水体重金属去除技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,水体重金属污染日益受到人们的共同关注,这也成为研究国内外水环境污染治理的难题和焦点。对于我国这样一个矿业资源丰富的大国,在矿区进行水体重金属修复是一项新的课题。
     实验通过实验室模拟重金属废水,用重金属螯合剂NDTC和农作物种苗(玉米、高粱)进行去除和吸收,分析讨论了NDTC投加量、pH值、沉淀时间、反应温度对重金属去除率的影响,考察了玉米、高粱分别对不同重金属的吸收效应,结果表明:重金属螯合剂NDTC处理含Cu~(2+)、Pb~(2+)、Za~(2+)、Cd~(2+)10mg/L的100mL模拟废水,去除率平均值都达到了94%以上,剩余浓度都降低到1 mg/L以下,分别为0.118 mg/L,0.205 mg/L,0.512 mg/L和0.404mg/L,Cu和Zn到达国家排放标准,而Pb和Cd接近国家排放标准。NDTC能够有效去除废水中的重金属,处理方法简单,沉淀稳定;玉米、高粱对同一重金属表现出不同选择性和差异性,且玉米、高粱不同部分对同一重金属的积累效应也不同,表现为:根>茎>叶。
     实验还在唐山市开滦矿区南湖现场,利用美人蕉、鸢尾、旱伞草和千屈菜四种湿生植物做浮床种植实验,去除水中重金属,选择芦苇、荷花和香蒲做挺水种植实验,去除底泥中重金属。通过对植物体进行测定分析得出:所选植物对水体中重金属的去除能力和对环境的适应能力总体表现为美人蕉、旱伞草大于鸢尾、千屈菜;对底泥中重金属的去除是香蒲优于芦苇、荷花。
     实验结果表明,植物吸收的重金属大都贮存在根系中,只有极少一部分被传输转运到地上部分的茎、叶中。研究结果能为我国矿区进行水体中金属修复提供有实际价值的参数。
At present, the pollution of water's heavy metal cause the attention by us gradually. This also becomes the difficult problem and focus in studying water environmental pollution at home and abroad. Our country is abundant in coal natural resources, which carries out water's heavy metals renovation in cutting coal subsiding area is a new subject.
     The experiment uses heavy metals chelate agent (NDTC) and the crop seedlings (corn, broomcorn) to wipe off and absorb heavy metals of simulating heavy metals waste water in the laboratory. In order to insure the wipe off rate, NDTC amounts, pH value,precipitayion time and the reaction temperature have been analysed and discussed, the sorption effect to different heavy metal has been inspected of the corn and broomcorn.The result indicates: NDTC is able to wipe off the heavy metals in waste water effectively, and the handling method is simple, deposition steady-going, Cu~(2+), Pb~(2+), Zn~(2+), Cd~(2+) taking off rate average value has all reached 94% in 100 ml of 10 mg/L simulate waste water, surplus thickness all be lowered to 1mg/L, parts for 0.118 mg/L, 0.205mg/L, 0.512mg/L and 0.404mg/L, Cu and Zn get to the country effluent standard, but Pb and Cd approach the country effluent standardthe. NDTC can effectively remove in the waste water the heavy metal, theprocessing method simple, the precipitation is stable ,above the corn and the broomcorn show the different selectivity and otherness to the same heavy metal, the different parts of corn and the broomcorn show the different accumulation effect to the same heavy metal: root>stem> leaf.
     Canna indica, Cyperus alternifolius, Lythrum salicaria Linn and RooflrisRhizome were selected to make a floating cultivate experiment in order to remove the heavy metals in water, Phragmites australis, Typha latifolia and Hindu Lotus were selected to make a standing cultivate experiment in order to remove the heavy metals in bottom mud. The detect result of heavy metals in plant body show that all the selected plants have the ability to forbear and absorb the heavy metals dissolved in water and bottom mud, Canna indica, Cyperus alternifolius have a good absorb effect than Lythrum salicaria Linn and RooflrisRhizome, Typha latifolia is better than Phragmites australis, Hindu Lotus.
     The experiment result indicates that the heavy metals which is absorbed by plant mostly reserved in root system, and only a little of the heavy metals is transported to the stem and leaf of the ground parts. The results of the study can carry on in the water body for our country miningarea the metal repair to provide have the actual value the parameter.
引文
1.Prasad B, Bose J. M. Evaluation of the heavy metal pollution index for surface and spring water near alimestone mining area of the lower Himalayas, Environmental Geology.(2001)41:183-188
    
    2.Teixeira E. C, Ortiz L. S, AlvesM. F. C. C, et al. Distribution of selected heavy metals in fluvialsediments of the coal mining region of Baixo Jacui, RS, Brazil, EnvironmentalGeology.2001,41:145-154
    
    3.Dinelli E., Tateo F. Factors controlling heavy-metal dispersion in mining areas: the case of Vigonzano(northern Italy), a Fe-Cu sulfide deposit associated with ophiolitic rocks. Environmental Geology.2001,40:1138-1150
    
    4.Clark M. W., Walsh S. R., Smith J. M. The distribution of heavy metals in an abandoned mining area:a case study of Strauss Pit, the Drake mining area, Australia: implications for the environment of minesites, Environmental Geology,2001.40(6):655-663
    
    5.Gnandi K., Tobschall H. J. Heavy metals distribution of soils around mining sites of cadimium-richmarine sedimentary phosphorites of Kpogam6 and Hahotoe (southern Togo), EnvironmentalGeology.2002,41:593-60
    
    6.Mascaro I., Benvenuti B., Corsini F., et al., Mine wastes at the polymetallic deposit of Fenice Capanne(southern Tuscany, Italy). And environmental impact. Environmental Geology.(2001),41:417-42
    
    7.Benvenuti M, Mascaro I, Corsini F, Lattanzi P, Parrini P, TanelliGMine waste dumps and heavy metalpollution in abandoned mining district of Bocchenggiano (Southern Tuscany, Italy)[J]. EnvironmentalGeology, 1997,30(3/4)238-243
    
    8.Kratochvil.B. (1992): Sampling considerations in the elemental analysis of coal. In: Elementalanalysis of coal and its by-products (ed.GVouropolos).World scientific Publishing Co.Pte.Ltd, 1992.1
    
    9.冯新斌,洪业汤,倪建宇等.煤中潜在毒害元素分布的多元分析及其地球化学意义[J].矿物学报.1999,19(1):34-39
    
    10.唐修义,赵继尧,黄文辉等.中国煤中微量元素研究专辑,中国煤田地质,2002.24增刊(59):1-87
    
    11.王晓蓉.环境化学[M].南京:南京大学出版社.1993,191-195;205;231;255
    
    12.杨居荣等.采煤塌陷地的生态复垦--以唐山开滦煤矿为例[J].中国环境科学.1999,19(1):85-90
    
    13.陈怀满等.土壤--植物系统中的重金属污染[M].北京:科学出版社.1996,1-35
    
    14.骆永明.金属污染土壤的植物修复[J].土壤,1999(5):261-280
    
    15.刘桂建,杨萍明,彭子成等.煤矸石中潜在微量元素淋溶析出研究[J].高校地质学报.2001,7(4):449-457
    
    16.余永波等.煤矸石堆放对水环境的影响-以山东省一些矸石堆为例[J].地学前缘.2001,8(1):163-169
    
    17.冯启言等.充州煤田研石中的微量有害元素及其土壤环境的影响[J].中国矿业.2002,11(1):67-69
    
    18.刘玉荣,党志,尚爱安.煤矸石风化土壤中重金属的环境效应研究.农业环境科学学报[J].2003,22(1):64-66.
    
    19.徐佳全.燃煤中有害元素铬在水体环境中的迁移转化规律[J].中国矿业大学学报.1994,23(1):53-58
    
    20.葛银堂.煤矸石中微量元素对环境影响的研究[J].山西煤田地质研究所.1994,(12):5
    
    21.李然,李嘉,赵文谦.水环境中重金属污染研究概述[J].四川环境.1997,16(1)
    
    22.Tessier A, Campbell P G C and Bisson M. Sequential Extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51(7)
    
    23.刘天齐.环境保护[M].北京:化学工业出版社,2000,4
    
    24.高廷耀,顾国维主编.水污染控制工程[M].高等教育出版社,1999,5
    
    25.Chowhurry J K. Biochem Z,1924,148,76
    
    26.刘明华,詹怀宇.羧甲基淀粉吸附剂的研制[J].精细石油化工.2000,9
    
    27.Wing R.E. Doane W.M. J.Appi.Polym.Sci,1975,19;847
    
    28.邹新禧.两性淀粉螫合剂吸附性能的研究[J].功能高分子学,1996,9
    
    29.汪玉庭,程格.接枝羧基淀粉去除水体中有毒重金属离子的研究[J].环境污染与防治.1996,4
    
    30.巫拱生等.甲基丙烯酸甲酷与交联淀粉的接枝共聚物的制备及产物对水中微里金属离子的吸附[J].环境化学.1988,8
    
    31.曾晖扬,李玮等.新型水溶性含硫基纤维素衍生物的合成和表征[J].纤维素科学与技术.1994,2(1)
    
    32.徐羽梧等.聚硫醚型离子交换纤维的合成及其吸附性能[J].高分子学报.1993,5
    
    33.谭龙华,阎凌.TBP纤维棉对铬(VI)的吸附性能及其应用研究[J].纤维素科学与技术.1997,5
    
    34.曲荣君,王春华等.多胺交联纤维素树脂的合成及吸附性能[J].林产化学与工业.1997,9
    
    35.须藤雅弘,废弃物学会第6回研究发表会讲论文集.日本.化学工业日报社.1996,435:21-143
    
    36.井田茨,须藤雅弘.全国都市清扫会议第17回演讲论文集.日本:化学工业日报社.1996,87:11-136
    
    37.U.S. Patent.5,372,726
    
    38.U.S. Patent.5,908,559
    
    39.U.S. Patent.6,258,277
    
    40.史真,赵莉.4-十二烷基二亚乙基三胺的合成[J].应用化学.1996,1(13):68-70
    
    41.王文丰,黄翠萍.螯合沉淀法处理含重金属离子废水[J].中国给水排水.2002,11(18):49-50
    
    42.蒋建国,王伟.高分子螯合剂捕集重金属Pb~(2+)的机理研[J].环境科学.1997,18(3):31-34
    
    43.蒋建国,王伟,赵翔龙,那崇铮.重金属螯合剂在废水治理中的应用研究[J].环境科学.1999,20(1):59-61
    
    44.陈花果,郭冀峰,逮延军.重金属废水处理技术现状与展望[J].2003全国水处理技术研讨会论文集2003年9月
    
    46.渠荣遴,李德森等.低浓度含重金属废水的植物修复作用研究[J].现代仪器.2003,3,32-34
    
    47.桑伟莲,孔繁翔.植物修复研究进展[J].Chin.J Progress Environ Science(环境科学进展),1999.7(3):40-44
    
    48.林荣根,周俊良.螺旋藻吸附水溶液中铜离子的初步研究[J].海洋环境科学.1998,17(2):8-11
    
    49.严国安.藻类净化污水的研究及进展[J].环境科学进展.1995,3(3):45-54
    
    50.莫健伟.海藻去除水中双偶氮染料机理及重金属离子研究[J].中国环境科学.1997,17(3):241-243
    
    51.范昌发.植物整治研究现状[J].环境科学进展.1998,7(5):15-18
    
    52.刘清标.利用小球藻chlorellaVulgaris吸收氮、磷及重金属[J].中国农业化学会志.1996,34(3):331-343.
    
    53.周风帆.利用凤眼莲(Eichhornia crassipes)净化水中重金属放射性核素~(60)钴、~(65)锌和~(137)铯的研究[J].中国环境科学.1989,9(1):26-30
    
    54.艾尔肯,热合曼.利用水浮莲净化酿酒业污水的技术及其实践[J].环境科学与技术.1996,2.
    
    55.颜素株.8种水生植物对污水中重金属-铜的抗性及净化能力的探讨[J].中国环境科学.1990,10(3):166-170.
    
    56.叶志鸿,陈桂珠..宽叶香蒲净化塘系统净化铅锌矿废水效应研究[J].应用生态学报,1992,13(2):190-194.
    
    57.叶志鸿,陈桂珠.铅锌矿废水中重金属在宽叶香蒲中的积累和分布[J].植物生态学与植物学学报.1992,16(1):72-79.
    
    58.温志良.香蒲植物在环境保护中的开发利用[J].资源开发,2000,16(5)
    
    59.胡焕斌.人工湿地处理矿山炸药废水[J].环境科学与技术.1997,3.
    
    60.黄会一.木本植物对土壤中镉的吸收积累和耐性[J].中国环境科学.1989,9(5):327-330.
    
    61.周青,黄晓华.镉对5种常绿树木若干生理化特性的影响[J].环境科学研究.2001,14(3):9-12.
    
    62.林治庆.木本植物对汞耐性的研究[J].生态学报.1989,9(4):315-319.
    
    63.林治庆.木本植物对土壤汞污染防治功能的研究[J].中国环境科学.1988,8(3):35-40.
    
    64.尤育堂.萱麻对稻田土壤汞净化效果研究[J].农业环境保护.1994,13(1):30-33.
    
    65.韩刚,李雪梅等.环境污染与植物功能[M].北京:化学工业出版社.2005.
    
    66.Pierzynski GM, et al.Vegetative remediation at superfund sites[R], In: Hester RE. and HarrisonRM.(Eds.): Issues in Environmental Science and Technology 1.Mining and its environmentalimpact[C].U.K. Society of Chemistry, 1994,49-69.
    
    67.Rugh CL, et al.l998.Development of transgenic yellow poplar for mercury phytoremediation[J].Nat.Biotechnol, 16(10):925-928.
    
    68.Paterson S,et al.l990.U ptake of organic chemicals by plants: A review of processes, correlations andmodels[J].Chemosphere, 21(3):297-331.
    
    69.Shimp JF,et al..Beneficial effects of plants in the remediation of soil and groundwater contaminatedwith organic material[J].Crit.Rev.Environ.Sci.Techol. 1993, 23:41-77.
    
    70.Cunningham SD. Berti WR, Huang JW.1995. Phytoremediation of contaminated soils[J].TrendsBiotechnol,13:393-397.
    
    71.刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学,1996,17(1):89-92
    
    72.Xian X F and Shokhifard G I. Water, Air and Soil Pollution.1989,45: 265-273
    
    73.Knight B. Plant and Soil[J], 1997, 197:71-78
    
    74.Sauerbeck D R and Hein A. Water[J], Air and Soil Pollution. 1993,68:363
    
    75.彭清涛.植物在环境污染治理中的应用[J].环境保护,1998.2
    
    76.沈振国,刘良友.超量积累重金属植物研究进展[J].植物生理学通讯.1998,34(2):133-139
    
    77.杨仁斌,曾清如,周细红.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护.2000,19(3):152-155
    
    78.刘文菊,张西科,尹君.镉在水稻根际的生物有效性[J].农业环境保护.2000,19(3):184-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700