弹性等方法,研究其自身以及与小分子表面活性剂(CTAB)和壳聚糖衍生物高分子表面活性剂复配体系在气/液界面的吸附行为,主要得到以下结果:
     1.对H_2D含盐体系,H_2D分子饱和吸附时在表面上采取直立的倒U型结构,所需吸附平衡时间较长。液滴扩张和收缩时,H_2D分子存在从体相到表面的扩散快过程和分子在表面上的弛豫慢过程两个弛豫过程。H_2D分子在表面的动态吸附行为与平衡时间、溶液浓度、H_2D分子自身的电性、电解质浓度和种类以及温度有关。实验条件范围内,盐浓度为0.3 mol/L,pH值为8.2时,H_2D分子膜稳定性最好。
     2.对H_2D/CTAB复配体系,混合溶液的临界胶束浓度(cmc)较单一CTAB略有降低,且表面张力出现最低点。复配溶液浓度小于cmc时,体系降低表面张力的能力提高,扩张粘弹性与弛豫过程不同于单一体系,二者同影响表面;当复配溶液浓度高于cmc,表面上吸附的主要为CTAB分子,混合体系的表面张力、扩张粘弹性以及弛豫过程与单独CTAB时数值接近。
     3.对N-十二烷基-O-羧甲基壳聚糖(C_(12)-OCMCS)体系,动态表面张力结果表明C_(12)-OCMCS在表面上的吸附存在四个阶段:滞后阶段,后滞后阶段、最后阶段与平衡阶段。其表面扩张粘弹性实验结果表明,随着平衡时间的增长,C_(12)-OCMCS分子在气/液界面形成环形结构,使得扩张模量和弹性模量出现最高点,极限弹性模量与特征弛豫时间时的粘性模量也先升高后降低。高浓度的C_(12)-OCMCS分子由于分子数目多,扩散快,滞后阶段与后滞后阶段所需时间低于低浓度的C_(12)-OCMCS分子。由于大量凝胶状结构的存在,高浓度的C_(12)-OCMCS最后阶段所需时间长于低浓度的。NaCl的加入屏蔽了C_(12)-OCMCS分子之间的静电斥力,使C_(12)-OCMCS分子吸附的滞后阶段、后滞后阶段以及最后阶段所需时间均比无NaCl存在的体系要短。
     对C_(12)-OCMCS/H_2D复配体系,其水溶液及NaCl溶液动表面张力和表面扩张粘弹性表明,两者通过静电和疏水作用吸附在表面上形成复合膜。低浓度的C_(12)-OCMCS与H_2D复配,复合膜稳定性高于C_(12)-OCMCS体系而低于H_2D体系。此浓度下C_(12)-OCMCS分子成松散的“刷状”排列,与H_2D分子仅能依靠静电引力与C_(12)-OCMCS缔合形成复合物,使得表面上分子重排的驰豫消失。高浓度的C_(12)-OCMCS与H_2D复配,由于H_2D与C_(12)-OCMCS以静电方式缔合后,增加了表面上H_2D与C_(12)-OCMCS分子密度,使得C_(12)-OCMCS分子在表面亚层链段交换的相互力减弱,表面活性剂快驰豫与慢驰豫的特征频率均与单一C_(12)-OCMCS体系接近,但慢驰豫过程占的比例加大。C_(12)-OCMCS/H_2D复配体系在NaCl溶液中,复配体系的扩张粘弹性低于单一体系,二者在表面上主要存在疏水作用,相互缔合对C_(12)-OCMCS链间的相互作用以及在表面上的弛豫影响较无盐体系要小。
The widespread use of surfactants in the huge variety of fields (such as detergency, moistening, emulsification, dispertion and foam formation), is typically based on their adsorption behavior at the air-water interface, and hence, the study of this behavior is an important subject that scientists always concern. For bolaform surfactants, the study of adsorption behavior currently is only about the adsorption equilibrium state, and the study on the dynamic adsorption process and adsorption in the external perturbation has never been reported.
     In this paper, a novel bolaform surfactant, 1, 12-dihistidine diaminododecane (H_2D), with biodegradability and biological compatibility, was selected as the research object. The adsorption behaviors at the air-water interface of H_2D and the mixed systems of H_2D/small surfactant(CTAB) and H_2D/polymer-based surfactant (chitosan-based surfactant) were studied by surface tension, dynamic surface tension, surface dilational viscoelasticity and other methods. The followed are the main results.
     1. In H_2D/salt system, H_2D adopted a reversed U-shaped conformation once the adsorption saturation state was reached. Two relaxation processes were observe for H_2D, which are fast process and slow process. The former one was caused by the molecular diffusion from bulk to interface and the latter one was caused by the relaxation of H_2D molecules at interface. Moreover, the dynamic adsorption behavior of H_2D was related to the aging time, solution concentration, electric of H_2D, the type and concentration of electrolyte, and temperature. In the range of the experimental conditions, the stability of H_2D membrane was the best when the concentration of salt was 0.3 mol/L and pH value was 8.2.
     2. For H_2D/CTAB mixed system, the critical micelle concentration (cmc) was slightly lower than that of pure CTAB system and a minimum surface tension was appeared. Moreover, when the concentration of the mixed solution is less than cmc, its ability to reduce the surface tension was improved, and the surface dilational viscoelasticity and relaxation process were different from pure system, suggesting both the H_2D and CTAB affect the interface properties. Howerver, when the concentration of mixed solution was higher than cmc, the main constituent adsorbed at the air-water interface was CTAB.
     3. For N-lauryl-O-carboxymethyl chitosan (C_(12)-OCMCS) system, the dynamic surface tension measurements showed that there were four characteristic dsorption stages: induction stage (lag stage), post-induction stage, final stage and equilibrium stage. The surface dilational viscoelasticity menifested that C_(12)-OCMCS started to form ring structure at the air-water interface with the increase of the ageing time and there were a maximium values for both the elastic storage and loss moduli. The limit elastic modulus and viscous modulus at characteristic relaxation time were also increased first and then decreased with the increase of ageing time. Compared with the case at lower concentration, at higher concentration, C_(12)-OCMCS molecules were diffused faster and needed shorter time to reach the induction stage and post-induction stage. But at higher concentration, more gelatinous structures existed at the air-water interface, thus the time needed for reaching the final stage was longer. NaCl can shield the electrostatic repulsion among C_(12)-OCMCS molecules, thus, making the time needed for reaching the threes stages shorter than without NaCl system.
     In C_(12)-OCMCS/H_2D solution system and C_(12)-OCMCS/H_2D/salt solution system, the results of dynamic surface tension and surface dilational viscoelasticity showed that they were adsorpted at the air-water interface through both electrostatic and hydrophobic interactions and formed a composite film. The stability of the composite film was higher than that in C_(12)-OCMCS system and lower than that in H_2D system formed in the system of lower concentration of C_(12)-OCMCS mixed with H_2D. In this case, C_(12)-OCMCS molecules were adsorbed as loose“brush”at the air-water interface. The formation of complex in this system depended on electrostatic attraction which made the relaxation of molecular rearrangement disapper. When higher concentration of C_(12)-OCMCS was mixed with H_2D, the molecular density of C_(12)-OCMCS and H_2D were increased at the interface beacause of electrostatic attraction, thus the interaction causing segment exchange in the surface sub-layer was decreased. The characteristic frequencies of fast relaxation and slow relaxation for the mixed system were close to those for pure C_(12)-OCMCS system. But the proportion of slow relaxation was larger than that of fast relaxation. The value of dilational viscoelasticity for that mixed system in the presence of NaCl was lower than that for each pure system. The main interaction of C_(12)-OCMCS and H_2D was hydrophobic. The effect aroused by the interaction among C_(12)-OCMCS molecular chains of the relaxation process because of interaction between C_(12)-OCMCS and H_2D with NaCl was weaker than that without NaCl.
引文
1. Yin, H. Q.; Huang, J. B.; et al. Langmuir 2005, 21, 2656.
    2. Yin, H. Q.; Huang, J. B.; et al. J. Phys. Chem. B 2005, 109, 4104.
    3. Huang, J. B. J. Phys. Chem. B 2004, 108, 5256.
    4. Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. J. Colloid Interf. Sci. 2007, 311, 276.
    5. Gabriel, J. L.; Chong, P. L. G. Chem. Phys. Lipids 2000, 105, 193.
    6. Holland, D. P.; Struts, A. V.; Brown, M. F.; Thompson, D. H. J. Am. Chem. Soc. 2008, 130, 4584.
    7. Sprott, G. D. J. Bioenerg. Biomembr. 1992, 24, 555.
    8. Gambacorta, A.; Gliozzi, A.; et al. World J. Microbiol. Biotechnol. 1995, 11, 115.
    9. Yamauchi, K.; Kinoshita, M. Prog. Polym. Sci. 1993, 18, 763.
    10. Fuhrhop, J. H.; Mathieu, J. Angew. Chem. Int. Ed. 1984, 23, 100.
    11. Escamilla, G. H.; Newkome, G. R. Angew. Chem. Int. Ed. 1994, 33, 1937.
    12. Fuhrhop, J. H.; Wang, T. Y. Chem. Rev. 2004, 104, 2901.
    13. Benvegnu, T.; Brard, M.; Plusquellec, D. Curr. Opin. Colloid Interface Sci. 2004, 8, 469.
    14. Meister, A.; Blume, A. Curr. Opin. Colloid Interface Sci. 2007, 12, 138.
    15. Fuhrhop, J. H.; Mathieu, J. Angew. Chem. Int. Ed. 1984, 96, 124.
    16. Fuhrhop, J. H.; Mathieu, J. Angew. Chem. Int. Ed. 1984, 23, 100.
    17. Fuhrhop, J. H.; Fritsch, D. Accounts Chem. Res. 1986, 19, 130.
    18. Escamilla, G. H.; Newkome, G. R. Angew. Chem. Int. Ed. 1994, 33, 1937.
    19. Meguro, K.; Ikeda, K.; Otsuji, A. J. Colloid Interf. Sci. 1987 ,118, 372.
    20.赵国玺,朱歩瑶.表面活性剂作用原理北京:中国轻工业出版社, 2003, p137.
    21. Ikeda, K.; Yasuda, M.; Ishikawa, M.; Esumi, K.; et al. Colloid Polym. Sci. 1989, 267, 825.
    22. Zana, R.; Yiv, S.; Kale, K. M. J. Colloid Interf. Sci. 1980, 77, 456.
    23. Meguro, K.; Ikeda, K.; Otsuji, A.; Taya, M.; Yasuda, M.; Esumi, K. J. Colloid Interf. Sci. 1987, 118, 372.
    24. Menger, F. M.; Wrenn, S. J. Phys. Chem. 1974, 78, 1387.
    25. Aydogan, N.; Abbott, N. L. J. Colloid Interf. Sci. 2001, 242, 411.
    26. Gallardo, B. S.; Metcalfe, K. L. Abbott, N. L. Langmuir 1996, 12, 4116.
    27. Liu, M. H.; Cai, J. F. Langmuir 2000, 16, 2899.
    28. Meister, A.; Weygand, M. J.; Brezesinski, G.; et al. Langmuir 2007, 23, 6063.
    29. Yan,Y.; Huang, J. B.; Li, Z. C.; Zhao, X. L.; Zhu, B. Y.; Ma, J. M. Colloids Surf. A 2003, 215, 263.
    30. Menger, F. M.; Wrenn, S. J. Phys. Chem. 1974 ,78, 1387.
    31. Abid, S. K.; Hamid, S. M.; Sherrington, D. C. J. Colloid Interf. Sci. 1987, 120, 24.
    32. Meister, A.; Weygand, M. J.; Brezesinski, G.; et al. Langmuir 2007, 23, 6063.
    33.阎云,郭素,熊玮,黄建滨,李子臣,马季铭.物理化学学报2005, 21, 550.
    34. Gao, P.; Liu, M. H. Langmuir 2006, 22, 6727.
    35. Song, B.; Liu, G. Q.; Xu, R.; Yin, S. C.; Wang, Z. Q.; Zhang, X. Langmuir 2008, 24, 3734.
    36. Yan, Y.; Huang, J. B.; Li, Z. C.; Han, F.; Ma, J. M. Langmuir 2003, 19, 972.
    37. Han, F.; He, X.; Huang, J. B.; Li, Z. C.; Wang, Y. L.; Fu, H. L. J. Phys. Chem. B 2004, 108, 5256.
    38. Han, F.; Huang, J. B.; Zheng, B.; Li, Z. C. Colloids Surf. A 2004, 242, 115.
    39. Song, B.; Wei, H.; Wang, Z. Q.; Zhang, X.; Smet, M.; Dehaen, W. Adv. Mater. 2007, 19, 416.
    40. Yin, S. C.; Song, B.; Liu, G. Q.; Wang, Z. Q.; Zhang, X. Langmuir 2007, 23, 5936.
    41. Tanev, P. T.; Liang, Y.; Pinnavaia, T. J. J. Am. Chem. Soc. 1997, 119, 8616.
    42.阎云,黄建滨,李子臣,赵小莉,马季铭.物理化学学报2002, 60, 1147.
    43.阎云,韩峰,黄建滨,李子臣,马季铭.物理化学学报2002, 18, 830.
    44. Han, F.; Huang, J. B.; Zheng, B. Li, Z. C. Colloids Surf. A 2004, 242, 115.
    45. Basher, L. L.; Herrington, K. L.; Kaler, E. W. Langmuir 1995, 11, 4267.
    46.傅晓琴,邬国铭,高洗.高等学校化学学报1996, 3, 22.
    47.蒋挺大.甲壳素2003,化学工业出版社,北京. p3.
    48.蒋挺大.甲壳素2001,化学工业出版社,北京. p9.
    49.杨建红,杜予民,覃彩芹.分析化学学报1996, 282.
    50. Sood, A.; Panchagnula, R. Chem. Rev. 2001, 101, 3275.
    51. Pozzo, A. D. Carbohyd. Polym. 2000, 42, 201.
    52. Harris, J. M.; Smch, E. C.; Case, M. G. J. Polym. Sci. 1984, 22, 341.
    53. Sugimato, M.; Morimoto, M.; Sashiwa, H. Carbohyd. Polym. 1998, 36, 49.
    54. Muslim, T.; Mofimoto, M.; Saimoto, H. Carbohyd. Polym. 2000, 56, 323.
    55. Park, I. K.; Kim, T. H.; Park, Y. H. J. Control. Release 2001, 45, 349.
    56. Ouchi, T.; Nishizawa, H.; Ohya, Y. J. Polym. Sci. 1998, 5, 171.
    57. Hoffman, A. S.; Chen, G. H.; Wu, X. D. Polym. Preprints 1997, 38, 524.
    58. Ikeda, I.; Sugano, M.; Yoshida, K.; et al. Diet Fiber Health Dis. 1995, 1, 95.
    59. Kanauchi, O.; Denchi, K.; Imasato, Y.; et al. Biotechnol. Appl. Biochem. 1994, 58, 1617.
    60. Harris, J. M.; Smch, E. C.; Case, M. G. J. Polym. Sci. 1984, 22, 341.
    61. Sugimato, M.; Morimoto, M.; Sashiwa, H. Carbohyd. Polym. 1998, 36, 49.
    62. Muslim, T.; Mofimoto, M.; Saimoto, H. Carbohyd. Polym. 2000, 56, 323.
    63. Park, I. K.; Kim, T. H.; Park, Y. H. J. Control Release 2001, 45, 349.
    64. Hoffman, A. S.; Chen, G. H.; Wu, X. D. Polym Preprints 1997, 38, 524.
    65. Dong, K. K.; Doo, W. K. J. Appl. Polym. Sci. 1999, 4, 458.
    66. Yalpam, M.; Marchessauh, R. H.; Mofin, F. Q. Macromolecules 1991, 24, 6046.
    67. Park, I. K.; Ihm, J. E.; Park, Y. H. J. Control. Release 2003, 86, 349.
    68. Kim, S. Y.; Cho, S. M.; Lee, Y. M. J. Appl. Polym. Sci. 2000, 78, 1381.
    69. Ross, G. D.; Wolfonden, R. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 381.
    70. Babak, V. G.; Desbrieres, J.; Tikhonov, V. E. Colloids Surf. A 2005, 255, 119.
    71. Babak, V. G.; Rinaudo, M.; Desbrieres, J.; Vikhoreva, G. A.; Michalski, M. C. Mendeleev Commun. 1997, 4, 149.
    72. Desbrieres, J.; Rinaudo, M.; Babak, V. G.; Vikhoreva, G. A. Polym. Bull. 1997, 39, 209.
    73. Babak, V. G.; Desbrieres, J. Mendeleev Commun. 2004, 2, 66.
    74. Babak, V. G.; Lukina, I. G.; Bodorev, M. M.; Klementjev, V. G. Colloid J. 1996, 58, 753.
    75. Babak, V. G.; Vikhoreva, G. A.; Lukina, I. G.; Kuznezova, L. V. Colloid J. 1997, 59, 131.
    76隋伟平,陈国华,杨爽,王宗春.青岛海洋大学学报2001, 31, 263
    77 Chari, K.; Lenhart, W. C. J. Colloid Interf. Sci. 1990, 137: 204
    78. Chang, C. H.; Franses, E. I. Colloids Surf. 1995, 100, 1.
    79. Miller, R.; Joos, P.; Fainermann, V. Adv. Colloid Interface Sci. 1994, 49, 249.
    80. Milner, S. R. Philos. Mag. 1907, 6, 96.
    81. Adam, N. K.; Shute, H. L. Trans. Faraday Soc. 1935, 31, 205.
    82. Adam, N. K.; Shute, H. L. Trans. Faraday Soc. 1938, 34, 758.
    83. Alexander, A. E. Trans. Faraday Soc. 1941, 37, 15.
    84. Bond, W. N.; Puls, H. O. Philos. Mag. 1937, 7, 864.
    85. Ross, S. J. Am. Chem. Soc. 1945, 67, 990.
    86. Langmuir, I.; Schaefer, V. J. J. Am. Chem. Soc. 1937, 59, 2400.
    87. Ward, A. F. H.; Tordai, L. J. Chem. Phys. 1946, 144, 53.
    88. Eastoe, J.; Dalton, J. S. Adv. Colloid Interface 2000, 85, 103.
    89. Filippov, L. K.; Filippova, N. L. J. Colloid Interf. Sci. 1997, 187, 304.
    90. Dukhin, S. S.; Kretzschmar, G.; Miller, R. Elsevier Amsterdam 1995.
    91.孙涛垒,张路,王宜阳,赵濉,俞稼镛.高等学校化学学报2003, 24, 2243.
    92.张磊,王晓春,宫清涛,罗澜,张路,赵濉,俞稼镛.物理化学学报2007, 23, 1881.
    93.王宜阳,张路,孙涛垒,方洪波,赵濉,俞稼镛.物理化学学报2003, 19, 297.
    94. Benjamins, J.; Gagna, A.; Lucassen-Reynders, E. H. Colloids Surf. A 1996, 114, 245.
    95. Fromyr, T.; Hansen, F. K.; Kotzev, A.; Laschewsky, A. Langmuir 2001, 17, 5256.
    96. Lucassen, J.; Giles, D. J. Chem. Soc. Faraday Trans. 1975, 71, 217.
    97. Cardenas-Vmem, A. E.; Bailey, A. I. Colloids Surf. A 1993, 79, 115.
    98. David, E. T.; Mukul, M. S. J. Colloid Interf. Sci. 1995, 171, 456.
    99. Murray, B. S.; Ventura, A.; Lallemant, C. Colloids Surf. A 1998, 143, 211.
    100. Liggieri, L.; Miller, R. Curr. Opin. Colloid Interface Sci. 2010, xxx, xxx.
    101. Ravera, F.; Ferrari, M.; Santini, E.; Liggieri, L. Adv. Colloid Interface 2005, 117, 75.
    102. Murray, B. Curr. Opin. Colloid Interface Sci. 2002;7, 426.
    103. Kotsmar, C.; Pradines, V.; Alahverdjieva, V. S.; Aksenenko, E. V.; Fainerman, V.B.; Kovalchuk, V. I.; et al. Adv. Colloid Interface 2009, 150, 41.
    104.孙涛垒,彭勃,许志明,张路,赵濉,李明远,俞稼镛.物理化学学报2002, 18, 161.
    105. Sun, T. L.; Zhang, L.; Wang, Y. Y.; et a1. J. Colloid Interf. Sci. 2002, 255 241.
    106.韩国彬, Vignes-Adler, M.物理化学学报1998, 14, 709.
    107.韩国彬,吴金添,许晓明.物理化学学报2000, 16, 507.
    108.王宜阳,张路,孙涛垒,方洪波,赵濉,俞稼镛.物理化学学报2003, 19, 455.
    109.王宜阳,张路,孙涛垒,赵濉,俞稼镛.高等学校化学学报2003, 24, 2044.
    110. Rao, A.; Kim, J.; Thomas, R. R. Langmuir 2005, 21, 617.
    111. Latnikova, A. V.; Lin, S. Y.; Loglio, G.; Miller, R.; Noskov, B. A. J. Phys. Chem C 2008, 112, 6126.
    112. Babak, V. G.; Desbrieres, J. Mendeleev Commun. 2005, 15, 35.
    
    1. Fuhrhop, J.; Koening, J. Royal Society of Chemistry. London, 1994, Vols. i-xiii, p1.
    2. Fuhrhop, J. H.; Endisch, C. Marcel Dekker.New York, 2000, p606.
    3. Ulman, A. Academic Press. New York, 1991.
    4. Lu, T.; Han, F.; Li, Z. C.; Huang, J. B. Langmuir 2006, 22, 2045.
    5. Escamilla, G. H.; Newkome, G. R. Angew. Chem. Int. Ed. 1994, 33, 1937.
    6. Tanev, P. T.; Liang, Y. Am. Chem. Soc. 1997, 119, 8616.
    7. Chen, Y. X.; Liu, Y.; Guo, R. J. Colloid Interf. Sci. 2009, 336, 766.
    8.阎云,黄建滨.化学学报2002, 7, 1147.
    9. Dahanayake, M. D.; Coben, A. W.; Rosen, M. J. J. Phys. Chem. 1986, 90, 2413.
    10.赵国玺,朱歩瑶.表面活性剂作用原理中国轻工业出版社, 2003, p120
    11. Kon-No, K.; Jin-No, T.; Kitahara, A. J. Colloid Interf. Sci. 1974, 49, 383.
    12. Dahanayake, M. D.; Coben, A. W.; Rosen, M. J. J. Phys.Chem. 1986, 90, 2413.
    13. Paquette, R. G.; Lingafelter, E. C.; Tartar, H. V. J. Am. Chem. Soc. 1943, 65, 686.
    14. Rosen, M. J.; Tao, G. J. Colloid Interf. Sci. 1995, 173, 42.
    15. Tao, G.; Rosen, M. J. JAOCS. 1994, 71, 771.
    16. Tao, G.; Rosen, M. J. J. Colloid Interf. Sci. 1995, 172, 242.
    17. Rosen, M. J.; Song, L. D. J. Colloid Interf. Sci. 1996, 179, 261.
    18. Rosen, M. J. Surfactant and interfacial phenomena, Third edition, New Jersery. 2004.
    19. Nahringbauer, I. J. Colloid Interf. Sci. 1995, 176, 318.
    20. Fainerman, V. B.; Aksenenko, E. V.; Makievski, A. V.; et al. Colloids Surf. A 2009, 334, 22.
    21. Lucassen-Reynders, E. H. Anionic surfactants. New York and Basel, 1981.
    22. Huang, Y. P.; Zhang, L; Zhang, L.; et al. J. Phys. Chem. B 2007, 111, 5640.
    23.孙涛垒,张路,王宜阳,赵濉,俞稼镛.高等学校化学学报2003, 12, 2243.
    24.王东贤,罗澜,张路;王宜阳,赵濉,俞稼镛.物理化学化学学报2005, 21, 1205.
    25. Stubenrauch, C.; Miller, R. J. Phys. Chem. B 2004, 108, 6412.
    26. Franks, G. V.; Djerdjev, A. M.; Beattie, J. K. Langmuir 2005, 21, 8670.
    27. Nei, J. C.; Wu, G. L. A Guide to Concise Course on Biochemistry. Beijing, Higher Educati on Press, 2003, p8.
    1. Lu, T.; Han, F.; Li, Z. C.; Huang, J. B. Langmuir 2006, 22, 2045.
    2.赵国玺,朱歩瑶,表面活性剂作用原理中国轻工业出版社, 2003, p330.
    3. Fainerman, B.; Aksenenko, E. V. Zholob, S. A., et al. Langmuir 2010, 26, 1796 .
    4. Lucassen-Reynders, E. H. In Anionic Surfactants: Physical Chemistry of Surfactant Action; Lucassen-Reynders, E. H., Ed.; Marcel Dekker, Inc. New York/ Basel, 1981; p1.
    5. Damaskin, B. B.; Frumkin, A. N.; Borovaja, N. A. Elektrokhimija. 1972, 8, 807.
    6. Rosen, M. J.; Hua, X. Y. J. Colloid Interface Sci. 1982, 86, 164.
    7. Hua, X. Y.; Rosen, M. J. J. Colloid Interface Sci. 1982, 87, 469.
    8. Joos, P. Dynamic Surface Phenomena; VSP: Utrecht, The Netherlands, 1999.
    9. Franses, E. I.; Siddiqui, F. A.; Ahn, D. J.; Chang, C. H.; Wang, N. H. L. Langmuir 1995, 11, 3177.
    10. Fainerman, V. B.; Lucassen-Reynders, E. H.; Miller, R. Colloids Surf. A 1998, 143, 141.
    11. Rodakiewicz-Nowak, J. J. Colloid Interf. Sci. 1982, 85, 586.
    12. Karolczak, M.; Mohilner, D. M. J. Phys. Chem. 1982, 86, 2840.
    13. Diamant, H.; Andelman, D. J. Phys. Chem. 1996, 100, 13732.
    14. Siddiqui, F. A.; Franses, E. I. AIChE J. 1997, 43, 1569.
    15. Mulqueen, M.; Blankschtein, D. Langmuir 1999, 15, 8832.
    16. Nikas, Y. J.; Puvvada, S.; Blankschtein, D. Langmur 1992, 8, 2680.
    17. Lu, J. R.; Thomas, R. K.; Penford, J. Adv. Colloid Interface Sci. 2000, 84, 143.
    18. Danov, K. D.; Vlahovska, P. M.; Kralchevsky, P. A.; Mehreteab, A.; Broze, G. Colloids Surfaces A. 1999, 156, 389.
    19. Kralchevsky, P. A.; Danov, K. D.; Broze, G.; Mehreteab, A. Langmuir 1999, 15, 2351.
    20. Fainerman, V. B.; Miller, R. J. Phys. Chem. B 2001, 105, 11432.
    21. Fainerman, V. B.; Miller, R.; Aksenenko, E. V. Adv. Colloid Interface Sci. 2002, 96, 339.
    22. Fainerman, V. B.; Lucassen-Reynders, E. H. Adv. Colloid Interface Sci.2002, 96, 295.
    23. Kralchevsky, P. A.; Danov, K. D.; Kolev, V. L.; Broze, G.; Mehreteab, A. Langmuir 2003, 19, 5004.
    24. Danov, K. D.; Kralchevska, S. D.; Kralchevsky, P. A.; Ananthapadmanabhan, K. P.; Lips, A. Langmuir 2004, 20, 5445.
    25. Penfold, J.; Thomas, R. K.; Dong, C. C.; Tucker, I.; Metcalfe, K.; Golding, S.; Grillo, I. Langmuir 2007, 23, 10140.
    26. Garrett, P. R.; Joos, P. J. Chem. Soc. Faraday Trans. 1975, 69, 2174.
    27. Noskov, B. A.; Loglio, G.; Miller, R. J. Phys. Chem. 2004, 108, 18615.
    28. Lucassen-Reynders, E. H. J. Colloid Interface Sci. 1973, 42, 573.
    29. Garrett, P. R.; Joos, P. J. Chem. Soc. Faraday Trans. 1976, 72, 2161.
    30. Jiang, Q.; Valentini, J. E.; Chiew, Y. C. J. Colloid Interface Sci. 1995, 174, 268.
    31. Joos, P. Dynamic Surface Phenomena, VSP: Dordrecht, The Netherlands, 1999.
    32. Noskov, B. A.; Loglio, G. Colloids Surf. A 1998, 141, 167.
    33. Ivanov, I. B.; Danov, K. D.; Ananthapadmanabhan, K. P.; Lips, A. Adv. Colloid Interface Sci. 2005, 61, 114.
    34. Aksenenko, E. V.; Kovalchuk, V. I.; Fainerman, V. B.; Miller, R. Adv. Colloid Interface Sci. 2006, 122, 57.
    35. Aksenenko, E. V.; Kovalchuk, V. I.; Fainerman, V. B.; Miller, R. J. Phys. Chem. C 2007, 111, 14713.
    36.王东贤,罗澜,张路.化学学报2005, 21, 1205.
    37. Wang, Y. Y.; Zhang, L.; Luo, L.; Chen, Yu.P.; Zhao, S.; Li, M. Z.; Wang, E. J.; Yu, J. Y. Macromolecules 2004, 37, 2930.
    38. Stubenrauch, C.; Miller, R. J. Phys. Chem. B 2004, 108, 6412.
    39. Chen, Y. X.; Liu, Y.; Guo, R. J. Colloid Interf. Sci. 2009, 336, 766.
    1.王益,黄文.食品科学1999, 20, 68.
    2. Muzzarelli, R. A. A.; Jeuniaux, C.; Gooday, G. W. NewYork, Plenum Press:1986.
    3. Fainerman, B.; Aksenenko, E. V.; Zholob, S. A., et al. Langmuir 2010, 26, 1796.
    4. Lucassen-Reynders, E. H. In Anionic Surfactants: Physical Chemistry of Surfactant Action; Lucassen-Reynders, E. H., Ed.; Marcel Dekker, Inc. New York/ Basel, 1981, p1.
    5. Damaskin, B. B.; Frumkin, A. N.; Borovaja, N. A. Elektrokhimiya. 1972, 8, 807.
    6. Rosen, M. J.; Hua, X. Y. J. Colloid Interf. Sci. 1982, 86, 164.
    7. Hua, X. Y.; Rosen, M. J. J. Colloid Interf. Sci. 1982, 87, 469.
    8.陈洁,夏文水,杨方琪.日用化学工业1999, 6, 1.
    9. Zhu, A. P.; Fang, N. Biomacromolecules 2005, 6, 2607
    10. Magalhaes, J. M. C. S.; Machado, A. A. S. C. Talanra 1998, 47, 183.
    11. Sashiwa, H.; Yajima, H.; Aiba, S. Biomacromolecules 2003, 4, 1244.
    12. Ngah, W. S. W.; Endud, C. S.; Mayanar, R. Funct. Polym. 2002, 50, 181.
    13. Rinaudo, M.; Auzely, R.; Vallin, C.; Mullagaliev, I. Biomacromolecules 2005, 6, 2396 .
    14. Sui, W. P.; Wang, S. F.; Chen, G. H.; Xu, G. Y. Carbohydr. Res. 2004, 339, 1113.
    15.隋卫平,陈国华,杨爽,王宗春.青岛海洋大学学报2001, 31, 263.
    16. Kjoniksen, A. L.; Iversen, C.; Nystcom, B.; Nakken, T.; Palmgren, O. L Macromolecules 1998, 31, 8142.
    17. Uehegbu, I. F.; Sadiq, L.; Arastoo, M.; Gray, A. I.; Wang, W.; Waigh, R. D.; Schatzleina, A. G. Int. J. Pharm. 2001, 224, 185.
    18. Wang, W.; McConaghy, A.; Tetley, L.; Uchegbu, I. F. Langmuir 2001, 17, 631.
    19. Nystom, B.; Kjoniksen, A. L.; Iversen, C. Adv. Colloid Interface Sci. 1999. 79, 81.
    20. Bakeev, K. N.; Ponomarenko, E. A.; Shishkanova, T. V.; Tirrell, D. A.;Zezin, A. B.; Kabanov, V. A. Macromolecules 1995, 28, 2886.
    21. Lundin, M.; Macakova, L.; Dedinaite, A.; Claesson, P. Langmuir 2008, 24, 3814.
    22. Desai, K.; Kit, K.; Li, J.; Zivanovic, S. Biomacromolecules 2008, 9, 1000.
    23. Belalia, R.; Grelier, S.; Benaissa, M.; Coma ,V. J. Agric. Food Chem. 2008, 56,1582.
    24. Zhang, C.; Ding, Y.; Ping, Q.; Yu, L. L. J. Agric. Food Chem. 2006, 54, 8409.
    25. Zhu, A. P. Jin, W. J.; Yuan, L. H.; Yang, G. J.; Yu, H.; Wu, H. Carbohyd. Polym. 2007, 68, 693.
    26. Danov, K. D.; Kralchevska, S. D.; Kralchevsky, P. A.; Ananthapadmanabhan, K. P.; Lips, A. Langmuir 2004, 20, 5445.
    27. Penfold, J.; Thomas, R. K.; Dong, C. C.; Tucker, I.; Metcalfe, K.; Golding, S.; Grillo, I. Langmuir 2007, 23, 10140.
    28. Garrett, P. R.; Joos, P. J. Chem. Soc. Faraday Trans. 1975, 69, 2174.
    29. Noskov, B. A.; Loglio, G.; Miller, R. J. Phys. Chem. 2004, 108, 18615.
    30. Lucassen-Reynders, E. H. J. Colloid Interf. Sci. 1973, 42, 573.
    31. Garrett, P. R.; Joos, P. J. Chem. Soc. Faraday Trans. 1976, 72, 2161.
    32. Jiang, Q.; Valentini, J. E.; Chiew, Y. C. J. Colloid Interf. Sci. 1995, 174, 268.
    33. Joos, P. Dynamic Surface Phenomena, VSP: Dordrecht, The Netherlands, 1999.
    34.王东贤,罗澜,张路.化学学报2005, 21, 1205.
    35. Noskov, B. A.; Loglio, G. Colloids Surf. A 1998, 141, 167.
    36. Ivanov, I. B.; Danov, K. D.; Ananthapadmanabhan, K. P.; Lips, A. Adv. Colloid Interface Sci. 2005, 61. 114.
    37. Aksenenko, E. V.; Kovalchuk, V. I.; Fainerman, V. B.; Miller, R. Adv. Colloid Interface Sci. 2006, 122, 57.
    38. Aksenenko, E. V.; Kovalchuk, V. I.; Fainerman, V. B.; Miller, R. J. Phys. Chem. C 2007, 111, 14713.
    39. Huang, Y. P.; Zhang, L.; Zhang, Lu.; et al. J. Phys. Chem. B 2007, 111, 5640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700