过渡金属催化含氮稠杂环化合物的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮杂环化合物广泛存在于天然产物和生物活性分子中,在医药和农药化学领域具有重要用途。在过去几十年里,过渡金属催化交叉偶联反应合成杂环化合物一直是研究的热门领域。近年来,C-H键直接功能化取得了很大的进步,普遍应用于氮杂环化合物的合成中。本博士论文主要围绕过渡金属催化含氮稠杂环化合物的新合成方法展开研究,取得了如下重要研究成果。
     发展了一种简单、高效铜催化“一锅法”制备苯并咪唑[1,2-b]异喹啉-11-酮衍生物的新方法。反应使用廉价的CuCl作催化剂,易得的2-卤代-N-(2-卤苯基)苯甲酰胺衍生物和烷基2-氰基乙酸酯或者丙二腈为起始原料,无需任何配体或者添加剂。该方法具有原子经济、高效、底物易得以及条件温和等优点,为苯并咪唑并异喹啉酮类化合物的合成提供了一种新的途径。
     发展了一种铜催化串联反应合成烷基6-氨基苯并咪唑[2,1-a]异喹啉-5-羧酸酯衍生物的新方法。该方法以廉价、低毒的CuI作为催化剂,以易得的2-(2-卤苯基)苯并咪唑衍生物和烷基2-氰基乙酸酯作为起始原料,制备的产物中包含氨基和酯基,为目标分子的进一步修饰奠定了良好的基础。该方法底物官能基容忍性较好,为制备苯并咪唑并异喹啉类化合物提供了新的路径。
     发展了一种钯催化选择性芳烃C-H键酰化合成芳基酮和异吲哚并苯并咪唑衍生物的新方法。该方法以Pd(OAc)_2作催化剂,易得的羧酸为酰化试剂,三氟乙酸酐为羧酸活化试剂,目标产物收率较高。该方法底物官能基容忍性较好,无需配体参与,具有较高的选择性,为制备芳基酮和异吲哚并苯并咪唑类化合物提供了新的途径。
     发展了一种高效铜催化需氧氧化分子内烯烃C-H键胺化构建氮杂环的新方法。该方法使用廉价、易得的三氟乙酸铜作催化剂,取代的3-苯亚甲基-2-吡啶-2-甲基-1,3-二氢-异吲哚-1-酮为起始原料,特戊酸作添加剂,采用经济实惠、环境友好的空气作为氧化剂。该方法首次实现了异喹啉酮并1,4-二氢吡嗪衍生物的人工合成,为含氮稠杂环化合物的合成提供了新的途径。
N-Heterocycles are ubiquitous in a variety of natural products and biologicallyactive molecules, and they play important roles in the pharmaceutical and agrochemicalindustries. The development of transition metal-catalyzed cross-coupling reactions forthe formation of heterocycles continues to be an active area of research. Recently, thedirect functionalization of C-H bonds has made great progress. Their application on theconstruction of N-heterocycles has been reported. In this dissertation, new transitionmetal-catalyzed methods have been developed for synthesis of N-fused heterocycles,and some important results were obtained.
     A simple and efficient copper-catalyzed one-pot tandem method has beendeveloped for synthesis of benzimidazo[1,2-b]isoquinolin-11-one derivatives. Theprotocol used cheap CuCl as the catalyst, readily available substituted2-halo-N-(2-halophenyl)benzamides and alkyl2-cyanoacetates or malononitrile as thestarting materials. The couplings of substituted2-halo-N-(2-halophenyl)benzamideswith alkyl2-cyanoacetates or malononitrile were performed well under mild conditionswithout addition of any ligand or additive, and the correspondingbenzimidazo[1,2-b]isoquinolin-11-ones were obtained in good to excellent yields. Thepresent method shows economical, practical and starting material readily availableadvantages over the previous methods, so it will provide a new strategy for constructionof diverse and useful N-fused heterocyclic compounds for organic chemistry andmedicinal chemistry.
     A convenient and efficient copper-catalyzed cascade method has been developedfor synthesis of benzimidazoisoquinoline derivatives. The protocol used inexpensiveCuI as the catalyst, readily available substituted2-(2-halophenyl)benzoimidazoles andalkyl cyanoacetates as the starting materials, and the corresponding alkyl6-aminobenzimidazo[2,1-a]isoquinoline-5-carboxylates were obtained in good toexcellent yields. The novel method provides diverse and useful N-fused heterocycles forcombinatorial chemistry and medicinal chemistry.
     A convenient and efficient palladium-catalyzed synthesis of aromatic ketones andisoindolobenzimidazoles has been developed via selective aromatic C-H bond acylation. The protocol used Pd(OAc)_2as the catalyst, readily available carboxylic acids as theacylating reagents,(CF_3CO)_2O as the activated agent of the acids, and thecorresponding aromatic ketones and isoindolobenzimidazoles were obtained in good toexcellent yields. The novel and practical method provides a new and useful strategy forsynthesis of aromatic ketones and isoindolobenzimidazoles.
     An efficient copper-catalyzed aerobic oxidative intramolecular alkene C-Hamination leading to N-heterocycles has been developed. The protocol used cheap andreadily available Cu(O_2CCF_3)_2as the catalyst, substituted3-benzylidene-2-pyridin-2-ylmethyl-2,3-dihydro-isoindol-1-ones as the startingmaterials, economical and environment friendly air as the oxidant, and thecorresponding N-heterocycles were obtained in good to excellent yields. This methodshould provide a new and useful strategy for constructing N-fused heterocycles.
引文
[1] NAKAMURA I, YAMAMOTO Y. Transition-metal-catalyzed reactions in heterocyclicsynthesis. Chem Rev,2004,104:2127-2198.
    [2] ALONSO F, BELETSKAYA I, YUS M. Transition-metal-catalyzed addition ofheteroatom-hydrogen bonds to alkynes. Chem Rev,2004,104:3079-3159.
    [3] ZENI G, LAROCK R. Synthesis of heterocycles via palladium-catalyzed oxidative addition.Chem Rev,2006,106:4644-4680.
    [4]王乃兴.钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍.有机化学,2011,31:1319-1323.
    [5] MONNIER F, TAILLEFER M. Catalytic C-C, C-N, and C-O Ullmann-type couplingreactions. Angew Chem Int Ed,2009,48:6954–6971.
    [6] BELLINA F, ROSSI R. Transition-metal-catalyzed direct arylation of substrates withactivated sp3-hybridized C-H bonds and some of their synthetic equivalents with aryl halidesand pseudohalides. Chem Rev,2010,110:1082–1146.
    [7] BELETSKAYA I, CHEPRAKOV A. Copper in cross-coupling reactions The post-Ullmannchemistry. Coordination Chemistry Reviews,2004,248:2337–2364.
    [8] KING A, OKUKADO N, NEGISHI E. Highly general stereo-, regio-, and chemo-selectivesynthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction ofalkynylzinc reagents with alkenyl halides. J Chem Soc, Chem Commun,1977,683-684.
    [9]颜美,冯秀娟.负载钯催化的Suzuki偶联反应研究进展.有机化学,2010,30:623-632.
    [10] MILSTEIN D, STILLE J. A general, selective, and facile method for ketone synthesisfrom acid chlorides and organotin compounds catalyzed by palladium. J Am Chem Soc,1978,100:3636–3638.
    [11] HATANAKA Y, HIYAMA T. Cross-coupling of organosilanes with organic halidesmediated by a palladium catalyst and tris(diethylamino)sulfoniumdifluorotrimethylsilicate. J Org Chem,1988,53:918–920.
    [12] MARCOUX J, DOYE S, Buchwald S. A general copper-catalyzed synthesis of diarylethers. J Am Chem Soc,1997,119:10539-10540.
    [13] LOUIE J, HARTWIG J. Palladium-catalyzed synthesis of arylamines from aryl halides,Mechanistic studies lead to coupling in the absence of tin reagents. TetrahedronLett,1995,36:3609-3612.
    [14] ULLMANN F. A new path for preparing diphenylamine derivatives. Ber Dtsch ChemGes,1903,36:2382-2384.
    [15] HURTLEY W. Replacement of halogen in orthobrornobenzoic acid. J Chem Soc,1929,1870-1873.
    [16] MARCOUX J, DOYE S, BUCHWALD S. A general copper-catalyzed synthesis ofdiaryl ethers. J Am Chem Soc,1997,119:10539–10540.
    [17]邓维,刘磊,郭庆祥.铜催化交叉偶联反应研究的新进展.有机化学,2004,24,150-165.
    [18] MONNIER F, TAILLEFER M. Catalytic C-C, C-N, and C-O Ullmann-Type couplingreactions: copper makes a difference. Angew Chem Int Ed,2008,47:3096–3099.
    [19] PENN L, GELMAN D. Copper-mediated cross-coupling reactions. PATAI's Chemistryof Functional Groups, Online2009–2011John Wiley&Sons, Ltd.
    [20] LIU Yunyun, WAN Jieping. Advances in copper-catalyzed C-C coupling reactions andrelated domino reactions based on active methylene compounds. Chem Asian J,2012,7:1488–1501.
    [21] HE Chuan, GUO Sheng, HUANG Li, et al. Copper catalyzed arylation/C-C bondactivation: an approach toward α-aryl ketones. J AM CHEM SOC,2010,132:8273–8275.
    [22] DO Hienquang, DAUGULIS O. Copper-catalyzed arylation of heterocycle C-H bonds.J AM CHEM SOC,2007,129:12404-12405.
    [23] YIP S, CHEUNG H, ZHOU Zhongyuan, et al. Room-temperature copper-catalyzedα-arylation of malonates. Org Lett,2007,9:3469-3472.
    [24] HENNESSY E, BUCHWALD S. A general and mild copper-catalyzed arylation ofdiethyl malonate. Org Lett,2002,4:269-272.
    [25] FANG Yewen, LI Chaozhong. O-arylation versus C-arylation: copper-catalyzedintramolecular coupling of aryl bromides with1,3-dicarbonyls. J Org Chem,2006,71:6427-6431.
    [26] YANG Chuting, ZHANG Zhenqi, LIU Yuchen, et al. Copper-catalyzed cross-couplingreaction of organoboron compounds with primary alkyl halides and pseudohalides.Angew Chem Int Ed,2011,50:3904-3907.
    [27] YAO Bangben, ZHANG Yuhong, LI Yong. Copper-catalyzed coupling reaction ofC-OMe bonds adjacent to a nitrogen atom with terminal alkynes. J Org Chem,2010,75:4554–4561.
    [28] NAKAMURA I, ZHANG Dong, TERADA M. Copper-catalyzed tandem[2,3]-rearrangement and6π-3-azatriene electrocyclization in (E)-O-propargylicα,β-unsaturated oximes. J AM CHEM SOC,2010,132:7884–7886.
    [29] WANG Ming, WANG Zheng, SHI Yuhua, et al. An exo-and enantioselective1,3-dipolar cycloaddition of azomethine ylides with alkylidene malonates catalyzed bya N,O azomethine ylides with alkylidene malonates catalyzed by aN,O-ligand/Cu(OAc)2-derived chiral complex. Angew Chem Int Ed,2011,50:4897–4900.
    [30] KAWANO T, HIRANO K, SATOH T, et al. A new entry of amination reagents forheteroaromatic C-H bonds: copper-catalyzed direct amination of azoles withchloroamines at room temperature. J AM CHEM SOC,2010,132:6900–6901.
    [31] FANDRICK D, FANDRICK K, REEVES J, et al. Copper catalyzed asymmetricpropargylation of aldehydes. J AM CHEM SOC,2010,132:7600–7601.
    [32] BATES C, SAEJUENG P, VENKATARAMAN D. Copper-catalyzed synthesis of1,3-enynes. Org Lett,2004,6:1441-1444.
    [33] WHITTAKER A, RUCKER R, LALIC G. Catalytic SN2′-selective substitution ofallylic chlorides with arylboronic esters. Org Lett,2010,12:3216-3218.
    [34]许华建,蔄秋石,林义成,李源源,冯乙巳.铜催化碳杂偶联反应的新进展.有机化学,2010,30:9-22.
    [35]王晔峰,曾京辉,崔晓瑞.铜催化C-N交叉偶联反应的研究进展.有机化学,2010,30:181-199.
    [36] VIN D, EOLMO E, PEZ-PE′REZ J, FELICIANO A. Regioselective synthesis of1-alkyl-or1-aryl-1H-indazoles via copper-catalyzed cyclizations of2-haloarylcarbonylic compounds. Org Lett,2007,9:525-528.
    [37] WANG Zhijing, YANG Jianguo, YANG Fan, et al. One-pot synthesis ofpyrimido[1,6-a]indol-1(2H)-one derivatives by a nucleophilic addition/Cu-catalyzedN-arylation/Pd-catalyzed C-H activation sequential process. Org Lett,2010,12:3034-3037.
    [38] SPEROTTO E, KLINK G, VRIES J, KOTEN G. C–N coupling of nitrogennucleophiles with aryl and heteroaryl bromides using aminoarenethiolato–copper(I)(pre-)catalyst. Tetrahedron,2010,66:3478–3484.
    [39] COLACINO E, VILLEBRUN L, MARTINEZ J, LAMATY F. PEG3400–Cu2O–Cs2CO3:an efficient and recyclable microwave-enhanced catalytic system for ligand-freeUllmann arylation of indole and benzimidazole. Tetrahedron,2010,66:3730–3735.
    [40] ANTILLA J, KLAPARS A, BUCHWALD S. The copper-catalyzed N-arylation ofindoles. J AM CHEM SOC,2002,124:11684-11688.
    [41] REEVES J, FANDRICK D, TAN Zhulin, et al. Copper-catalyzed annulation of2-formylazoles with o-aminoiodoarenes. J Org Chem,2010,75:992–994.
    [42] KWONG F, KLAPARS A, BUCHWALD S. Copper-catalyzed coupling of alkylaminesand aryl iodides: an efficient system even in an air atmosphere. Org Lett,2002,4:581-584.
    [43] COSTE A, COUTY F, EVANO G. Synthesis of ketene N,N-acetals by copper-catalyzeddouble-amidation of1,1-dibromo-1-alkenes. Org Lett,2009,11:4454-4457.
    [44] CORTES-SALVA M, NGUYEN B, CUEVAS J, et al. Copper-catalyzedguanidinylation of aryl iodides: the formation of N,N′-disubstituted guanidines. OrgLett,2010,12:1316-1319.
    [45] PROULX C, LUBELL W. Copper-catalyzed N-arylation of semicarbazones for thesynthesis of aza-arylglycine-containing aza-peptides. Org Lett,2010,12:2916-2919.
    [46] WANG Yuxing, LIAO Qian, XI Chanjuan. Copper-catalyzed amination of alkenylhalides: efficient method for the synthesis of enamines. Org Lett,2010,12:2951-2953.
    [47] LI Xufeng, YANG Daoshan, JIANG Yuyang, et al. Efficient copper-catalyzedN-arylations of nitrogen-containing heterocycles and aliphatic amines in water. GreenChem,2010,12:1097–1105.
    [48] XIE Yexiang, PI Shaofeng, WANG Jian, et al.2-Aminopyrimidine-4,6-diol as anefficient ligand for solvent-free copper-catalyzed N-arylations of imidazoles with aryland heteroaryl halides. J Org Chem,2006,71:8324-8327.
    [49] LIU Longbin, FROHN M, XI Ning, et al. A soluble base for the copper-catalyzedimidazole N-arylations with aryl halides. J Org Chem,2005,70:10135-10138.
    [50] ANTILLA J, BUCHWALD S. Copper-catalyzed coupling of arylboronic acids andamines. Org Lett,2001,3:2077-2079.
    [51] ANDERSON C, TAYLOR P, ZELLER M, et al. Room temperature, copper-catalyzedamination of bromonaphthyridines with aqueous ammonia. J Org Chem,2010,75:4848–4851.
    [52] LI Zhaoguang, SUN Hongbin, JIANG Hualiang, et al. Copper-catalyzedintramolecular cyclization to N-substituted1,3-dihydrobenzimidazol-2-ones. Org Lett,2008,10:3263-3266.
    [53] JOUBERT N, BASLé E, VAULTIER M, et al. Mild, base-free copper-catalyzedN-arylations of heterocycles using potassium aryltrifluoroborates in water under air.Tetrahedron Lett,2010,51:2994–2997.
    [54] Bolshan Y, Batey R. Copper-catalyzed cross-coupling of amides and potassiumalkenyltrifluoroborate salts: a general approach to the synthesis of enamides.Tetrahedron,2010,66:5283–5294.
    [55] XU Jimin, WANG Xinyan, SHAO Changwei, et al. Highly efficient synthesis ofphenols by copper-catalyzed oxidative hydroxylation of arylboronic acids at roomtemperature in water. Org Lett,2010,12:1964-1967.
    [56] LIU Yunyun, BAO Weiliang. Copper-catalyzed tandem process: an efficient approachto2-substituted-1,4-benzodioxanes. Org Biomol Chem,2010,8:2700–2703.
    [57] WOLTER M, NORDMANN G, JOB G, et al. Copper-catalyzed coupling of aryl iodideswith aliphatic alcohols. Org Lett,2002,4:973-976.
    [58] CHEN Liqun, FANG Yewen, ZHAO Qiwu, et al. Synthesis of multisubstituted furansvia copper-catalyzed intramolecular O-vinylation of ketones with vinyl bromides.Tetrahedron Lett,2010,51:3678–3681.
    [59] CARRIL M, SANMARTIN R, TELLITU I, et al. On-water chemistry:copper-catalyzed straightforward synthesis of benzo[b]furan derivatives in neat water.Org Lett,2006,8:1467-1470.
    [60] JING Linhai, WEI Jiangtao, ZHOU Li, et al. Lithium pipecolinate as a facile andefficient ligand for copper-catalyzed hydroxylation of aryl halides in water. ChemCommun,2010,46:4767–4769.
    [61] KABIR M, NAMJOSHI O, VERMA R, et al. A new class of potential anti-tuberculosisagents: Synthesis and preliminary evaluation of novel acrylic acid ethyl esterderivatives. Bioorg Med Chem,2010,18:4178–4186.
    [62] LIU F, MA D. Assembly of conjugated enynes and substituted indoles via CuI/aminoacid-catalyzed coupling of1-alkynes with vinyl iodides and2-bromotrifluoroacetanilides. JOrg Chem,2007,72:4844-4850.
    [63] LU B, WANG B, ZHANG Y, MAD. CuI-catalyzed domino process to2,3-disubstitutedbenzofurans from1-bromo-2-iodobenzenes and-keto esters. J Org Chem,2007,72:5337-5341.
    [64] CHEN Y, XIE X, MAD. Facile access to polysubstituted indoles via a cascade Cu-catalyzedarylation-condensation process. J Org Chem,2007,72:9329-9334.
    [65] CHEN Y, WANG Y, SUN Z, MAD. Elaboration of2-(trifluoromethyl)indoles via a cascadecoupling/condensation/deacylation process. Org Lett,2008,4:625-628.
    [66] WANG B, LU B, JIANG Y, ZHANG Y, MAD.Assembly of isoquinolines via CuI-catalyzedcoupling of-keto esters and2-halobenzylamines. Org Lett,2008,13:2761-2763.
    [67] WANG F, LIU H, FU H, et al. An efficient one-pot copper-catalyzed approach toisoquinolin-1(2H)-one derivatives. Org Lett,2009,11:2469-2472.
    [68] LI L, WANG M, ZHANG X, JIANG H, MAD.Assembly of substituted3-methyleneisoindolin-1-ones via a CuI/L-proline-catalyzed domino reaction process of2-bromobenzamides and terminal alkynes. Org Lett,2009,6:1309-1312.
    [69] KLAPARSA, PARRIS S, ANDERSON K W, BUCHWALD S L. Synthesis of medium ringnitrogen heterocycles via a tandem copper-catalyzed C-N bond formation-ring-expansionprocess. J AmChem Soc.2004,126:3529-3533.
    [70] ZOU B, YUAN Q, MAD. Cascade coupling/cyclization process to N-substituted1,3-dihydrobenzimidazol-2-ones. Org Lett,2007,21:4291-4294.
    [71] VINAD, OLMO E, LOPEZ-PEREZ J L, FELICIANO AS. Regioselective synthesis of1-alkyl-or1-aryl-1H-indazoles via copper-catalyzed cyclizations of2-haloarylcarbonyliccompounds. Org Lett,2007,3:525-528.
    [72] JONES C P, ANDERSON K W, BUCHWALD S L. Sequential Cu-catalyzedamidation-base-mediated camps cyclization: a two-step synthesis of2-aryl-4-quinolones fromo-halophenones. J Org Chem,2007,72:7968-7973.
    [73] LIU X, FU H, et al. Asimple and efficient approach to quinazolinones under mildcopper-catalyzed conditions. Angew Chem Int Ed,2009,48:348-351.
    [74] YANG D, LIU H, YANG H, FU H, et al. Copper-catalyzed synthesis of1,2,4-benzothiadiazine1,1-dioxide derivatives by coupling of2-halobenzenesulfonamideswith amidines. Adv Synth Catal,2009,351:1999–2004.
    [75] YANG D, FU H. Copper-catalyzed synthesis of benzimidazoles via cascade reactions ofo-haloacetanilide derivatives with amidine hydrochlorides. J Org Chem,2008,73:7841–7844.
    [76] HUANG C, FUY, FU H. Highly efficient copper-catalyzed cascade synthesis of quinazolineand quinazolinone derivatives. Chem Commun,2008,6333–6335.
    [77] WANG C, LI S, LIU H, JIANG Y, FU H. Copper-catalyzed synthesis of quinazolinederivatives via Ullmann-type coupling and aerobic oxidation. J Org Chem,2010,75:7936–7938.
    [78] XU W, FU H. Amino acids as the nitrogen-contain ing motifs in copper-catalyzed dominosynthesis of N-heterocycles. J Org Chem,2011,76:3846–3852.
    [79] VIIRRE R D, EVINDAR G, BATEY RA. Copper-catalyzed domino annulation approaches tothe synthesis of benzoxazoles under microwave-accelerated and conventional thermalconditions. J Org Chem,2008,73:3452–3459.
    [80] LITTKE A, FU G. Palladium-catalyzed coupling reactions of aryl chlorides. AngewChem Int Ed,2002,41:4176-4211.
    [81]许华建,汤琳,张博,郑法银,冯乙巳.非膦配体Pd催化的偶联反应发展进程.有机化学,2010,30:211-219.
    [82] LANE B, SAMES D. Direct C-H bond arylation: selective palladium-catalyzedC2-arylation of N-substituted indoles. Org Lett,2004,6:2897-2900.
    [83] TAKITA R, FUJITA D, OZAWA F. Direct arylation of heteroarenes catalyzed by apalladium–1,10-phenanthroline complex. Synlett,2011,7:0959–0963.
    [84] PARK C, RYABOVA V, SEREGIN I, SROMEK A, et al. Palladium-catalyzed arylationand heteroarylation of indolizines. Org Lett,2004,6:1159-1162.
    [85] GLOVER B, HARVEY K, LIU Bin, et al. Regioselective palladium-catalyzedarylation of3-carboalkoxy furan and thiophene. Org Lett,2003,5:301-304.
    [86] HUANG Jinkun, CHAN J, CHEN Ying, et al. A highly efficient palladium/coppercocatalytic system for direct arylation of heteroarenes: an unexpected effect ofCu(xantphos)I. J Am Chem Soc,2010,132:3674–3675.
    [87]方晒,吕梅香,龙玉华,杨定乔.钯催化卤代芳烃的胺化反应的研究进展.有机化学,2011,31:1573-1581.
    [88] WU Xiaoxing, FORS B, BUCHWALD S. A single phosphine ligand allowspalladium-catalyzed intermolecular C-O bond formation with secondary and primarylcohols. Angew Chem Int Ed,2011,50:9943–9947.
    [89]邵志会,张洪彬.钯催化羰基衍生物α位的芳基化反应及其在天然产物合成中的应用.有机化学,2005,25:282-289.
    [90] HUANG Qinhua, FAZIO A, DAI Guangxiu, et al. Pd-catalyzed alkyl to aryl migrationand cyclization: an efficient synthesis of fused polycycles via multiple C-H activation.J Am Chem Soc,2004,126:7460-7461.
    [91] BEDFORD R, CAZIN C. A novel catalytic one-pot synthesis of carbazoles viaconsecutive amination and C–H activation. Chem Commun,2002,2310–2311.
    [92] HENNESSY E, BUCHWALD S. Synthesis of substituted oxindoles fromr-chloroacetanilides via palladium-catalyzed C-H functionalization. J Am Chem Soc,2003,125:12084-12085.
    [93] FERRACCIOLI R, CARENZI D, ROMBOLA`O, CATELLANI M. Synthesis of6-phenanthridinones and their heterocyclic analogues through palladium-catalyzedsequential aryl-aryl and N-aryl coupling. Org Lett,2004,6:4759-4762.
    [94] CAMPEAU L, PARISIEN M, JEAN A, FAGNOU K. Catalytic direct arylation witharyl chlorides, bromides, and iodides: intramolecular studies leading to newintermolecular reactions. J Am Chem Soc,2006,128:581-590.
    [95] ACKERMANN L, ALTHAMMER A. Domino N-H/C-H bond activation:palladium-catalyzed synthesis of annulated heterocycles using dichloro(hetero)arenes.Angew Chem Int Ed,2007,46:1627–1629.
    [96] CA N, MAESTRI G, MALACRIA M. Palladium-catalyzed reaction of aryl iodideswith ortho-bromoanilines and norbornene/norbornadiene: unexpected formation ofdibenzoazepine derivatives. Angew Chem Int Ed,2011,50:12257–12261.
    [97] LIU Chao, ZHANG Hua, SHI Wei, et al. Bond formations between two nucleophiles:transition metal catalyzed oxidative cross-coupling reactions. Chem Rev,2011,111:1780–1824.
    [98] SHI Zhuangzhi, ZHANG Chun, TANG Conghui, et al. Recent advances intransition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem SocRev,2012,41:3381–3430.
    [99] WENDLANDT A, SUESS A, STAHL S. Copper-catalyzed aerobic oxidative C-Hfunctionalizations: trends and mechanistic insights. Angew Chem Int Ed,2011,50:11062–11087.
    [100] ZHANG Ming. Copper-catalyzed/mediated aromatic C–H bond functionalization.Appl Organometal Chem,2010,24:269–284.
    [101] KITAHARA M, UMEDA N, HIRANO K, et al. Copper-mediated intermolecular directbiaryl coupling. J Am Chem Soc,2011,133:2160–2162.
    [102] CHIBA S, ZHANG Line, LEE J. Copper-catalyzed synthesis ofazaspirocyclohexadienones from r-azido-N-arylamides under an oxygen atmosphere. JAm Chem Soc,2010,132:7266–7267.
    [103] ZHANG Lin, LIU Zhenhua, LI Huiqin, et al. Copper-mediated chelation-assisted orthonitration of (hetero)arenes. Org Lett,2011,13:6536–6539.
    [104] HAMADA T, YE Xuan, STAHL S. Copper-catalyzed aerobic oxidative amidation ofterminal alkynes: efficient synthesis of ynamides. J Am Chem Soc,2008,130:833-835.
    [105] ZHANG Chun, JIAO Ning. Dioxygen activation under ambient conditions:Cu-catalyzed oxidative amidation-diketonization of terminal alkynes leading toα-ketoamides. J Am Chem Soc,2010,132:28–29.
    [106] CHEN Xiao, HAO Xueshi, GOODHUE C, et al. Cu(II)-catalyzed functionalizations ofaryl C-H bonds using O2as an oxidant. J Am Chem Soc,2006,128:6790-6791.
    [107] ZHANG Chun, JIAO Ning. Copper-catalyzed aerobic oxidative dehydrogenativecoupling of anilines leading to aromatic azo compounds using dioxygen as an oxidant.Angew Chem,2010,122:6310–6313.
    [108] FULLER P, KIM J, CHEMLER S. Copper catalyzed enantioselective intramolecularaminooxygenation of alkenes. J Am Chem Soc,2008,130:17638–17639.
    [109] HE H, WANG Z, BAO W. Copper(II) acetate/oxygen-mediated nucleophilic addition andintramolecular C-H activation/C-N or C-C bond formation: one-pot synthesis ofbenzimidazoles or quinazolines. Adv Synth Catal,2010,352:2905–2912.
    [110] TANG B, SONG R, WU C, LIUY, ZHOU M, WEI W, DENG G, YIN D, LI J.Copper-catalyzed intramolecular C-H oxidation/acylation of formyl-N-arylformamidesleading to indoline-2,3-diones. J AmChem Soc,2010,132:8900–8902.
    [111] BRASCHE G, BUCHWALD S L. C-H functionalization/C-N bond formation:copper-catalyzed synthesis of benzimidazoles from amidines. Angew Chem Int Ed,2008,47:1932–1934.
    [112] Zhang L, Ang G, Chiba S. Copper-catalyzed synthesis of phenanthridine derivatives under anoxygen atmosphere starting from biaryl-2-carbonitriles and grignard reagents. Org Lett,2010,16:3682-3685.
    [113] WANG H, WANG Y, PENG C, ZHANG J, ZHU Q. Adirect intramolecular C-H aminationreaction cocatalyzed by copper(II) and iron(III) as part of an efficient route for the synthesisof pyrido[1,2-a]benzimidazoles from N-Aryl-2-aminopyridines. J. Am. Chem. Soc,2010,132:13217–13219.
    [114] GURU M, ALI M, PUNNIYAMURTHYT. Copper(II)-catalyzed conversion of bisaryloximeethers to2-arylbenzoxazoles via C-H functionalization/C-N/C-O bonds formation. Org Lett,2011,5:1194–1197.
    [115] GURU M, ALI M, PUNNIYAMURTHYT. Copper-mediated synthesis of substituted2-aryl-N-benzylbenzimid azoles and2-arylbenzoxazoles via C-H functionalization/C-N/C-Obond formation. J. Org. Chem.2011,76:5295–5308.
    [116] UEDAS, NAGASAWAH. Synthesis of2-arylbenzoxazoles by copper-catalyzedintramolecular oxidative C-O coupling of benzanilides. Angew. Chem. Int. Ed.2008,47:6411–6413.
    [117] UEDAS, NAGASAWAH. Facile synthesis of1,2,4-triazoles via a copper-catalyzed tandemaddition-oxidative cyclization. J Am Chem Soc,2009,131:15080–15081.
    [118] WANG H, WANG Y, LIANG D, LIU L, ZHANG J, ZHU Q. Copper-catalyzed intramoleculardehydrogenative aminooxygenation: direct access to formyl-substituted aromaticN-heterocycles. Angew Chem Int Ed,2011,50:5678–5681.
    [119] BAUDY R, FLETCHER H, YARDLEY J, et al. Design, synthesis, SAR, and biologicalevaluation of highly potent benzimidazole-spaced phosphono-r-amino acid competitiveNMDAantagonists of theAP-6type. J Med Chem,2001,44:1516-1529.
    [120] ZARRINMAYEH H, NUNESA, ORNSTEIN P, et al. Synthesis and evaluation of a series ofnovel2-[(4-chlorophenoxy)methyl]-benzimidazoles as selective neuropeptideYY1receptorantagonists. J Med Chem,1998,41:2709-2719.
    [121] VELIK J, BALIHAROVV, FINK-GREMMELS J, et al. Benzimidazole drugs and modulationof biotransformation enzymes. Research in Veterinary Science,2004,76:95–108.
    [122] SCHWARTZ G, FEHSE K, PFEIFFER M, et al. Highly efficient white organic light emittingdiodes comprising an interlayer to separate fluorescent and phosphorescent regions. AppliedPhysics Letters,2006,89:083509.
    [123] ASENSIO J, GOMEZ-ROMERO P. Recent developments on proton conductingpoly(2,5-benzimidazole)(ABPBI) membranes for high temperature polymer electrolytemembrane fuel cells. Fuel Cells,2005,5:336-343.
    [124] GLUSHKOV V, SHKLYAEVY. Synthesis of1(2H)-isoquinolones. Chemistry ofHeterocyclic Compounds,2001,37:663-687.
    [125] KRANE B, SHAMMAM. The isoquinolone alkaloids. J Nat Prod,1982,45:377-383.
    [126] COELHO F, VERONESE D, LOPES E, ROSSI R. An approach to substituteddihydroisoquinolin-1(2H)-ones from Baylis–Hillman adducts. Tetrahedron Lett,2003,44:5731–5735.
    [127] ASANO Y, KITAMURAS, OHRAT, et al. Discovery, synthesis and biological evaluation ofisoquinolones as novel and highly selective JNK inhibitors (2). Bioorg Med Chem,2008,16:4699–4714.
    [128] GUASTAVINO J, BAROLO S, ROSSI R. One-Pot Synthesis of3-SubstitutedIsoquinolin-1-(2H)-ones and Fused Isoquinolin-1-(2H)-ones by SRN1Reactions in DMSO.Eur J Org Chem,2006,3898–3902.
    [129] MATSUI T, SUGIURAT, NAKAI H, et al. Novel5-HT3antagonists. isoquinolinones and3-aryl-2-pyridones. J Med Chem,1992,35:3307-3319.
    [130] LI Shuwen, NAIR M, EDWARDS J, et al. Folate analogues35synthesis and biologicalevaluation of l-deaza,3-deaza, and bridge-elongated analogues ofN10-propargyl-5,8-dideazafoli acid. J Med Chem,1991,34:2746-2754.
    [131] BOLLINI M, ASíS S, BRUNO A. Synthesis of2,3-dihydroimidazo[1,2-b]isoquinoline-5(1H)-one and derivatives. Synthesis,2006,2:0237–0242.
    [132] BOLLINI M, CASALJ, ALVAREZ D, et al. New potent imidazoisoquinolinone derivativesas anti-Trypanosoma cruzi agents: Biological evaluation and structure–activity relationships.Bioorg Med Chem,2009,17:1437–1444.
    [133] KLETSASAD, LI Wenping, HAN Zeqiu, et al. Peripheral-type benzodiazepine receptor(PBR) and PBR drug ligands in fibroblast and fibrosarcoma cell proliferation: role of ERK,c-Jun and ligand-activated PBR-independent pathways. Biochemical Pharmacology,2004,67:1927–1932.
    [134] MACH U, HACKLING A, PERACHON S, et al. Development of novel1,2,3,4-tetrahydroisoquinoline derivatives and closely related compounds as potent andselective dopamine D3receptor ligands. ChemBioChem,2004,5:508-518.
    [135] DZIERSZINSKI F, COPPIN A, MORTUAIRE M, et al. Ligands of the peripheralbenzodiazepine receptor are potent inhibitors of plasmodium falciparum and toxoplasmagondii in vitro. Antimicrobial Agents And Chemotherapy,2002,46:3197–3207.
    [136] MUSCARELLAD, BRIEN K, LEMLEYA, BLOOM S. Reversal of bcl-2–mediatedresistance of the EW36human B-cell lymphoma cell line to arsenite-and pesticide-inducedapoptosis by PK11195, a ligand of the mitochondrial benzodiazepine receptor. Toxicol Sci,2003,73:66–73.
    [137] YU Weiping, WANG E, VOLL R, et al. Synthesis, fluorine-18radiolabeling, and in vitrocharacterization of1-iodophenyl-N-methyl-N-fluoroalkyl-3-isoquinoline carboxamidederivatives as potential PET radioligands for imaging peripheral benzodiazepine receptor.Bioorg Med Chem,208,16:6145–6155.
    [138] TROTTER B, NANDAK, KETT N, et al. Design and synthesis of novelisoquinoline-3-nitriles as orally bioavailable Kv1.5antagonists for the treatment of atrialfibrillation. J Med Chem,2006,49:6954-6957.
    [139] RIDAS, HAWASH S, FAHMY H, et al. Synthesis and in vitro evaluation of some novelbenzofuran derivatives as potential anti-HIV-1, anticancer, and antimicrobial agents. ArchPharm Res,2006,29:16-25.
    [140] PANDEYV, SHUKLAA. Synthesis and biological activity of isoquinoline-fusedbenzimidazoles. Indian J Chem B,1999,12:1381-1383.
    [141] LU Zhexiong, QUAZI H, DEADY L, POLYAG. Selective inhibition of cyclicAMP-dependent protein kinase by isoquinoline derivatives. Biol Chem H S,1996,6:373-384.
    [142] WEINKAUF L, CHEN Y, YU C, LIU L, BARROWS L, LAVOIE J. Antineoplastic activityof benzimidazo[1,2-b]isoquinolines, indolo[2,3-b]quinolines, and pyridocarbazoles. BioorgMed Chem,1994,8:781-786.
    [143] DEADYW, RODEMANN T, FINLAY J, BAGULEY C, DENNYA. Synthesis and cytotoxicactivity of carboxamide derivatives of benzimidazo[2,1-a]isoquinoline andpyrido[3',2':4,5]imidazo[2,1-a]isoquinoline. Anti-Cancer Drug Design,2001,5:339-346.
    [144] DYKER G, STIRNER W, HENKELG. Oxidative heterocyclization of2-alkynylbenzaldehydes with1,2-phenylenediamine. Eur J Org Chem,2000,1433-1441.
    [145] OKAMOTO N, SAKURAI K, ISHIKURAM, et al. One-pot concise syntheses ofbenzimidazo[2,1-a]isoquinolines by a microwave-accelerated tandem process. TetrahedronLett,2009,50:4167–4169.
    [146] OUYANG Huangche, TANG Riyuan, ZHONG Ping, et al. CuI/I2-promoted electrophilictandem cyclization of2-ethynylbenzaldehydes with ortho-benzenediamines: synthesis ofiodoisoquinoline-fused benzimidazoles. J Org Chem,2011,76:223–228.
    [147] PETER H, ERIC L. Twenty years of naproxen technology. Org Process Res Dev,1997,1:72–76.
    [148] GMOUH S, YANG Hongli, VAULTIER M. Activation of bismuth(III) derivatives in ionicliquids: novel and recyclable catalytic systems for Friedel-Crafts acylation of aromaticcompounds. Org Lett,2003,5:2219-2222.
    [149] GORE P. The Friedel-Crafts acylation reaction and its application to polycyclic aromatichydrocarbons. Chem Rev,1955,55:229–281.
    [150] GIOVANNI S, Raimondo M. Use of solid catalysts in Friedel-Crafts acylation reactions.Chem Rev,2006,106:1077–1104.
    [151] KOBAYASHI S, NAGAYAMAS. A microencapsulated lewis acid. a new type ofpolymer-supported lewis acid catalyst of wide utility in organic synthesis. J Am Chem Soc,1998,120:2985-2986.
    [152] ATSUSHI K, SHUICHI M, SHU K. Lanthanide trifluoromethanesulfonates as reusablecatalysts: catalytic Friedel-Crafts acylation. J Chem Soc, Chem Commun,1993,1157-1158.
    [153] LUKAS G, GHOSH K. Palladium-catalyzed synthesis of aryl ketones fromboronic acids andcarboxylic acids or anhydrides. Angew Chem Int Ed,2001,40:3458-3460.
    [154] BASLE O, BIDANGE J, SHUAI Qi, LI Chaojun. Palladium-catalyzed oxidative sp2C-Hbond acylation with aldehydes. Adv Synth Catal,2010,352:1145–1149.
    [155] XIAO FUHONG, SHUAI QI, ZHAO FENG, et al. Palladium-catalyzed oxidative sp2C-Hbond acylation with alcohols. Org Lett,2011,13:1614–1617.
    [156] LI Mingzong, GE Haibo. Decarboxylative acylation of arenes with α-oxocarboxylic acids viapalladium-catalyzed C-H activation. Org Lett,2010,12:3464-3467.
    [157] XUE Zhizhao, KASTHURAIAH M, CHRISTOPHE M, YVES P, TERRENCE B.Diketoacid-genre HIV-1integrase inhibitors containing enantiomeric arylamide functionality.Bioorg Med Chem,2009,17:5318-5324.
    [158] LEESON P, SPRINGTHORPE B. The influence of drug-like concepts on decision-making inmedicinal chemistry. Analysis,2007,6:881-890.
    [159] LINDEN M, HADLER D, HOFMANN S. Randomized, double-blind, placebo-controlled trialof the ecacy and tolerability of a new isoindoline derivative (DN-2327) in generalized anxiety.Human Psychopharmacology,1997,12:445-452.
    [160] ZHUANG Zhiping, KUNG Meiping, MU Mu, KUNG H. Isoindol-1-oneAnalogues of4-(2’-methoxyphenyl)-1-[2’-[N-(2’’-pyridyl)-p-iodobenzamido]ethyl]piperazine (p-MPPI) as5-HT1AReceptor Ligands. J Med Chem,1998,41:157-166.
    [161] BROOK D, HALTIWANGER R, KOCH T. Synthesis, structure, and reactivity of anantiaromatic,2,5-dicarboxy-stabilized1,4-dihydropyrazine. J Am Chem Soc,1992,114:6017-6023.
    [162] GEIGER C, ZELENKAC, WEIGLM, et al. Synthesis of bicyclic σ receptor ligands withcytotoxic activity. J Med Chem,2007,50:6144-6153.
    [163] WANG Qiu, SCHREIBER S. Copper-mediated amidation of heterocyclic and aromatic C-Hbonds. Org Lett,2009,11:5178-5180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700