光合细菌配合UASB处理高盐度有机废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
+
     海产品加工产业在沿海城市日益发展。加工过程中,为节约淡水资源,可以使用海水代替淡水,因此而导致其废水含盐量很高。含海水的海产品加工废水属于难处理的高盐有机废水。因而,寻找一种切实可行的最经济有效的工艺,来处理高盐度有机废水,并确定其运行参数显得很有必要。
     光合细菌以其广泛适应性成为近年来污水处理中的常用方法,从海水中分离培养的光合细菌具有很高的耐盐性。本论文研究了光合细菌配合UASB工艺处理高盐度有机废水的可行性。按12%,24%,36%,48%,60%海水比例的梯度逐步提高进行驯化运行试验,并探讨了盐度对有机物降解的影响,确定了该处理系统的运行参数。
     实验结果:
     (1)根据正交试验结果选定适于光合细菌X1菌株生长的培养基最佳组成为NH_4Cl 0.1g,CH_3COONa 3.5g,MgCL_2 0.1g,CaCl_2 0.1g,KH_2PO_4 9.6g,K_2HPO_4 0.4g,酵母膏0.1g,琼脂20g,蒸馏水1000毫升。
     (2)不同海水比例对有机物降解的影响
     在相同水力停留时间条件下,随着海水比例的增加,有机物去除率逐渐降低。
     (3)水力停留时间对有机物降解的影响
     COD浓度随水力停留时间的延长而降低;COD去除率却随水力停留时间的延长而升高。12%,24%海水比例的生活污反应系统最佳水力停留时间为4h;36%,48%海水比例的生活污水反应系统最佳水力停留时间为6h。
     该系统处理含60%海水比例以上的生活污水(Cl~-浓度为11g/L以上)是不可行的。在HRT为24h条件下,其平均填料负荷为0.58kgCOD/m~3·d。
     试验结果表明光合细菌的耐盐性弥补了UASB工艺处理高盐度有机废水过程中微生物受冲击难以形成颗粒污泥的问题,具有一定的可行性。
The marine products industry develops rapidly in seaside regions.Dring the treamment processing of marine products,to save freshwater,seawater could be used to take the place of freshwater,which leads to producing high-salinity wastewater.It is well known that the wastewater of processing marine products including seawater is one of the difficult problem on organic wastewater treatment.Therefore,looking for a viable economic and effective method to deal with high-salinity organic wastewater, and determine its operating parameters shoud be necessary and in practical.
     In recent years,Photosynthetic bacteria with its wide adaptability commonly used in sewage treatment,photosynthetic bacteria which isolated from the sea have a high salt tolerance.In this paper,the Photosynthetic bacteria with UASB Process treatment of high-salinity organic wastewater was studied.With the increasing of concentration of seawater proportion gradually(from12%to 60%),the gradient acclimatized were tested to explore the effect of salinity on the degradation of organic matter,and to determine the biological contact oxidation system operating parameters.
     Based on the experiments,the main conclusion are drawed as below:
     (1) According to orthogonal test results selected X1 photosynthetic bacteria strains suitable for the growth of the best medium for the composition of NH_4CL 0.1 g, CH_3COONa 3.5g,MgCL_2 0.1g,CaCL_2 0.1g,KH_2PO_4 0.6g,K_2HPO_4 0.4g,Yeast extract 0.1g,Agar 20g,Distilled Water 1000ml。
     (2) The proportion of different seawater influences on the degradation of organic matter.
     In the same conditions,with the increase in the proportion of seawater,organics removal rate decreased gradually.
     (3) Hydraulic retention time influences on the degradation of organic matter.
     COD Concentration reduces with the extension of HRT;COD removal rate increases following the extension of HRT.12%,24%proportion of the seawater sewage biological contact oxidation pond' best HRT is 4 hours.36%,48%proportion of the seawater sewage biological contact oxidation pond HRT is the best time to 6 hours.One-stage biological contact oxidation process dealing to domestic sewage (above Cl-concentration of 11g/L)containing above the proportion of 60%seawater is not feasible.HRT for 24 hours in conditions,the average load of filler is 0.58kgCOD/m~3·d.
     The experimental results show that the salt tolerance of photosynthetic bacteria,made up UASB technology with high salinity in the process of microbial organic wastewater impact it is difficult to form granular sludge problems,have some feasibility.
引文
[1]安立超,严学亿,胡磊,余宗学.嗜盐菌的特性与高盐废水生物处理的进展.环境污染与防治,2002,24(5):293-296.
    [2]袁启荣等.含高氯化钙环氧化合物废水COD的测定.化工环保,1987,7(3):48-53.
    [3]范燕英等.高氯化物废水中COD测定方法的研究.化工环保,1987,7(3):152-159.
    [4]北京化工研究院环保所.高氯根低COD分析方法的研究,1989.
    [5]北京化工研究院环保所,青岛化工厂研究所.含高氯化钠氯丁橡胶废水COD 的测定,1988.
    [6]刘正.高含盐废水生物处理技术探讨.给水排水,2001,11(27):54-56.
    [7]陈声明,贾小明,叶旭红.光合细菌的生态意义及应用价值.《环境污染与防治》,1994,4.
    [8]崔战利.光合细菌的基本特性及应用价值[J].黑龙江八一农垦大学学报,1999,11(1):20-25.
    [9]董辅祥,董现东.城市与工业节约用水理论.中国建筑工业出版社,2000.15-16:23-25:289-291.
    [10]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [11]方静,曾抗美.含盐废水处理研究动态.工业水处理,2005,25(2).
    [12]樊凌雯,张肇铭,张德咏等.利用光合细菌法处理糖蜜酒精发酵废液中试研究[J].中国环境科学,1998,18(2):173-175.
    [13]府伟灵主编.现代分子细菌学.《汕头大学出版社》,1990年.
    [14]郭健博等.耐盐菌群对高含盐染料模拟废水的脱色试验研究.环境污染治理技术与设备,2005,6(12):31-36.
    [15]国洁,罗人明.光合细菌法在工业废水处理中的应用.河北工业科技,2004,21(1):45.
    [16]雷爱莹,彭敏,曾地刚,李咏梅等.高效净水沼泽红假单胞菌的分离和鉴定.广西农业科学,2005,36(1):57-58.
    [17]李琳琳,林冰,徐金枝.CASS法处理含盐废水的研究.工业用水与废水,2003,34(4):33-35.
    [18]梁晨辉,易威,李斌.SBBR法处理高盐度有机废水的应用研究[J].污染防治技术,1998,11(4):226-228.
    [19]廖新娣,汪植三,李其谦等.光合细菌净化猪场污水的研究.华南农业大学学报,1997,18(增刊):98-101.
    [20]刘洁玲.A-B两段法处理高含盐皂化废水.工业用水与废水,1999,30(1):6-8.
    [21]刘如林等.光合细菌及其应用[M].中国农业科技出版社,1991(北京):182-191.
    [22]刘双江,杨惠芳,周培瑾.产氢紫色非硫光合细菌的分离与筛选[J].《微生物通报》,1993,20(5):259-262.
    [23]吕红,周集体,王竞.光合细菌降解有机污染物的研究进展[J].《工业水处理》,2003,23(10):9-12.
    [24]刘祥凤,李青山,乌锡康.驯化活性污泥处理高含盐量有机废水的研究.工业用水与废水,2002,33(4):43-45.
    [25]何健,陈立伟,李顺鹏.高盐度难降解工业废水生化处理的研究[J].中国沼气,2000,18(2):12-16.
    [26]何炯光.我国海水利用现状、问题及对策建议.节能与环保,2004,4:14-18
    [24]黄凤莲,张韩冰,夏北成,等.光合细菌在环境治理中的应用[J].广州环境科学,2004,19(3):1-3
    [27]黄翔峰等.光合细菌法处理高浓度有机废水工艺探讨.中国给水排水,2005,21(2):27-30.
    [28]黄翔峰,李春鞠,张非娟.光合细菌的特性及在废水中的应用[A].《中国沼气》,2005,23(1):29-7
    [29]柯生元.光合细菌的研究及其应用进展[J].中国科学报,1997,6(2):20-22.
    [30]马国斌,储金宇,张波.活性污泥法+接触氧化法工艺处理高盐度环氧丙烷生产废水的试验研究[J].四川环境,2004,23(6):1-3.
    [31]牛志卿,吴国庆,张琳等.固定化紫色非硫光合细菌降解活性艳红X-3B的 研究.环境科学,1994,15(5):49-52.
    [32]裘巧俊等.SBR法处理高盐度海产品力口工废水.环境工程,2006,24(2):79-81.
    [33]任小玉,杨学春.光合细菌处理有机废水的现状及进展.家畜生态,2004,2,25(1):55-58.
    [34]宋志文等.光合细菌及其在化工有机废水处理方面的应用.化工环保,2003,8,23(4):187-189.
    [35]宋志文,国本华,曹军.PSB在有机废水处理方面的应用与发展.重庆环境科学,2003.11,25(11):187-189.
    [36]宋志文,张锡义,曹军.一株光合细菌的分离筛选及对污水的净化效果.
    [37]石建敏,黄新文,林春绵等.无机盐对生物接触氧化处理法的影响.浙江工业大学学报,31(1):97-100.
    [38]史家襟,徐亚同,孙珍娣.光合细菌接触氧化工艺的研究[J].环境科学,1989,10(2):16-18.
    [39]尤作亮.海水直接利用与含海水城市污水处理.水工业和可持续发展,1997,2(2):226-231.
    [40]王发珍等.A/DAT-IAT生物膜法处理高含盐废水.安全与环境学报,2006,6(6):25-28.
    [41]王国生.高浓度有机废水生物处理技术.给水排水,1998,24(2):35-38.
    [42]王宇新,刘春潮,钱新民.光合细菌处理淀粉废水的中试研究[J].环境科学,1995,16(3):39-40.
    [43]王占生,刘文君.微污染水源饮用水处理.中国建筑工业出版社,1999.13.
    [44]王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望.工业水处理,2002.,22(11).
    [45]魏思宇,周荣丰.高盐度废水的处理研究进展.江苏环境科技,2006,19(1)93-96.
    [46]文湘华,占新民,王建龙等.含盐废水的生物处理研究进展.环境科学,1999,20(5):104一106.
    [47]吴向华,杨启银,刘五星等.光合细菌的研究进展及应用,中国农业科技导 报,2004,6(2):21-22.
    [48]吴允等.UASB反应器中加入膨润土和聚丙烯酰胺培养颗粒污泥.环境保护科学,1997,23(6):13-16.
    [49]小林正泰.光合细菌处理高浓度有机废水.发酵与工业,1978,36(9):753-760.
    [50]谢娟,艾翠玲.光合细菌对味精废水处理效果的影响研究.工业安全与环保,2006,32(4),16-18.
    [51]杨云龙,薛嵘,吴国庆.固定化PSB处理亚硫酸钠造纸废水.中国环境科学,2001,21(4):351-354.
    [52]叶旭红,盛侃,俞剑莹.提高光合细菌应用效果的技术发展[J].杭州医学高等专科学校学报,2001,22(1):52-54.
    [53]应翼,张信娣,张雅萍.光合细菌的分离鉴定及对印染污水的处理[J].绍兴文理学院学报,2006,26(7):40-43.
    [54]尤作亮,蒋展鹏,祝万鹏.海水直接利用及其坏境问题分析.给水排水,1998,24(3):64-68.
    [55]曾宇,廖问陶.光合细菌固定化及其净化城市污水的研究.重庆环境科学,2000,22(4):42-43.
    [56]曾宇,成华.光合细菌法处理酒糟废水[J].四川大学学报(自然科学版),2002,4,39(2).
    [57]张涛,李彦芹,刘海龙.6株光合细菌的富集分离及初步鉴定[A].《河北理工学院学报》,2006年5月第28卷第2期.
    [58]张希衡.水污染控制工程.北京:冶金工业出版社,2004.2-3.
    [59]张延青,谢经良,沈晓南.海水利用后排水对城市污水处理厂生物处理的影响.城市环境城市生态,2003,16(6):126-127.
    [60]张延青,谢经良.气浮-接触氧化工艺处理高盐度海产品加工废水[J].技术交流,2004,6:649-651.
    [61]张忠祥,钱易.城市可持续发展与水污染防治对策.中国建筑工业出社,1998.36-38.
    [62]支霞辉等.含盐废水短程硝化反硝化生物脱氮的研究.青岛建筑工程学院 学报,2005,26(3):49-51.
    [63]周晓云.光合细菌在废水处理中的应用及菌体综合利用.工业微生物,1983,(1):20-24.
    [64]朱核光,史家梁,徐亚同.光合细菌法处理酒糟废水的试验研究[J].上海环境科学,1995,14(1):8-12.
    [65]An Li and Gu Guowei.The Treatment of Saline Wastewater Using a Two-Stage Contact Oxidation Method.Wat.Sci.Tech,1993,28(7):31-37.
    [66]Casabianca M L,Laugier T.Eichhomia crassipes production on petroliferous wastewaters:efectsof salinity:[J].Bioresource Technology.1995(54):39-43.
    [67]Craig R.Woolard et al.Biological treatment of hypersalinewastewater by a biofilm of halophilic bacteria.Water Envion.Research,994,66(3):230-235.
    [68]Cumersindo Ferjoo,Manust Soto.Sodium inhibition in the anaerobic digestion process:antagonism and adaptation phenomena.Enzyme and Microb Technol.,1995,17(1):180-188.
    [69]Culver D A,Brunskill G J.Fayetteville Green Lake New York,V.Studies of Primary production and zoo plankton in a meromictic Lake[J].Limnol Oceanogr,1969,14:862-873.
    [70]Dale CJ.Submerged biotower technology for tertiary nitrification of Poultry abattoir wastewate.Journal of the Chartered Institution of water and Environmental Management,2000,11(8):245-257.
    [71]Dincer A R,Kargi F.wastewater.Process Performance of Biochemistry.rotating biological dise system treating saline,2001,36(13):901-906.
    [72]Gauthi er.M.J,Flatau.G.N and Brei ttmayer.u.A.Protective Effect of Glycine Betaine on Surviva 1 of Escherichia Coli Cells in Marine Environment.Wat.Sci.Tech.,1991,24(2):129-132
    [73]Hisashi Nagadomi,Takako Hiromitsu,Kenji Takeno,Masanori Watanabe,Ken Sasaki.Treatment of Aquarium Water by Denitrifying Photosynthetic Bacteria Using Immobilized.Polyvinyl Alcohol Beads[J].Journal of Bioscience and Bioengineering.1999,87(2):189-193.
    [74]H.Nagadomi,et al.Simultaneous Removal of Chemical Oxygen Demand and Nitrate in Aerobic Treatment of Sewage Wastewater Using an Immobilized Photosynthetic Bacterium of Porous Ceramic Plates[J]. World Journal of Microbiology and Biotechnology, 2000,(16): 57-62.
    [75] J G Ormerod. The Phototrophic Bacteria: Anaerobic Life in the light[M]. USA:University of Calfornia Press, 1983.
    [76] Jian wei Shen, Osamu Hirayama. Hydrogen Photo production and Denitrification by photosynthetic Bacteria Isolated from Lake Nakaumi and Its Vicinity[J].Journal of Fermentation and Bioengineering. 1991, 72(5): 338-342.
    [77] Kodayasi M. Utilization and disposal of water by photosynthetic bacteria.Peramanpress, 1997, 39-45.
    [78] Lansing M,Perscott John P,Harley Donadi A Klein. 微生物学(第5版)[M].沈萍,彭珍荣等译.北京:高等教育出版社, 2003.474-494.
    [79] Lawton G.W. and Eggert E. V. Effect of High Sodium Chloride Concentritions on Trickling Filter Slimes. Sewage and Industrial Wasters 1957. 29(11): 1228-1236
    [80] Lepisto SS. et. al. Start-up and operation of laboratory scale the mophilie upflow anaerobic sludge blank reactor treating vegetable processing wastewater.Chem.Teehnol. Bioteenol. 1997. 68: 331.
    [81] Lettinga, G.and A. C. van Handel. Anaerobic digestion for energy production and environmentalprotecfion. In: T. B. Johansson et al.(eds.)Renewable Energy,Sources for Fuels and Electricity. Washington, D. C.: IslandPress, 1993. 817-819.
    [82] Lettinga. G. Anaerobic reactor technology 1.in: 1 st Int.Course on Anaerobic and Low Cost Treatment of Waste and Wastewaters. The Netherlands: IAC and WAU.1994.
    [83] Lettinga, G. et al. Use of the upflow slud blanket(UASB)reactor conoept for biological wastewater treatment,especially for anaerobic treatment biotechnol[J].Bioengin, 1980, 22: 699-734.
    [84] Intrasungkha N, Keller J, Linda L. Blackall. Biological nutrient removal eficiency in treatmeat of saline wasterwater[J]. Wat.Sci, 1999, 39(6): 183-190.
    [85] K Takeno, e tal. Treamtent of Oil-containing Sewage Wastewater Using Immobilized Photosynthetci Bacteria[J]. Wolrd Journal of Mcirobioloyg and Boitechnoolgy, 2005, 21(8-9): 1385-1391.
    [86] Mendez R. Pilot plant studies on the anaerobic treatment wastewaters from a fish-canning factory. Wat. Envir. Res., 1992, 25(1): 37-44.
    [87] Mani Planchard, e tal. Photoporductoin of molecular hydorgen by Rhodosprililum rubrum immobiilzed ni composiet agar laye/rmciroporous membrane strut-tuers[J]. Applied Micorbiology and Boitechnology, 1989, 31(1):94-54.
    [88] N Francou, P M Vignasi. Hydrogen porduciton by Rhodopseudomonas capsualta ceHs enrtapped ni caragreenan beads[J]. Biotechnology Letters, 1984,6, (10):639-644.
    [89] Omil F, Mendez R, Lema J M. Anaerobic treatment of saline wasterwaters under high sulphide and ammonia content[J]. Bioresource Technology, 1995(54):269-278.
    [90] P Xu, et al. Modeilng fo rwaste water teramtent by Rhodopseudomonas Palustris Y6 mimobiilzed on fbireni a coulmnar boireacotr[J]. Applied Microbiology and Boietchnology, 1996,44(5): 676-682.
    [91] Ros M, Gantar A. Possibilities of reduction of recipient loading of tannery wastewater in Slovenia[J]. Wat.Res, 1998, 37(8): 145-152.
    [92] Sawada H. Photosynthetic bacteria in waste treatment, J Ferment Technol. 1997,55:311-316.
    [93] Shi Jia liang, Xu Ya tong. A Study in Treatment of Waste Water from Soybean Product-making by Using Photosynthetic Bacteria[J]. Journal of Water Treatment,1989,4:27-36.
    [94] STAL, HOLTJGBergey'manua lof system aticbacteriology[M]. Baltimore:Williams& wilkings, 1989.
    [95] Stewart J, Ludwing H. F. and Kearns W. H . Effect of Varying Salinity on Extended Aeration Process.J. Water Pollution Control Federation, 1962.34(11):31-37.
    [96] Thongchai Panswad, Chadarut Anan. Impact of High Chloride Wastewater on an Anaerobic/Anoxic/aerobic with and without Inoculation of Chloride Acclimated.Wat.Res.1999,33(5):1165-1172.
    [97]Yucel TR.The effect of inorganic salts on the activated sludge process performance.Wat.Res.1989,23:99-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700