人工神经网络—顺序注射光度分析多组分同时测定技术在环境和药物分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境样品中的重金属污染物和农药残留物以及药品中的药物成分的检测具有重要的意义。由于环境样品和复方制剂的基体复杂,测定时干扰严重,化学计量学方法是解决此类问题改善分析选择性,提高测定结果准确度的有效方法之一。本文通过构建人工神经网络多元校正模型,对顺序注射分析与分光光度法联用技术在环境和药物分析中的应用进行了系统研究,实现了复杂样品中多种待测组分的同时测定。
     化学计量学利用数学和统计学的方法,通过解析测量数据,最大限度地获取关于物质的化学信息,以“数学方法分辨”替代复杂的物理或化学分离,在改善光度分析法选择性的同时显著提高了分析结果的准确度。采用人工神经网络这一化学计量学方法建立的非线性多元校正模型,可以准确地模拟输入信息和响应信号之间的非线性行为,有效地消除或减少待测组分间的交互作用、协同效应和其它未知非线性因素对实验测定结果的影响。然而,在常规的手工操作中存在分析过程费时费力和样品易被污染等弊病。顺序注射分析作为流动注射分析技术的一个分支,有效地克服了上述分析方法的缺陷,它不仅可以精确地控制试剂和试样的体积以及混合时间,极大地降低了试样特别是试剂的消耗,同时显著提高了分析过程的自动化程度和改善了方法的分析性能,可以通过单次测定提供多维分析信息,因而成为流动分析研究中最为活跃的领域之一。本论文的研究目的是将顺序注射光度分析方法与人工神经网络多元校正模型相结合,通过对复杂环境样品和复方制剂的测定,建立一个简便、快速、可靠的多组分流动分析系统。
     第一章简述了流动注射分析技术的历史发展过程,对近年来应用于流动注射分析的同时测定技术进行了评述,包括固相萃取法、顺序注射色谱法、多通道管路法、动力学方法、选择性检测器和化学计量学法。
     第二章研究发现在碱性介质中,Cu2+、Zn2+、Ni2+、Mn2+与4-(2-吡啶偶氮)-间苯二酚络合产物的吸收光谱严重重叠且体系线性加和性较差,据此将人工神经网络多元校正方法用于这四种金属络合物重叠光谱的分辨解析,提出了停流-顺序注射光度分析技术同时测定四元混合物,即环境水中Cu2+、Zn2+、Ni2+、Mn2+含量的新方法。方法的测定范围为0.1~2.0mg/L,分析速度达到30样/h。对环境标准参考物和实际样品的测定结果与标准参考值相符,与标准测定方法-原子吸收光谱法无显著性差异。
     在对实验条件进行优化的同时提出了将逼近度作为优选网络参数的评价标准,综合考虑了校正集和预测集的影响,既保证了网络学习的稳定性,又使校正模型具有较好的预测性。
     第三章研究了碱性条件下四种氨基甲酸酯类农药克百威、残杀威、速灭威、仲丁威水解产物与重氮化对硝基苯胺的偶联反应,探讨了该显色体系的反应机理。基于该反应体系在流动分析条件下待测组分随时间变化的浓度梯度信息的差异,提出了顺序注射动力学光度分析联用技术同时测定四种农药含量的新方法。方法的测定范围为0.5~10.0μg/mL,克百威、残杀威、速灭威、仲丁威的检出限分别为0.4,0.3,0.2,0.2μg/mL,分析速度为18样/h。优化了实验条件和网络参数,证实了动力学光谱数据的可靠性(R.S.D.<3.0%,n=7)。
     与文献报道的其它同时测定氨基甲酸酯类农药的光度分析方法相比,本法简便、快速、准确度高,用于地表水和水果中克百威、残杀威、速灭威和仲丁威残留量的测定,回收率在84.7~116.0%之间。
     第四章实验观察到不同pH下维生素C和扑热息痛的吸收光谱存在明显差异,建立了顺序注射pH梯度技术分光光度法不经分离同时测定维生素C和扑热息痛的新方法。讨论了顺序注射分析系统中pH梯度的建立条件,考察了NaOH溶液浓度及其体积、检测流速等实验参数的影响。在选定的实验条件下,维生素C和扑热息痛的测定范围为1.0~10.0 mg/L,检出限分别为0.3和0.2 mg/L,分析速度为40样/h。将该方法用于维C银翘片中维生素C和扑热息痛含量的同时测定,分析结果与药品标示量相符,加标回收率在92.0~109.1%之间。
     本文建立的顺序注射分析方法具有操作简单,分析快速,准确度高,试剂和样品的消耗量少和设备价廉等优点,实现了复杂样品中多种待测组分含量的同时测定,进一步拓宽了顺序注射光度分析法与人工神经网络联用技术在环境和药物分析中的应用。为研究热力学性质,动力学性质或pH效应存在差异而难以实现同时测定的复杂非线性体系提供了新的思路。
The development of new analytical procedures for heavy metal pollutants, pesticide residues and pharmaceutical components in complex environmental and pharmaceutical matrices are highly demanded. Spectrophotometry is one of the most favorable techniques, due to its simplicity, economy, high accuracy and precision for both organic and inorganic components analysis. However, matrix effects and the interaction between analytes are very often problematic for real sample analysis, including environmental samples and Pharmaceuticals. The separation of analytes with the aid of chemometric methods is an ideal approach for eliminating matrix effects and resolving analytical responses of mixtures by mathematical treatment. At this point, sequential injection spectrophotometry coupled with artificial neural networks (ANN) was used to determine multi-components in a single run.
     A combination of spectrophotometry and appropriate chemometric methods was widely applied in the multicomponent analysis, due to simple operation, low cost instrument, reasonable accuracy and precision and simultaneous determination of multiple species without carrying out any complex pretreatments. Among these approaches, an excellent alternative is the use of ANN algorithms by their high efficiency as predictors for non-linear systems. After proper training, ANN can accurately model the non-linear behavior between input variables and responses and eliminate or reduce the effects of the interaction between analytes, the synergistic effect (non-additivity of reaction rates), the multi-step process and any other unknown non-linearity. However, manual procedures are tedious and time-consuming, and are sometimes complicated. Such disadvantages in manual procedures can be easily overcome by flow injection analysis (FIA), since FIA technique can precisely and reproducibly control the timing of the measurement of the chemical reaction and the mixing of the solutions of reagent and sample with rapid and low consumption of sample throughput. It is also highly versatile, in terms of the types of data it can provide. Sequential injection analysis (SIA), as a branch of sampling means of FIA, the advantages of SIA over FIA are the simpler flow manifold, the lower consumption of reagents, the easier and more convenient PC-control of the instrumental parameters and the greater potential for fluidic handling. All these superiorities have made SIA technique coupled with spectrophotometry and ANN calibration model a powerful analytical tool in multicomponent analysis. In this thesis, three simple, rapid and reliable procedures for the simultaneous determination of multiple species in complex environmental and pharmaceutical matrices were proposed.
     Chapter 1 of the thesis briefly reviewed the development of FIA method, and the strategies used in flow systems to achieve multicomponent analysis include solid phase extractions, sequential injection chromatography, multichannel manifolds, kinetics, selective detectors and chemometrics.
     In Chapter 2 of the thesis, a stopped-flow sequential injection spectrophotometry for the simultaneous determination of Cu(Ⅱ), Zn(Ⅱ), Ni(Ⅱ) and Mn(Ⅱ) using an ANN algorithm for multivariate calibration was developed. The procedure was based on the reaction of these metal ions with 4-(2-pyridilazo) resorcinol in an alkaline medium to form colored complexes. The degree of approximation, a new evaluation criterion of the networks parameters was employed to prove the accuracy of the predicted results. The experimental variables were studied and determination ranges were obtained in the concentration range of 0.1-2.0 mg L'1 for each analyte, at a sampling frequency of 30 h-1, respectively. The proposed method was validated and the determination results for environmental water samples were statistically similar to those from the atomic absorption spectrometry. The results obtained for analysis of reference samples of environmental water were in good agreement with the certified values.
     In Chapter 3 of the thesis, a new procedure was developed for the simultaneous kinetic spectrophotometric determination of a quaternary carbamate pesticide mixture consisting of carbofuran, propoxur, metolcarb and fenobucarb using SIA. The procedure was based upon the different kinetic properties between the analytes reacted with reagent in flow system in the non-stopped-flow mode, in which their hydrolysis products coupled with diazotized p-nitroaniline in an alkaline medium to form the corresponding colored complexes. The absorbance data from SIA peak time profile were recorded at 510 nm and resolved by the use of ANN for multivariate quantitative analysis. The experimental variables and main networks parameters were optimized and each of the pesticides could be determined in the concentration range of 0.5-10.0μg mL-1, at a sampling frequency of 18 h-1. The proposed method was compared to other spectrophotometric methods for simultaneous determination of mixtures of carbamate pesticides, and it was proved to be adequately reliable and was successfully applied to the simultaneous determination of the four pesticide residues in water and fruit samples, obtaining the satisfactory results based on recovery studies (84.7-116.0%).
     In Chapter 4 of the thesis, a sequential injection pH gradient spectrophotometry was proposed for the simultaneous determination of vitamin C and paracetamol in pharmaceuticals. The method was based on the significant differences between absorption spectra of vitamin C and paracetamol at different pH, and a pH gradient in the range of 9.2-10.9 was produced by the dispersion of NaOH solution in a flow system using SI technique. ANN algorithms were applied to resolving overlapping spectra of the two pharmaceutical components and to the simultaneous determination of their concentrations. Some experimental variables including NaOH concentration and its volume, sample volume, flow rate were studied, respectively. Under the selected experimental conditions, the determination ranges were obtained in the concentration range of 1.0-10.0 mg L-1 for vitamin C and paracetamol, with the limits of detection of 0.3 and 0.2 mg L-1 at a sampling frequency of 40 h-1, respectively. The proposed method was applied to the simultaneous determination of vitamin C and paracetamol in vitamin C yinqiao tables, and the determination results were not statistically different to the claimed values and the recoveries for all components were in the range of 92.0-109.1%.
     In conclusion, this thesis demonstrated a multicomponent analytical method by sequential injection spectrophotometry with artificial neural networks multivariate calibration model. These procedures are simple, rapid, accurate and low reagents and samples consumption, and they were successfully applied for the determination several analytes in environmental and pharmaceutical samples in a single run. Thus, it infers that the proposed method provides a very interesting way for the simultaneous quantification of multiple species of the different thermodynamic, kinetic or pH properties in non-linear systems.
引文
1.陈国珍,黄贤智,刘文远,郑朱梓,王尊本.紫外-可见光分光光度法(上册)[M],北京:原子能出版社,1983,155,309.
    2. Hansen E H, Miro M. How flow-injection analysis (FIA) over the past 25 years has changed our way of performing chemical analyses [J], Trends Anal. Chem.,2007,26(1): 18-26.
    3. Ruzicka J, Stewart J W B. Flow injection analysis:Part Ⅱ. Ultrafast determination of phosphorus in plant material by continuous flow spectrophotometry [J], Anal. Chim. Acta,1975,79:79-91.
    4.方肇伦等.流动注射分析法[M],北京:科学出版社,1999.
    5. Ruzicka J, Hansen E H. Flow injection analysis part I:a new concept of fast continuous flow analysis [J], Anal Chim Acta,1975,78: 145-157.
    6. Ruzicka J, Hansen E H. Flow Injection Analysis [M], First edition, New York:Wiley, 1981.
    7. Ruzicka J, Marshall G D. Sequential injection:a new concept for chemical sensors, process analysis and laboratory assays [J], Anal Chim Acta,1990,237(2):329-343.
    8. Perez-Olmos R, Soto J C, Zarate N, Araujo A N, Lima J L F C, Saraiva M L M F S. Application of sequential injection analysis (SIA) to food analysis [J], Food Chem.,2005, 90(3):471-490.
    9. Pimenta A M, Montenegro M C B S M, Araujo A N, Martinez Calatayud J. Application of sequential injection analysis to pharmaceutical analysis [J], J. Pharm. Biomed. Anal., 2006,40(1):16-34.
    10. Economou A, Tzanavaras P D, Themelis D G. Sequential-injection analysis:A useful tool for clinical and biochemical analysis [J], Curr. Pharm. Anal.,2007,3(4):249-261.
    11. Ruzicka J. Lab-on-valve:universal micro flow analyzer based on sequential and bead injection [J], Analyst,2000,125(6):1053-1060.
    12. Chen X, Wang J, Fang Z. A spectrophotometric procedure for DNA assay with a microsequential injection lab-on-valve meso-fluidic system [J], Talanta,2005,67(1): 227-232.
    13. Yang M, Xu Y, Wang J-H. Lab-on-Valve system integrating a chemiluminescent entity and in situ generation of nascent bromine as oxidant for chemiluminescent determination of tetracycline [J], Anal. Chem.,2006,78(16):5900-5905.
    14. Chen X, Wang W, Wang J. A DNA assay protocol in a lab-on-valve meso-fluidic system with detection by laser-induced fluorescence [J], Analyst,2005,130(9):1240-1244.
    15. Quintana J B, Miro M, Estela J M, Cerda V. Automated on-line renewable solid-phase extraction-liquid chromatography exploiting multisyringe flow injection-bead injection lab-on-valve analysis [J], Anal. Chem.,2006,78(8):2832-2840.
    16. Luque de Castro M D, Ruiz-Jimenez J, Perez-Serradilla J A. Lab-on-valve:a useful tool in biochemical analysis [J], Trends Anal Chem,2008,27(2):118-126.
    17. Gomez V, Callao M P. Multicomponent analysis using flow systems [J], Trends Anal. Chem.,2007,26(8):767-774.
    18. Camel V. Solid phase extraction of trace elements [J], Spectrochim Acta B,2003,58(7): 1177-1233.
    19. Matsuoka S, Tennichi Y, Takehara K, Yoshimura K. Flow analysis of micro amounts of chromium(III) and (VI) in natural water by solid phase spectrophotometry using diphenylcarbazide [J], Analyst,1999,124(5):787-791.
    20. Long X B, Hansen E H, Miro M. Determination of trace metal ions via on-line separation and preconcentration by means of chelating Sepharose beads in a sequential injection lab-on-valve (SI-LOV) system coupled to electrothermal atomic absorption spectrometric detection [J], Talanta,2005,66(5):1326-1332.
    21. Capitan-Vallvey L F, Valencia M C, Arana Nicolas E, Garcia-Jimenez J F. Resolution of an intense sweetener mixture by use of a flow injection sensor with on-line solid-phase extraction [J], Anal. Bioanal. Chem.,2006,385(2):385-391.
    22. Legnerova Z, Satinsky D, Solich P. Using on-line solid phase extraction for simultaneous determination of ascorbic acid and rutin trihydrate by sequential injection analysis [J], Anal. Chim. Acta,2003,497(1-2):165-174.
    23. Solich P, Polasek M, Klimundova J, Ruzicka J. Sequential injection technique applied to pharmaceutical analysis [J], Trends Anal Chem,2003,22(2):116-126.
    24. Satinsky D, Solich P, Chocholous P, Karlicek R. Monolithic columns—a new concept of separation in the sequential injection technique [J], Anal. Chim. Acta,2003,499(1-2): 205-214.
    25. Satinsky D, Dos Santos L M L, Sklenarova H, Solich P, Montenegro M C B S M, Araujo A N. Sequential injection chromatographic determination of ambroxol hydrochloride and doxycycline in pharmaceutical preparations [J], Talanta,2005,68(2): 214-218.
    26. Satinsky D, Huclova J, Ferreira R L C, Montenegro M C B S M, Solich P. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column [J], J. Pharm. Biomed. Anal.,2006,40(2):287-293.
    27. Chocholous P, Satinsky D, Solich P. Fast simultaneous spectrophotometric determination of naphazoline nitrate and methylparaben by sequential injection chromatography [J], Talanta,2006,70(2):408-413.
    28. Chocholous P, Holik P, Satinsky D, Solich P. A novel application of OnyxTM monolithic column for simultaneous determination of salicylic acid and triamcinolone acetonide by sequential injection chromatography [J], Talanta,2006,72(2):854-858.
    29. Chocholous P, Satinsky D, Sladkovsky R, Pospisilova M, Solich P. Determination of pesticides fenoxycarb and permethrin by sequential injection chromatography using miniaturized monolithic column [J], Talanta,2008,77(2):566-570.
    30. Chocholous P, Solich P, Satinsky D. An overview of sequential injection chromatography [J], Anal. Chim. Acta,2007,600(1-2):129-135.
    31. Feres M A, Reis B F. A downsized flow set up based on multicommutation for the sequential photometric determination of iron(Ⅱ)/iron(Ⅲ) and nitrite/nitrate in surface water [J], Talanta,2005,68(2):422-428.
    32. Li Y, Muo Y, Xie H. Simultaneous determination of silicate and phosphate in boiler water at power plants based on series flow cells by using flow injection spectrophotometry [J], Anal. Chim. Acta,2002,455(2):315-325.
    33. Frank C, Schroeder F, Ebinghaus R, Ruck W. A Fast Sequential Injection Analysis System for the Simultaneous Determination of Ammonia and Phosphate [J], Microchim Acta,2006,154(1-2):31-38.
    34. Teshima N, Gotoh S, Ida K, Sakai T. One-shot flow injection spectrophotometric simultaneous determination of copper, iron and zinc in patients'sera with newly developed multi-compartment flow cell [J], Anal. Chim. Acta,2006,557(1-2):387-392.
    35. Mottola H A. Kinetic Aspects of Analytical Chemistry [M], New York:Wiley,1988.
    36. Perez-Bendito D, Silva M. Kinetic Methods in Analytical Chemistry [M], New York: Ellis Horwood,1988.
    37. Crouch S R. R. Trends in kinetic methods of analysis [J], Anal. Chim. Acta,1993,283(1): 453-470.
    38.方国桢,郭忠先.速差动力学分析及其应用发展[J],分析化学,1993,21(11):1347-1354.
    39. Shpigun L K, Shushenachev Y V, Kamilova P M. Kinetic separation in flow injection spectrophotometry:Simultaneous determination of copper and zinc in a single run [J], Anal. Chim. Acta,2006,573-574:360-365.
    40. Vendramini D, Grassi V, Zagatto E A G. Spectrophotometric flow-injection determination of copper and nickel in plant digests exploiting differential kinetic analysis and multi-site detection [J], Anal. Chim. Acta,2006,570(1):124-128.
    41. Gervasio A P G, Fortes P R, Meneses S R P, Miranda C E S, Zagatto E A G. An improved flow-injection system for spectrophotometric determination of molybdenum and tungsten in tool steels [J], Talanta,2006,69(4):927-931.
    42. Perez-Ruiz T, Martinez-Lozano C, Tomas V, Fenoll J. Chemiluminescence determination of citrate and pyruvate and their mixtures by the stopped-flow mixing technique [J], Anal. Chim. Acta,2003,485(1):63-72.
    43. Economou A, Voulgaropoulos A. On-line stripping voltammetry of trace metals at a flow-through bismuth-film electrode by means of a hybrid flow injection or sequential injection system [J], Talanta,2007,71(2):758-765.
    44. Ruiz-Diaz J J J, Torriero A A J, Salinas E, Marchevsky E J, Sanz M I, Raba J. Enzymatic rotating biosensor for cysteine and glutathione determination in a FIA system [J], Talanta, 2006,68(4):1343-1352.
    45. Nakatsuka S, Okamura K, Norisuye K, Sohrin Y. Simultaneous determination of suspended particulate trace metals (Co, Ni, Cu, Zn, Cd and Pb) in seawater with small volume filtration assisted by microwave digestion and flow injection inductively coupled plasma mass spectrometer [J], Anal. Chim. Acta,2007,594(1):52-60.
    46. Yin J, Jiang Z, Chang G, Hu B. Simultaneous on-line preconcentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma mass spectrometry using a nanometer-sized alumina packed micro-column [J], Anal. Chim. Acta,2005,540(2):333-339.
    47. Sumida T, Ikenoue T, Hamada K, Sabarudin A, Oshima M, Motomizu S. On-line preconcentration using dual mini-columns for the speciation of chromium(III) and chromium(VI) and its application to water samples as studied by inductively coupled plasma-atomic emission spectrometry [J], Talanta,2005,68(2):388-393.
    48. Menegario A A, Smichowski P, Polla G. On-line preconcentration and speciation analysis of Cr(III) and Cr(VI) using baker's yeast cells immobilised on controlled pore glass [J], Anal. Chim. Acta,2005,546(2):244-250.
    49.倪永年.化学计量学在分析化学中的应用[M],北京:科学出版社,2004,3.
    50. Betteridge D, Sly T J, Wade A P. Computer-Assisted Optimization for Flow Injection Analysis of Isoprenaline [J], Anal. Chem.,1983,55(8):1292-1299.
    51. Li B, Wang D, Lv J, Zhang Z. Flow-injection chemiluminescence simultaneous determination of cobalt(II) and copper(II) using partial least squares calibration [J], Talanta,2006,69(1):160-165.
    52. Munoz de la Pena A, Espinosa-Mansilla A, Acedo Valenzuela M I, Goicoechea H C, Olivieri A C. Comparative study of net analyte signal-based methods and partial least squares for the simultaneous determination of amoxycillin and clavulanic acid by stopped-flow kinetic analysis [J], Anal. Chim. Acta,2002,463(1):75-88.
    53. Magni D M, Olivieri A C, Bonivardi A L. Artificial neural networks study of the catalytic reduction of resazurin:stopped-flow injection kinetic-spectrophotometric determination of Cu(Ⅱ) and Ni(Ⅱ) [J], Anal. Chim. Acta,2005,528(2):275-284.
    54. Amigo J M, Coello J, Maspoch S. Three-way partial least-squares regression for the simultaneous kinetic-enzymatic determination of xanthine and hypoxanthine in human urine [J], Anal. Bioanal. Chem.,2005,382(6):1380-1388.
    55. Gomez V, Font J, Callao M P. Sequential injection analysis with second-order treatment for the determination of dyes in the exhaustion process of tanning effluents [J], Talanta, 2007,71(3):1393-1398.
    56. Pasamontes A, Callao M P. Sequential injection analysis linked to multivariate curve resolution with alternating least squares [J], Trends Anal. Chem.,2006,25(1):77-85.
    57. Moreno C, Manuel-Vez M P, Gomez I, Garcia-Vargas M. Multicomponent analysis by flow injection using a partial least-squares calibration method. Simultaneous spectrophotometric determination of iron, cobalt and nickel at sub-ppm levels [J], analyst, 1996,121(11):1609-1612.
    58. Castillo E, Cortina J, Beltran J, Prat M, Granados M. Simultaneous determination of Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) in surface waters by solid phase extraction and flow injection analysis with spectrophotometric detection [J], Analyst,2001,126(7):1149-1153.
    59. Azubel M, Fernandez F M, Tudino M B, Troccoli O E. Novel application and comparison of multivariate calibration for the simultaneous determination of Cu, Zn and Mn at trace levels using flow injection diode array spectrophotometry [J], Anal. Chim. Acta,1999,398(1):93-102.
    60. Whitman D A, Seasholtz M B, Christian G D, Ruzicka J, Kowalski B R. Double-Injection Flow Injection Analysis Using Multivariate Calibration for Multicomponent Analysis [J], Anal. Chem.1991,63(8):775-781.
    61. Gomez V, Larrechi M S, Callao M P. Chromium speciation using sequential injection analysis and multivariate curve resolution [J], Anal. Chim. Acta,2006,571(1):129-135.
    62. Ferre J, Boque R, Fernandez-Band B, Larrechi M S, Rius F X. Figures of merit in multivariate calibration. Determination of four pesticides in water by flow injection analysis and spectrophotometric detection [J], Anal. Chim. Acta,1997,348(1-3): 167-175.
    63. Martinez R C, Gonzalo E R, Toribio M P S, Mendez J H. Determination of triazines in surface waters by membrane separation coupled on-line to a flow-injection system and partial least squares regression [J], Anal. Chim. Acta,1996,321(2-3):147-155.
    64. Miro M, Cladera A, Estela J M, Cerda V. Dual wetting-film multi-syringe flow injection analysis extraction Application to the simultaneous determination of nitrophenols [J], Anal. Chim. Acta,2001,438(1-2):103-116.
    65. Navarro-Villoslada F, Perez-Arribas L V, Leon-Gonzalez M E, Polo-Diez L M. Preconcentration and flow-injection multivariate determination of priority pollutant chlorophenols [J], Anal. Chim. Acta,1995,308(1-3):238-245.
    66. Yan H M, Kraus G, Gauglitz G. Detection of mixtures of organic pollutants in water by polymer film receptors in fibre-optical sensors based on reflectometric interference spectrometry [J], Anal. Chim. Acta,1995,312(1):1-8.
    67.中华人民共和国卫生部药典委员会.中华人民共和国药典[M],第二部,北京:化学工业出版社,1995.
    68. Medina A R, Fernandez de Cordova M L, Molina-Diaz A. Simultaneous determination of paracetamol, caffeine and acetylsalicylic acid by means of a FI ultraviolet pls multioptosensing device [J], J. Pharm. Biomed. Anal,1999,21(5):983-992.
    69. Carneiro R L, Braga J W B, Poppi R J, Tauler R. Multivariate curve resolution of pH gradient flow injection mixture analysis with correction of the Schlieren effect [J], analyst,2008,133(6):774-783.
    70. Liu X, Liu S, Wu J, Fang Z. Simultaneous monitoring of aspirin, phenacetin and caffeine in compound aspirin tablets using a sequential injection drug-dissolution testing system with partial least squares calibration [J], Anal. Chim. Acta,1999,392(2-3):273-281.
    71. Checa A, Oliver R, Saurina J, Hernandez-Cassou S. Flow-injection spectrophotometric determination of reverse transcriptase inhibitors used for acquired immuno deficiency syndrome (AIDS) treatment Focus on strategies for dealing with the background components [J], Anal. Chim. Acta,2006,572(1):155-164.
    72. Polster J, Prestel G, Wollenweber M, Kraus G, Gauglitz G. Simultaneous determination of penicillin and ampicillin by spectral fibre-optical enzyme optodes and multivariate data analysis based on transient signals obtained by flow injection analysis [J], Talanta, 1995,42(12):2065-164.
    73. Blasco F, Medina-Hernandez M J, Sagrado S. Use of pH gradients in continuous-flow systems and multivariate regression techniques applied to the determination of methionine and cysteine in pharmaceuticals [J], Anal. Chim. Acta,1997,348(1-3): 151-159.
    74. Saurina J, Hernandez-Cassou S, Tauler S, Izquierdo-Ridorsa A. Continuous-Flow and Flow Injection pH Gradients for Spectrophotometric Determinations of Mixtures of Nucleic Acid Components [J], Anal. Chem.,1999,71(11):2215-2220.
    75. Saurina J, Hernandez-Cassou S, Izquierdo-Ridorsa A, Tauler S. pH-Gradient spectrophotometric data files from flow-injection and continuous flow systems for two-and three-way data analysis [J], Chemom. Intell. Lab. Syst.,2000,50(2):263-271.
    76. Zou X, Li Y, Li M, Zheng B, Yang J. Simultaneous determination of tin, germanium and molybdenum by diode array detection—flow injection analysis with partial least squares calibration model [J], Talanta,2004,62(4):719-725.
    77. Li Y, Hu J, Yang J, Zheng B, Ha Y. Multi-component analysis by flow injection-diode array detection-spectrophotometry using partial least squares calibration model for simultaneous determination of zinc, cadmium and lead [J], Anal. Chim. Acta,2002, 461(2):181-188.
    78. Marsili N R, Lista A, Fernandez Band B S, Goicoechea H C, Olivieri A C. Evaluation of complex spectral-pH three-way arrays by modified bilinear least-squares:determination of four different dyes in interfering systems [J], Analyst,2005,130(9):1291-1298.
    79. Fortes P R, Meneses S R P, Zagatto E A G. A novel flow-based strategy for implementing differential kinetic analysis [J], Anal. Chim. Acta,2006,572(2):316-320.
    80. Ye Y Z, Mao H Y, Chen Y H. Catalytic kinetic simultaneous determination of iron, silver and manganese with the Kalman filter by using flow injection analysis stopped-flow spectrophotometry [J], Talanta,1998,45(6):1123-1129.
    81. Gomez V, Cuadros R, Ruisanchez I, Callao M P. Matrix effect in second-order data Determination of dyes in a tanning process using vegetable tanning agents [J], Anal. Chim. Acta,2007,600(1-2):233-239.
    82. Navarro-Villoslada F, Perez-Arribas L V, Leon-Gonzalez M E, Polo-Diez L M. Matrix effect modelling in multivariate determination of priority pollutant chlorophenols in urine samples [J], Anal. Chim. Acta,1999,381(1):93-102.
    83. Hernandez O, Jimenez A I, Jimenez F, Arias J J. Evaluation of multicomponent flow-injection analysis data by use of a partial least squares calibration method [J], Anal. Chim. Acta,1995,310(1):53-61.
    84. Hopfield J J. Neural networks and physical systems with emergent collective computational abilities [J]. Proc. Natl. Acad. Sci. USA,1982,79(8):2554-2558.
    85. Hinton G E, Sejnowski T J. Optimal perceptual inference, Proceedings of the IEEE conference on Computer Vision and Pattern Recognition [M], Washington D.C.,1983.
    86. Rumelhart D E, Mccelland J L. Parallel distributed processing [M], MIT Press,1986.
    87. Despagne F, Luc Massart D. Neural networks in multivariate calibration [J], Analyst, 1998,123(11):157-178.
    88. Berrueta L A, Alonso-Salces R M, Heberger K. Supervised pattern recognition in food analysis [J], J. Chromatogr. A,2007,1158(1-2):196-214.
    89. Wang H, Zhou Y, Zhao Y, Li Q, Chen X, Hu Z. Optimization of on-line microwave flow injection analysis system by artificial neural networks for the determination of ruthenium [J], Anal. Chim. Acta,2001,429(2):207-213.
    90. Safavi A, Abdollahi H, Hormozi Nezhad M R. Artificial neural networks for simultaneous spectrophotometric differential kinetic determination of Co(Ⅱ) and Ⅴ(Ⅳ) [J], Talanta,2003,59(3):515-523.
    91. Abbaspour A, Baramakeh L. Simultaneous determination of antimony and bismuth by beta-correction spectrophotometry and an artificial neural network algorithm [J], Talanta, 2005,65(3):692-699.
    92. Hasani M, Emami F. Evaluation of feed-forward back propagation and radial basis function neural networks in simultaneous kinetic spectrophotometric determination of nitroaniline isomers [J], Talanta,2008,75(1):116-126.
    93. Ensafi A A, Khayamian T, Tabaraki R. Simultaneous kinetic determination of thiocyanate and sulfide using eigenvalue ranking and correlation ranking in principal component-wavelet neural network [J], Talanta,2007,71(5):2021-2028.
    94. Ni Y, Huang C, Kokot S. A kinetic spectrophotometric method for the determination of ternary mixtures of reducing sugars with the aid of artificial neural networks and multivariate calibration [J], Anal. Chim. Acta,2003,480(1):53-65.
    95. Sun L X, Reddy A M, Matsuda N, Takatsu A, Kato K, Okada T. Simultaneous determination of methylene blue and new methylene blue by slab optical waveguide spectroscopy and artificial neural networks [J], Anal. Chim. Acta,2003,487(1): 109-116.
    96. Ni Y, Huang C, Kokot S. Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides [J], Chemom. Intell. Lab. Syst.,2004,71(2):177-193.
    97. Khoshayand M R, Abdollahi H, Shariatpanahi M, Saadatfard A, Mohammadi A. Simultaneous spectrophotometric determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric methods [J], Spectrochim. Acta A,2008,70(3): 491-499.
    98. Ni Y, Wang Y, Kokot S. Multicomponent kinetic spectrophotometric determination of pefloxacin and norfloxacin in pharmaceutical preparations and human plasma samples with the aid of chemometrics [J], Spectrochim. Acta A,2008,70(5):1049-1059.
    99. Ni Y, Zhang G, Kokot S. Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks [J], Food. Chem.,2005,89(3):465-473.
    100.Akhlaghi Y, Kompany-Zareh M. Comparing radial basis function and feed-forward neural networks assisted by linear discriminant or principal component analysis for simultaneous spectrophotometric quantification of mercury and copper [J], Anal. Chim. Acta,2005,537(1-2):331-338.
    1.国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M],北京:中国环境科学出版社,1997,574-608.
    2. Tuzen M, Soylak M, Elci L. Multi-element pre-concentration of heavy metal ions by solid phase extraction on Chromosorb 108 [J], Anal. Chim. Acta,2005,548(1-2): 101-108.
    3. Tewari, P K, Singh A K. Amberlite XAD-7 impregnated with Xylenol Orange: a chelating collector for preconcentration of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ) and Fe(Ⅲ) ions prior to their determination by flame AAS [J], Fresenius J. Anal. Chem.,2000, 367(6):562-567.
    4. Turkmen M, Ciminli C. Determination of metals in fish and mussel species by inductively coupled plasma-atomic emission spectrometry [J]. Food Chem.,2007,103(2): 670-675.
    5. Miranda C E S, Reis B F, Baccan N, Packer A P, Gine M F. Automated flow analysis system based on multicommutation for Cd, Ni and Pb on-line pre-concentration in a cationic exchange resin with determination by inductively coupled plasma atomic emission spectrometry [J], Anal. Chim. Acta,2002,453(2):301-310.
    6. Sohrin Y, Iwamoto S, Akiyama S, Fujita T, Kugii T, Obata H, Nakayama E, Goda S, Fujishima Y, Hasegawa H, Ueda K, Matsui M. Determination of trace elements in seawater by uorinated metal alkoxide glass-immobilized 8-hydroxyquinoline concentration and high-resolution inductively coupled plasma mass spectrometry detection [J], Anal. Chim. Acta,1998,363(1):11-19.
    7. Shabani M B, Akagi T, Masuda A. Preconcentration of Trace Rare-Earth Elements in Seawater by Complexation with Bis(2-ethylhexyl) Hydrogen Phosphate and 2-Ethylhexyl Dihydrogen Phosphate Adsorbed on a C18 Cartridge and Determination by Inductively Coupled Plasma Mass Spectrometry [J], Anal. Chem.,1992,64(7):737-743.
    8. Lunvongsa S, Takayanagi T, Oshima M, Motomizu S. Novel catalytic oxidative coupling reaction of N,N-dimethyl-p-phenylenediamine with 1,3-phenylenediamine and its applications to the determination of copper and iron at trace levels by flow injection technique [J], Anal. Chim. Acta,2006,576(2):261-269.
    9. Yamini Y, Tamaddon A. Solid-phase extraction and spectrophotometric determination of trace amounts of copper in water samples [J], Talanta,1999,49(1):119-124.
    10. Blain S, Treguer P. Iron(Ⅱ) and iron(Ⅲ) determination in sea water at the nanomolar level with selective on-line preconcentration and spectrophotometric determination [J], Anal. Chim. Acta,1995,308(1-3):425-432.
    11. Kevser Sozgen, Esma Tutem. Second derivative spectrophotometric method for simultaneous determination of cobalt, nickel and iron using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol [J], Talanta,2004,62(5):971-976.
    12. Mesquita R B.R, Fernandes S M.V, Rangel A O.O.S. A flow system for the spectrophotometric determination of lead in different types of waters using ion-exchange for pre-concentration and elimination of interferences [J], Talanta,2004,62(2):395-401.
    13. Ahmed M J, Mamun M A. Spectrophotometric determination of lead in industrial, environmental, biological and soil samples using 2,5-dimercapto-1,3,4-thiadiazole [J], Talanta,2001,55(1):43-54.
    14. Ruzicka J, Hansen E H. Flow injection analysis part I:a new concept of fast continuous flow analysis [J], Anal. Chim. Acta,1975,78(1):145-157.
    15. Miro M, Frenzel W. What Flow Injection has to Offer in the Environmental Analytical Field [J], Microchim. Acta,2004,148(1-2):1-20.
    16. Legnerova Z, Satinsky D, Solich P. Using on-line solid phase extraction for simultaneous determination of ascorbic acid and rutin trihydrate by sequential injection analysis [J], Anal. Chim. Acta,2003,497(1-2):165-174.
    17. Chocholous P, Holik P, Satinsky D, Solich P. A novel application of OnyxTM monolithic column for simultaneous determination of salicylic acid and triamcinolone acetonide by sequential injection chromatography [J], Talanta,2007,72(2):854-858.
    18. Almir Feres M, Reis B F. A downsized flow set up based on multicommutation for the sequential photometric determination of iron(Ⅱ)/iron(Ⅲ) and nitrite/nitrate in surface water [J], Talanta,2005,68(2):422-428.
    19. Teshima N, Gotoh S, Ida K, Sakai T. One-shot flow injection spectrophotometric simultaneous determination of copper, iron and zinc in patients'sera with newly developed multi-compartment flow cell [J], Anal. Chim. Acta,2006,557(1-2):387-392.
    20. Nakatsuka S, Okamura K, Norisuye K, Sohrin Y. Simultaneous determination of suspended particulate trace metals (Co, Ni, Cu, Zn, Cd and Pb) in seawater with small volume filtration assisted by microwave digestion and flow injection inductively coupled plasma mass spectrometer [J], Anal. Chim. Acta,2007,594(1):52-60.
    21. Gomez V, Callao M P. Multicomponent analysis using flow systems [J], Trends Anal. Chem.,2007,26(8):767-774.
    22. Zupan J, Gasteiger J. Neural Networks for Chemists:An Introduction [M], New York: VCH Publishers,1993.
    23.梁逸曾.白灰黑复杂多组分分析及其化学计量学算法[M],长沙:湖南科学技术出版社,1996.
    24. Saurina J, Hernandez-Cassou S. Quantitative determinations in conventional flow injection analysis based on different chemometric calibration statregies:a review [J], Anal. Chim. Acta,2001,438(1-2):335-352.
    25. Ye Y Z, Mao H Y, Chen Y H. Catalytic kinetic simultaneous determination of iron, silver and manganese with the Kalman filter by using flow injection analysis stopped-flow spectrophotometry [J], Talanta,1998,45(6):1123-1129.
    26. Castillo E, Cortina J L, Beltran J L, Prat M D, Granados M. Simultaneous determination of Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) in surface waters by solid phase extraction and flow injection analysis with spectrophotometric detection [J], Analyst,2001,126(7):1149-1153.
    27. Magni D M, Olivieri A C, Bonivardi A L. Artificial neural networks study of the catalytic reduction of resazurin:stopped-flow injection kinetic-spectrophotometric determination of Cu(Ⅱ) and Ni(Ⅱ) [J], Anal. Chim. Acta,2005,528(2):275-284.
    28. Despagne F, Luc Massart D. Neural networks in multivariate calibration [J], Analyst, 1998,123(11):157-178.
    29. Blank T B, Brown S D. Nonlinear multivariate mapping of chemical data using feed-forward neural networks [J], Anal. Chem.,1993,65(21):3081-3089.
    30. Sekulic S, Seasholtz M B, Wang Z, Kowalski B R, Lee S E, Holt B R. Nonlinear multivariate calibration methods in analytical chemistry [J], Anal. Chem.,1993,65(19): 835A-845A.
    31. Svozil D, Kvasnika V, Pospichal J. Introduction to multi-layer feed-forward neural networks [J], Chemom. Intell. Lab. Syst,1997,39(1):43-62.
    32. Otto M, Wegscheider W. Spectrophotometric multicomponent analysis applied to trace metal determinations [J], Anal. Chem.,1985,57(1):63-69.
    33.任瑞雪,汤真,刘福强,苟玉彗,任玉林.人工神经网络-近红外光谱法用于粉末药品扑热息痛的非破坏定量分析[J],光谱学与光谱分析,2001,21(4):521-523.
    34. Ren Y L, Gou Y H, Tang Z, Liu P Y, Guo Y. Nondestructive Quantitative Analysis of Analgini Powder Pharmaceutical by Near-Infrared Spectroscopy and Artificial Neural Network Technique [J], Anal. Lett.,2000,33(1):69-80.
    35.张锡瑜,常文保,李克安.简明分析化学手册[M],北京:北京大学出版社,1981,264.
    36.中南矿冶学院分析化学教研室.化学分析手册[M],北京:科学出版社,1991,382.
    37.朱衷榜,倪永年.多元曲线分辨法测定4-(2-吡啶偶氮)-间苯二酚的电离常数[J],南昌大学学报(理科版),2006,30(6):549-551.
    38. Gomez E, Tomas C, Cladera A, Estela J M, Cerda V. Multicomponent Technique in Sequential Injection [J], Analyst,1995,120(4):1181-1184.
    39. Lenehan C E, Barnett N W, Lewis S W. Sequential injection analysis [J] Analyst,2002, 127(8):997-1020.
    40. Montville D, Voigtman E. Statistical properties of limit of detection test statistics [J], Talanta,2003,59(3):461-476.
    41. Azubel M, Fernandez F M, Tudino M B, Troccoli O E. Novel application and comparison of multivariate calibration for the simultaneous determination of Cu, Zn and Mn at trace levels using flow injection diode array spectrophotometry [J], Anal. Chim. Acta,1999, 398(1):93-102.
    42.国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M],北京:中国环境科学出版社,1997,118-120.
    1.刘维屏.农药环境化学[M],北京:化学工业出版社,2006,6-11.
    2. Quality of Water Intended for Human Consumption, European Commission's Web Site http://europa.eu.int/comm/environment/water/water-drink/index en.html,1998.
    3.庄无忌.各国食品和饲料中农药、兽药残留限量大全[M],北京:中国对外经济贸易出版社,1995.
    4. Lambropoulou D A, Sakkas V A, Hela D G, Albanis T A. Application of solid-phase microextraction in the monitoring of priority pesticides in the Kalamas River (N.W. Greece) [J], J. Chromatogr. A,2002,963(1-2):107-116.
    5. Santos Delgado M J, Rubio Barroso S, Toledano Fernandez-Tostado G, Polo-Diez L M. Stability studies of carbamate pesticides and analysis by gas chromatography with flame ionization and nitrogen-phosphorus detection [J], J. Chromatogr. A,2001,921(2): 287-296.
    6. Basheer C, Alnedhary A A, Madhava Rao B S, Lee H K. Determination of carbamate pesticides using micro-solid-phase extraction combined with high-performance liquid chromatography [J], J. Chromatogr. A,2009,1216(2):287-296.
    7. Li H P, Li J H, Li G C, Jen J F. Simultaneous determination of airborne carbamates in workplace by high performance liquid chromatography with fluorescence detection [J], Talanta,2004,63(3):547-553.
    8. Zhang J, Lee H K. Application of liquid-phase microextraction and on-column derivatization combined with gas chromatography-mass spectrometry to the determination of carbamate pesticides [J], J. Chromatogr. A,2006,1117(1):31-37.
    9. Sagratini G, Manes J, Giardina D, Damiani P, Pico Y. Analysis of carbamate and phenylurea pesticide residues in fruit juices by solid-phase microextraction and liquid chromatography-mass spectrometry [J], J. Chromatogr. A,2007,1147(2):135-143.
    10. Ahmed F E. Analyses of pesticides and their metabolites in foods and drinks [J], Trends Anal. Chem.,2001,20(7):649-661.
    11. Nunes G S, Barcelo D, Grabaric B S, Diaz-Cruz J M, Ribeiro M L. Evaluation of a highly sensitive amperometric biosensor with low cholinesterase charge immobilized on a chemically modified carbon paste electrode for trace determination of carbamates in fruit, vegetable and water samples [J], Anal. Chim. Acta,1999,399(1-2):37-49.
    12. Martorell D, Cespedes F, Martinez-Fabregas E, Alegret S. Determination of organophosphorus and carbamate pesticides using a biosensor based on a polishable, 7,7,8,%tetracyanoquinodimethane-modified, graphite-epoxy biocomposite [J], Anal. Chim. Acta,1997,337(3):305-313.
    13. Hemasundaram A, Naidu N V. Sensitive determination of propoxur by spectrophotometry using 3-Aminopyridine [J], Anal. Sci.,2004,20(12):1707-1710.
    14.白玲,倪永年.偏最小二乘-速差动力学分光光度法同时测定杀虫剂残杀威和异丙威两组分[J],分析化学,2002,30(9):1088-1091.
    15. Venkateswarlu B, Seshaiah K. Sensitive spectrophotometric method for the determination of propoxur using 4-Aminoantipyrine [J], Talanta,1995,42(1):73-76.
    16. Buote A, Kelly J, Hsiao Y, Yasuda N, Antonucci V. Gas chromatographic analysis of the thermally unstable dimethyl methylphosphonate carbanion via trimethylsilyl derivatization [J], J. Chromatogr. A,2002,978(1-2):177-183.
    17. Association of Official Analytical Chemists, Official Methods of Analysis of AOAC International,16th ed., AOAC International, Arlington, VA,1995, Chapter 10.
    18. Chiron S, Dupas S, Scribe P, Barcelo D. Application of on-line solid-phase extraction followed by liquid chromatography-thermospray mass spectrometry to the determination of pesticides in environmental waters [J], J. Chromatogr. A,1994,665(2):295-305.
    19. Espinosa-Mansilla A, Salinas F, Zamoro A. Simultaneous Kinetic Determination of Chlorpyrifos and Carbaryl Based on Differential Degradation Processes in Alkaline Oxidative Medium [J], Mikrochim. Acta,1994,113(1-2):9-17.
    20. Perez-Bendito D. Approaches to differential reaction-rate methods [J], Analyst,1990, 115(6):689-698.
    21. Otto M. Chemometrics in kinetic analysis [J], Analyst,1990,115(6):685-688.
    22. Cullen T F, Crouch S R. Multicornponent kinetic determinations using multivariate calibration techniques [J], Mikrochim. Acta,1997,126 (1-2):1-9.
    23. Ni Y, Huang C, Kokot S. Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides [J], Chemom. Intell. Lab. Syst.,2004,71(2):177-193.
    24. Safavi A, Abdollahi H, Hormozi Nezhad M R. Artificial neural networks for simultaneous spectrophotometric differential kinetic determination of Co(Ⅱ) and V(Ⅳ) [J], Talanta,2003,59(3):515-523.
    25. Blanco M, Coello J, Iturriaga H, Maspoch S, Redon M. Artificial neural networks for multicomponent kinetic determinations [J], Anal. Chem.,1995,67(24):4477-4483.
    26. Blanco M, Coello J, Iturriaga H, Maspoch S, Porcel M. Simultaneous enzymatic spectrophotometric determination of ethanol and methanol by use of artificial neural networks for calibration [J], Anal. Chim. Acta,1999,398(1):83-92.
    27. Ruzicka J, Hansen E H. Flow Injection Analysis [M], Second edition, New York:Wiley, 1988.
    28.方肇伦.流动注射分析法[M],北京:科学出版社,1999,4.
    29. Gomez V, Callao M P. Multicomponent analysis using flow systems [J], Trends Anal. Chem.,2007,26(8):767-774.
    30. van Staden J F, Stefan R I. New horizons in sequential injection kinetic analysis [J], Anal. Bioanal. Chem.,2002,374(1):3-12.
    31. Saurina J, Hernandez-Cassou S. Quantitative determinations in conventional flow injection analysis based on different chemometric calibration statregies:a review [J], Anal. Chim. Acta,2001,438(1-2):335-352.
    32. Ferre J, Boque R, Fernandez-Band B, Larrechi M S, Rius F X. Figures of merit in multivariate calibration. Determination of four pesticides in water by flow injection analysis and spectrophotometric detection [J], Anal. Chim. Acta,1997,348(1-3): 167-175.
    33. Fernandez-Band B, Linares P, Luque de Castro M D, Valcarcel M. Flow-Through Sensor for the Direct Determination of Pesticide Mixtures without Chromatographic Separation [J], Anal. Chem.,1991,63(17):1672-1675.
    34. Khalaf K D, Morales-Rubio A, Guardia M, Garcia J M, Jimenez F, Arias J J. Simultaneous kinetic determination of carbamate pesticides after derivatization with p-Aminophenol by using partial least squares [J], Microchem. J.,1996,53(4):461-471.
    35. Ruzicka J, Hansen E H. Flow Injection Analysis [M], New York:Wiley,1988,26.
    36. Kellner R, Mermet J M, Otto M, Widmer H M. Analytical Chemistry [M], New York: Wiley-VCH,1998,229.
    37. Wythoff B J. Back propagation neural networks:A tutorial [J], Chemom. Intell. Lab. Syst, 1993,18(2):115-155.
    38. Despagne F, Luc Massart D. Neural networks in multivariate calibration [J], Analyst, 1998,123(11):157-178.
    39. Agrawal O, Das J V, Gupta V K. Spectrophotometric determination of isoproturon using p-aminoacetophenone and its application in environmental and biological samples [J], Talanta,1998,46(4):501-505.
    40. Montville D, Voigtman E. Statistical properties of limit of detection test statistics [J], Talanta,2003,59(3):461-476.
    1. Ruzicka J, Marshall G D. Sequential injection:a new concept for chemical sensors, process analysis and laboratory assays [J], Anal. Chim. Acta,1990,237:329-343.
    2. Solich P, Polasek M, Klimundova J, Ruzicka J. Sequential injection technique applied to pharmaceutical analysis [J], Trends Anal. Chem.,2003,22(7):116-126.
    3. Pimenta A M, Montenegro M C B S M, Araujo A N, Martinez Calatayud J. Application of sequential injection analysis to pharmaceutical analysis [J], J. Pharm. Biomed. Anal., 2006,40(1):16-34.
    4. Tzanavaras Paraskevas D, Themelis Demetrius G. Review of recent applications of flow injection spectrophotometry to pharmaceutical analysis [J], Anal. Chim. Acta,2007, 588(1):1-9.
    5.江虹.甲基蓝双波长光度法测定阿米卡星[J],分析科学学报,2004,20(4):415-417.
    6. Erk N, Kartal M. Comparison of high-performance liquid chromatography and absorbance ratio methods for the determination of hydrochlorothiazide and lisinopril in pharmaceutical formulations [J], Anal. Lett.,1999,32(6):1131-1141.
    7.杜黎明,李丽,吴昊.荷移光度法测定可待因[J],光谱学与光谱分析,2007,27(2): 364-366.
    8. Zhao F, Xu B, Zhang Z, Tong S. Study on the charge-transfer reaction between 7,7,8,8-tetracyanoquinodimethane and drugs [J], J. Pharm. Biomed. Anal.,1999,21(2): 355-360.
    9. Khashaba P Y, El-Shabouri S R, Emara K M, Mohamed A M. Analysis of some antifungal drugs by spectrophotometric and spectrofluorimetric methods in different pharmaceutical dosage forms [J], J. Pharm. Biomed. Anal.,2000,22(2):363-376.
    10. Millership J S, Parker C, Donnelly D. Ratio spectra derivative spectrophotometry for the determination of furosemide and spironolactone in a capsule formulation [J], IL Farmaco, 2005,60(4):333-338.
    11. Erk N. Application of derivative-differential UV spectrophotometry and ratio derivative spectrophotometric determination of mephenoxalone and acetaminophen in combined tablet preparation [J], J. Pharm. Biomed. Anal.,1999,21(2):429-437.
    12. Altinoz S, Dursun O O. Determination of nimesulide in pharmaceutical dosage forms by second order derivative UV spectrophotometry [J], J. Pharm. Biomed. Anal.,2000,22(1): 175-182.
    13. Jelikic-Stankov M, Odovic J, Stankov D, Djurdjevic P. Determination of fleroxacin in human serum and in dosage forms by derivative UV spectrophotometry [J], J. Pharm. Biomed. Anal.,1998,18(1-2):145-150.
    14. Ozer D, Senel H. Determination of lisinopril from pharmaceutical preparations by derivative UV spectrophotometry [J], J. Pharm. Biomed. Anal.,1999,21(3):691-695.
    15. Betteridge D, Fields, B. Construction of pH gradients in flow-injection analysis and their potential use for multielement analysis in a single sample bolus [J], Anal. Chem.,1978, 50(4):654-656.
    16. Pasamontes A, Callao M P. Determination of amoxicillin in pharmaceuticals using sequential injection analysis (SIA) Evaluation of the presence of interferents using multivariate curve resolution [J], Anal. Chim. Acta,2003,485(2):195-204.
    17. Pasamontes A, Callao M P. Determination of amoxicillin in pharmaceuticals using sequential injection analysis and multivariate curve resolution [J], Anal. Chim. Acta,2004, 515(1):159-165.
    18. Gomez V, Larrechi M S, Callao M P. Chromium speciation using sequential injection analysis and multivariate curve resolution [J], Anal. Chim. Acta,2006,571(1):129-135.
    19.张国莹,黄秋森,毛东森,陈同岳.流动注射pH梯度技术-卡尔曼滤波分光光度法同时测定铅、钒、铜[J],分析化学,1993,21(1):63-55.
    20. Hasani M, Emami F. Evaluation of feed-forward back propagation and radial basis function neural networks in simultaneous kinetic spectrophotometric determination of nitroaniline isomers [J], Talanta,2008,75(1):116-126.
    21. Ni Y, Liu C. Artificial neural networks and multivariate calibration for spectrophotometric differential kinetic determinations of food antioxidants [J], Anal. Chim. Acta,1999, 396(2-3):221-230.
    22. Dong L, Yan A, Chen X, Xu H, Hu Z. Research and prediction of coordination reactions between CPA-mA and some metal ions using artificial neural networks [J], Comput. Chem.2001,25(6):551-558.
    23. Abbaspour A, Baramakeh L. Simultaneous determination of antimony and bismuth by beta-correction spectrophotometry and an artificial neural network algorithm [J], Talanta, 2005,65(3):692-699.
    24.董莪,杨春梅,陈文麟.维生素C的功能及应用[J],食品研究与开发,1997,18(2):55-58.
    25.黎玉红,张文文,陈励,侯桂萍.维C银翘片中扑热息痛含量测定方法探讨[J],新疆中医药,2003,21(5):50-51.
    26.朱学慧,焦建杰,孔雁军,董伟林,张才丽,娄建石.高效液相色谱法同时测定复方对乙酰氨基酚维生素C泡腾片中2组分含量[J],中国医院药学杂志,2003,23(9):545-546.
    27.甄录旭,吴林海,方宗华,许乐.HPLC法测定对乙酰氨基酚维生素C分散片中的对乙酰氨基酚和维生素C含量[J],安徽医药,2007,9:792-794.
    28. Blanco M, Alcala M. Simultaneous quantitation of five active principles in a pharmaceutical preparation:Development and validation of a near infrared spectroscopic method [J], Eur. J. Pharm. Sci.,2006,27(2-3):280-286.
    29. Gutes A, Cespedes F, Cartas R, Alegret S, del Valle M, Gutierrez J M, Munoz R. Multivariate calibration model from overlapping voltammetric signals employing wavelet neural networks [J], Chemometr. Intell. Lab. Syst.,2006,83(2):169-179.
    30. Dinc E. The spectrophotometric multicomponent analysis of a ternary mixture of ascorbic acid, acetylsalicylic acid and paracetamol by the double divisor-ratio spectra derivative and ratio spectra-zero crossing methods [J], Talanta,1999,48(5):1145-1157.
    31. Dinc E, Baleanu D. Application of Haar and Mexican Hat Wavelets to Double Divisor-Ratio Spectra for the Multicomponent Determination of Ascorbic Acid, Acetylsalicylic Acid and Paracetamol in Effervescent Tablets [J], J. Braz. Chem. Soc., 2008,19(3):434-444.
    32.蔡卓,赵静,杜良伟,江彩英,刘桂升,梁信源,莫利书.偏最小二乘紫外分光光度法同时测定维C银翘片中的维生素C和扑热息痛[J],应用化工,2008,37(10):1235-1239.
    33. Betteridge D, Fieldas B. The application of ph gradients in flow-injection analysis:A Method for Simultaneous Determination of Binary Mixtures of Metal Ions in Solution [J], Anal. Chim. Acta,1981,132:139-155.
    34.周继成,周青山.人工神经网络—第六代计算机的实现[M],北京:科学普及出版社,1995,47-55.
    35. Smits J R M, Meissen W J, Buydens L M C, Kateman G. Using artificial neural networks for solving chemical problems. Part I. Multi-layer feed-forward networks [J], Chemom. Intell. Lab. Syst.,1994,22(2):165-189.
    36. Despagne F, Luc Massart D. Neural networks in multivariate calibration [J], Analyst, 1998,123(11):157-178.
    37. Montville D, Voigtman E. Statistical properties of limit of detection test statistics [J], Talanta,2003,59(3):461-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700