昆明南市区地面沉降研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据1987-1998年四期全网水准测量数据重新绘制的地面沉降等值线图显
    示,昆明市存在明显的地面沉降现象。沉降区主要位于南市区,总沉降面积达
    180km2,已形成2个明显的沉降漏斗区域,即广卫村-小板桥-飞机场沉降区及渔
    户村-福海沉降区,其中小板桥沉降中心累计沉降量最大,累计沉降量达
    236. 2mm。此外,地面沉降加速、扩张趋势明显。
    昆明南市区地下水的赋存、分布和运动,受该区地层岩性、地质构造、地貌
    和新构造运动的综合控制。孔隙水赋存于晚新生代松散沉积层的孔隙中,具多个
    含水层,连续性差;岩溶水赋存在古生界碳酸盐岩基岩岩层中,分布面积广、厚
    度大、富水性较强,是昆明地区最重要的地下水类型,受人为开采影响,局部区
    域水位下降快。南市区第四系地层结构变化大,非成带湖积相沉积土固结程度低,
    软、粘土性质及各向异性性质显著,浅层土体工程性状差。这样的水文地质工程
    地质条件是地面沉降发生和发展的地质因素,是地面沉降既有特征的内在原因。
    南市区地面沉降的诱发因素主要有地下水的抽汲、土体的自然固结压密、新
    构造运动、建筑荷载与工程施工。各诱发因素与地面沉降关系如下:(1) 由于昆
    明南市区的地面沉降属于断陷盆地模式,第四系土体与基岩的接触边界为非贮水
    边界,第四系含水层与基岩含水层连通,抽汲岩溶水会造成第四系土体的固结压
    缩。基岩水位的大幅度下降是控制沉降中心的重要原因。(2) 随着城市化进程,
    南市区的建筑密度、建筑容积率增加较快,新建的建筑比例较高,加上区内浅层
    土体工程性质差,直接导致工程建设的地面沉降效应凸显,成为地面沉降的又一
    重要制约因素。(3) 南市区地面沉降漏斗位于滇池湖盆北缘的湖沼沉积平原地貌
    单元上。属于古滇池沉积区。沉降区由湖演变为陆的历史不长,整个第四系是一
    套固结程度低的松散堆积,具备自重压密条件。此外,泥炭层的有机质氧化加速
    着土体的自然固结。(4) 区内新构造运动较为强烈,直接造成区域性升降。
    由于各种地面沉降的制约因素在不同区域的作用与地位不同,且主导因素并
    非一成不变。本文引入模糊综合评判及聚类分析得出区内地面沉降制约因素综合
    评判权重依次为:抽汲地下水为72%,建筑荷载11%,工程施工7%,土的天然固
    结9%,新构造运动1%。
    最后,在阐明地面沉降机理的基础上,本文对南市区地面沉降进行了预测,
    并基于地面沉降制约因素的情况提出了防治建议。
According to the datum of the second grade leveling from 1987 to 1998, significant land subsidence was found in Kunming city. The south Kunming city is the dominating area of land subsidence, whose total area is 180 km2, and has formed two very prominence infundibular areas. The one is located in Guangwecun-Xiaobanqiao-Wujiaba airport, the other is around Yuhucun-Fuhaicun. The most prominence subsidence area is Xiaobanqiao center, which amounted to 236.2mm(from 1987 to 1998). What's more, the land subsidence is accelerating and expanding.
    In south Kunming city, stratum, lithographic characters, tectonics, geomorphology and neotectonism influence the groundwater's existence, distributing and seepage. Void water is affluent in the lake deposit void of Cainozonic, which has multiplayer structure, and is discontinuous. Karst water is affluent in carbonatite rock formation of Palaeozoic, which formation are abroad, thick, and watery. The Karst water is the most important type of groundwater in South Kunming, and its water level is fleetly falling in some areas where lies a great number of pumping wells. On the other hand, in South Kunming, the Quaternary soil is soft and clayey, stratum structures vary a lot, the engineering character of shallow soil is badness, and lacustrine-clay soil has marked anisotropy characteristic. In short, the hydrogeology conditions and the engineering geology conditions are vital geological factors, which influence the occurrence and development of land subsidence, and lead it to be what it is currently.
    Groundwater pumping, architecture loading, constructing, soil nature concretion and neotectonism are together playing an important role on land subsidence. Each complication has its connection with land subsidence: (1) Because the pattern of land subsidence in South Kunming is dislocation basin pattern, the interface between Quaternary soil and bed rock cannot separate ground water, so that the void water-bearing bed may communicate with karst water-bearing bed. Pumping karst water can render the concretion of Quaternary soil. Where the level of karst water
    
    
    may communicate with karst water-bearing bed. Pumping karst water can render the concretion of Quaternary soil. Where the level of karst water falls a lot on the edge of basin, there is a prominence infundibular area. (2) With the city's expanding, architecture's consistency and cubage increase swiftly and violently, and the proportion of newly-built architecture is most. What's more, the engineering character of shallow soil is badness, all of the above magnify the architecture loading's effect on the land subsidence. (3) The infundibular area of land subsidence is located in the brim of lake basin, where is the area pristine Dianchi lake, and it is become land not long ago. The whole Quaternary Period lacustrine-clay soil is very soft, gravitational concretion is going on. On the other hand, lack peat's oxidation accelerates concretion. (4) In the investigative area, Neotectonism is activities, which straightly result in the land subsidence. Because different complication has different effect, and the domi
    nant complication is not fixedness. This paper introduce fuzzy judgment and classified analysis to probe into all of the complication, and working-out their shares as follow, pumping groundwater account for 72%, and architecture loading account for 11%, and constructing account for 7%, and soil nature concretion account for 9%, and neotectonism account for 1%.
    At last, based on the mechanism of land subsidence in South Kunming, this paper has forecasted the extendecy of the land subsidence, and putted forward some preventive advice.
引文
[1] 黄文熙主编.土的工程性质.北京:水利电力出版社,1983
    [2] 钱家欢,殷宗泽主编.土工原理与计算.北京:水利电力出版社,1994
    [3] 孙钧,岩土材料流变及其工程应用.北京:中国建筑工业出版社,1999
    [4] 龚晓南.土塑性力学.杭州:浙江大学出版社,1997
    [5] 彭汉兴.环境工程水文地质学.南京:河海大学出版社,1998
    [6] 上海市地质处编选.国外地面沉降技术方法论文选译.北京:地质出版 社,1981
    [7] 姜朝松,樊友心,邵德晟等.昆明市地面沉降.昆明:云南科技出版社, 1999
    [8] 陈崇希,裴顺平.地下水开采-地面沉降数值模拟及防治对策研究--以江苏省苏州市为例.武汉:中国地质大学出版社,2001
    [9] 杨松林.工程模糊论方法及其应用.北京:国防工业出版社,1996
    [10] 成都地质矿产研究所,云南省地质矿产局,昆明盆地晚新生代地质 与沉积演化.重庆:重庆出版社,1990
    [11] G.L.Bertoldi.Where do we go from here: a new initiative for subsidence research in United States [A]. Hyatt Regency, Sacramento, California: AEG. GRA 1995 Annual Meeting [Z]. 1995.
    [12] 郑铣鑫.沿海地区城市发展与地面沉降的系统控制.海洋地质与第四 纪地质,1992,12(1) :57-65
    [13] 阎世骏,刘长礼.城市地面沉降研究现状与展望.地学前缘,1996, 3(1) :93-97
    [14] 段永候.我国地面沉降研究现状与21世纪可持续发展.中国地质灾害 与防治学报,1998,9(2) :1-5
    [15] 侯艳声,郑铣鑫,应玉飞.中国沿海地区可持续发展战略与地面沉降 系统防治.中国地质灾害与防治学报,2000,11(2) :30-33
    [16] 张阿根,刘毅,龚士良.国际地面沉降研究综述.上海地质,2000
    [17] Slojiljkovic D, Komatina S. Soil stability as a consequence of uncontrolled dissolving during salt deposits exploitation. In: Laural Carbognin, Giuseppe Cambilati and A Ivan Johson, eds. Land
    
    Subsidence(Vol, 1) , Proceedings of the sixth internation symposium on land subsidence. Padova: La Garangola, Via Montona, 2000, 231-236
    [18] Brunamonte F, Cavelli S, Serva L, et al. Subsidence phenamonte in the evolution of Pontina plain, Italy. In: Laura Carbognin, Giuseppe Cambolati and A Ivan Johson, eds. Padova,2000
    [19] Kagawa A, Furuno K, Kusuda T, et al. Land subsidence in artificial islands due to liquefaction caused by the Kobe earthquake .In: Laura Carbognin, Giuseppe Cambolati and A Ivan Johson, eds. Padova,2000
    [20] 黄长江,董巧香,林俊达.全球温暖化与海平面上升.自然杂志,2000, 22(4) :225-232
    [21] 朱兴贤,朱锦旗.苏锡常地区地面沉降与经济损失分析.水文地质工 程地质,1997,24(3) :24-25
    [22] 李敏,段绍伯.上海生态环境的水灾风险分析.上海环境科学,1996, 15(12) :45-47
    [23] Bravo R, Rogers J R, Cleveland T G. A new three dimensional finite difference model of groundwater flow and land subsidence in the Houston area. USA Houston: IAHS Publ, 1991
    [24] Gambolati G, Ricceri G, Bertomi W, et al. Numerical analysis of land subsidence at Racenna due to water withdrawal and gas removal. In: Johnson A I, ed. Houston, 1991
    [25] Daito K, Mizuno M, Ueshita K. Control of groundwater withdrawal for preventing land subsidence in the Owari Plain, Japan. USA Houston: IAHS Publ, 1991
    [26] 魏加华,崔亚莉,邵景力,等.济宁市地下水与地面沉降三维有限元 模拟.长春科技大学学报,2000,30(4) :376-380
    [27] 吴铁钧,崔小东,牛修俊,等.天津市地面沉降研究及综合治理.水 文地质工程地质,1998,25(5) :17-20
    [28] 武胜忠,方鹏飞.地面沉降的计算理论和方法.太原理工大学学报, 2000,31(2) :162-165
    [29] 冉启全,顾小芸.考虑流变特性的流固耦合地面沉降计算模型.中国 地质灾害与防治学报,1998,9(2) :99-103
    [30] Li J, Helm D C. A nonlinear viscous model for aquifer compression
    
    associated with ASR applications. In: Laura Carbognin, Giuseppe Cambolati and A Ivan Johson, eds. Padova, 2000
    [31] 张克绪.开采地下水引起地面变形的分析.自然灾害学报,1996,5(4) : 50-59
    [32] 刘毅,龚士良.上海市地面沉降泊松旋回长期预测.中国地质灾害与 防治学报,1998,9(2) :75-80
    [33] 林跃忠.地面沉降量的灰色预测方法.山东科技大学学报(自然科学 版),2000,19(3) :108-110
    [34] 宰金珉,梅国雄.全过程的沉降量预测方法研究.岩土力学,2000, 21(4) ,322-325
    [35] 阳军生,刘宝琛.抽水地面沉降预测的随机介质模型.水文地质工程 地质,1999,26(5) :11-13
    [36] 金爱善.采用神经网络模型对天津滨海新区地面沉降预测的研究.现 代地质,2000,14(4) :475-478
    [37] 刘金韬,武强,钱增江,等.地面沉降计算中“长期释水系数”的概 念及计算方法研究.中国矿业大学学报,2001,30(1) :103-106
    [38] Sedlak V. GPS measurement of geotectonic recent movements in the East Slovakia. In: Laura Carbognia, Giuseppe Cambolati and A Ivan Johson, eds. Padova, 2000
    [39] Shi W, Jiang R, Yie W. Comparison and analysis for the effects of construction engineering and water resources development on Shanghai land subsidence. In: Laura Carbognin, Giuseppe Cambolati and A Ivan Johson, eds. Padova, 2000
    [40] Paolo Macini, Ezio Mesini. Compaction monitoring from radioactive marker technique. In: Laura Carbognin, Giuseppe Cambolati and A Ivan Johson, eds. Padova, 2000
    [41] Urs Wegmuller, Tazio Strozzi. Differential SAR interfermetry for land subsidence monitoring: methodolony and examples. In: Laura Carbognin, Giuseppe Cambolati and A Ivan Johson, eds. Padova, 2000
    [42] 顾小芸.地面沉降计算回顾与展望.中国地质灾害与防治学报,1998, 9(2) :81-85
    [43] 张梁,张业成,罗元华,等.地质灾害灾情评估理论与实践.北京:
    
    地质出版社,1998
    [44] Freeze R A. Social decision making and land subsidence. In: Laura Carbognin, Giuseppe Cambolati and A Ivan Johson, eds. Padova, 2000
    [45] 周建,丛林,许彰珉.上海地区沿海岸线工程受相对海平面上升影响 浅析.中国地质灾害与防治学报,2000,11(3) :70-73
    [46] 宋瑞样.21世纪资源环境科学面临的挑战.中国人口·资源与环境, 2001,U(1) :3-7
    [47] 应玉飞,郑铣鑫,吴梁.中国沿海地区水资源及生态环境持续利用战 略.环境科学进展,1999,7(3) :131-138
    [48] Fang Guo, Hou Yi. Subsidence study and reclamation in some coal min areas of China. Hyatt Regency, Sacramento, California,1995
    [49] 云南省地质局水文地质大队.昆明幅区域水文地质普查报告(1/20 万)[R].1977
    [50] 云南省地质环境监测总站.昆明市环境水文地质调查报告(1/2. 5万) [R].1985
    [51] 云南省地质矿产局.云南省昆明地区滇池流域水文地质工程地质普查 报告[R].1985
    [52] 云南省地质环境监测总站.云南省昆明市区及近邻地质环境检测总 结报告(1985. 1-1989. 12) [R].1990
    [53] 施伟华,姜荣泽.市政工程建设对地面沉降影响分析.上海市政工程, 2000
    [54] 云南省地质环境监测总站.云南省昆明地区地质环境检测总结报告 (1990. 1-1995. 12) [R].1996
    [55] 薛传东,谈树成,李峰,等.昆明盆地区第四系粘性土中的粘土矿物 与地面沉降.岩石矿物学杂志,2001,20(4) :437-440.
    [56] 云南省地矿局滇东工程勘察公司.昆明市中区抗震防灾工程地质区划 报告.1990
    [57] 薛禹群.我国地面沉降模拟现状及需要解决的问题.水文地质工程地 质,2003,5(2) :1-4
    [58] 张云,薛禹群,李勤奋.上海现阶段主要沉降层及其变形特征分析.水 文地质工程地质,2003,5(2) :6-1
    [59] Roland W.Lewis,Bernard A.Schrefler.The finite element method in the
    
    deformation and consolidation of porous media[M].New York:John & Wiley Sons,1987:100-115
    [60] Chen Chongxi. On land subsidence hazard resulted from groundwater exploitation. Hydrogeology and Engineering Geology, 2000, 27(1) : 45-48
    [61] Duan Yonghou. Reserch states on land subsidence development in the 21st century of China. The Chinese Journal of Geological Hazard and Control, 1998, 9(2) : 1-5
    [62] Gambolati G, Ricceri G, Bertoni W, et al. Numerical analysis of land subsidence. USA Houston, 1991
    [63] Gu Xiaoyun. Review and prospects of land subsidence computation. The Chinese Journal of Geological Hazard and Control, 1998, 9(2) : 81-85
    [64] Gui Herong, Zou Hai, Cheng Zhaoyan, et al. Study on microscopic information of land subsidence. Hydrogeolgy and Engineering Geology, 1996, 23(5) : 27-29
    [65] Huang Changjiang, Dong Qiaoxiang, Lin Junda. Global warming and sea level rise. Ziran Zazhi, 2000, 22(4) :225-232
    [66] 郑铣鑫,武强,侯艳声,等.城市地面沉降研究进展及发展趋势.地质 论评,2002,48(6) :612-618.
    [67] 龚士良.上海地面沉降层次分析法研究.系统工程,1996,14(3) :30-35.
    [68] 张梁,张建军.地质灾害风险区划理论与方法.地质灾害与环境保护, 2001,011(044) :323-328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700