高导热Mg-Zn-Mn合金及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在航天飞行器中,有些部件必须采用具有高导热性能的材料,导热率越大,越有利于将自身产生的热量迅速导出同时减小构件在热载荷作用下的变形,使其工作稳定,提高寿命。通过增加结构件的传热而积可提高散热能力但会显著增加结构件的重量和空间,而使用导热性能与现用材料相近的镁合金,可以减轻重量,增加可携带的有效载荷,提高相应部件的性能和寿命。目前关于合金导热性能的研究较少。
     本文成功设计和制备了一种高导热高强Mg-Zn-Mn合金。以Mg-χwt.%Zn-1wt.%Mn (x=3,5,8)合金为研究对象,通过金相显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)等分析手段和力学性能、热学性能、蠕变性能等测试手段,系统的研究了不同Zn含量Mg-Zn-Mn合金的显微组织、热学性能、力学性能、蠕变性能,并从显微组织和溶质原子半径出发,深入分析合金导热机理;还研究了工业化挤压生产Mg-Zn-Mn合金矩形棒材的力学性能、热学性能和蠕变性能各向异性行为与织构的关系。本研究取得一些具有理论价值和工程价值的创新性研究成果,为高导热镁合金的设计提供理论指导和为该合金的实际应用提供理论和实践依据。
     研究发现合金的导热性能受溶质原子与基体原子半径差的大小决定。测量三种原子百分比均为2at.%的Mg-Zn, Mg-Al和Mg-Gd二元合金的导热性能和晶格常数,发现主合金元素对固溶体晶格常数影响从大到小的顺序为Gd、Al、Zn,固溶态Mg-Zn、 Mg-Al和Mg-Gd合金的导热率分别为129.1W/m·K,89.4W/m·K和38.46W/m·K。溶质原子半径与基体原子半径相差越大,引起的晶格畸变越大,合金的导热性能越差。
     Mg-Zn-Mn合金铸造组织主要由初生α-Mg、Mg7Zn3和MgZn2第二相组成,经过均匀化处理,Mg-Zn相基本完全回溶至Mg基体,同时从Mg基体析出了a-Mn相。时效热处理Zn原子从过饱和固溶体中析出形成β'1杆状相和β'2盘状相。
     系统研究了成分、温度以及变形和热处理等诸多因素对Mg-Zn-Mn合金的导热性能的影响,发现合金的导热性能与合金的显微组织密切相关。Mg-Zn-Mn合金的导热性能随着Zn含量的增加迅速下降,而在20~300℃范围内随着温度的升高呈指数上升。Mg-Zn-Mn合金经均匀化处理后导热性能上升,是因为虽然与镁原子半径差较小的Zn原子回溶会造成导热性能下降,但是与镁原子半径差较大的Mn原子从固溶体中的析出明显提高合金的导热性能,抵消了Zn原子回溶对导热性能的减弱,使合金经均匀化处理后导热性能整体上升;合金经时效处理,Zn原子以Mg-Zn相形式从基体中析出,致使Mg-Zn-Mn合金的导热性能进一步提高。挤压态Mg-Zn-Mn合金时效后的导热性能达到了錩铝合金的水平,满足了航天飞行器对材料导热性能的要求。
     研究了高导热Mg-Zn-Mn合金的固溶工艺及T5和T6时效工艺和析出行为。挤压态Mg-Zn-Mn合金理想的因溶工艺为400℃×90min。Mg-Zn-Mn合金T5和T6峰时效析岀相均为β'1杆状相和β'2盘状相,对比相同晶带轴的组织发现,经T6处理后的第二相分布比T5处理更密集。Mg-Zn-Mn合金具有时效强化效果,ZM31、ZM51、 ZM81合金的T5和T6峰时效的室温极限抗拉强度分别为283MPa、311MPa、323MPa和275MPa、347MPa、383MPa。ZM51和ZM81合金经过T5和T6处理后合金的导热性能和强度均满足航天材料的要求。
     研究了高导热Mg-Zn-Mn合金的蠕变性能。不同状态的Mg-5Zn-1Mn合金抗蠕变性能从小到大的排列顺序为:挤压态<挤压T5态<挤压T6态<均匀化<铸态,大晶粒尺寸和时效析岀相对提高合金的抗蠕变性能有利。在100-150℃/50-90MPa的蠕变条件下研究挤压T6态Mg-5Zn-1Mn合金的蠕变行为表明,合金的蠕变速率随着温度和应力的上升而增加,其表观应力指数n=4.46和表观激活能Q=64.16KJ/mol,分别对应位错攀移机制和晶界滑移机制。
     研究了工业化挤压生产的高导热Mg-5Zn-1Mn矩形棒材的织构及各向异性。高导热Mg-Zn-Mn合金中存在较强的基面纤维织构,大部分晶粒的(0001)面平行于挤压方向。织构导致合金的力学性能存在各向异性,挤压方向(ED)的强度最高,在屈服之后加工硬化率较低:而横向(TD)和法向(ND)试样强度很低,在屈服之后加工硬化率较高。
     发现了工业化挤压生产的Mg-5Zn-1Mn合金导热性能各向异性。合金ED、TD和ND方向试样的导热率值分别为110.7W/m·K、117.9W/m·K和117.4W/m·K, ED取向试样的导热性能低于ND和TD取向的导热性能,引起合金导热性能各向异性的机理为织构。纤维织构导致沿着ED试样的晶格排列比TD和ND取向更致密,传热电子在沿ED取向运动时受到散射和阻碍更多,相当于减少了电子传递的平均自由程。
     发现了镁合金中蠕变性能各向异性。在100~150℃/50~90MPa条件下,工业化挤压生产Mg-5Zn-1Mn合金ED方向的抗蠕变强度是ND方向的2-3倍。织构是引起镁合金蠕变性能各向异性的主要因素,纤维织构导致ED取向为晶粒内部基面滑移的不利取向,在蠕变过程中基面滑移被抑制,而ND试样中存在有利于基面滑移的取向,在蠕变过程中可以通过基面滑移变形。
The selection alloys for certain applications in aerospace craft, which require alloys with low density, high specific strength and high thermal conductivity. The higher the thermal conductivity the more efficient is cooling. High thermal conductivity also assures a uniform temperature distribution which reduces thermally-induced stresses and thus prolongs service life. Increasing the area for heat transfer can improve the capacity of radiating but increase the weight and space. If apply the thermal conductivity of magnesium alloy with corresponds excellent to that of current operation materials in the aviation equipment, can achieve weight loss and increase service load, and accordingly improve the performance and life length for the equipment. To date, however, studies on the thermal properties of alloys are lacking.
     A series of Mg-Zn-Mn alloys with high specific strength and high thermal conductivity were designed successfully and prepared in this study. The microstructure, mechanical properties, thermal conductivity and creep resistance of Mg-x wt.%Zn-1wt.%Mn (x=3.5.8) alloys were mainly investigated, by analytic methods, such as optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) with energy dispersive X-ray analyses (EDAX) and microdiffraction, X-ray diffractometer (XRD), Differential Scanning Calorimeter (DSC) etc. and by physical property measurements of materials, such as tensile tests, thermal properties measurements etc.. The mechanism of effect of alloying elements on the thermal conductivity was revealed based on microstructures and the solution atoms radius. Furthermore, the texture evolution during the industrial extruded processing of Mg-Zn-Mn alloys has been investigated aiming at understanding their effects on the anisotropy of mechanical properties, thermal properties and creep resistance. The valuable conclusion of the present work can provide theoretical and practical for the alloy design and the application for Mg-Zn-Mn alloys with high specific strength and high thermal conductivity.
     The thermal conductivity of magnesium alloy was depended on atomic radius difference between solute atom and matrix atom. The thermal conductivity and crystallographic lattice parameter of Mg-Zn. Mg-Al and Mg-Gd alloys which contain the same atomic percent were investigated. The effect of solute atoms on the lattice distortion size down were Gd, Al. Zn. and the thermal conductivity of Mg-Zn. Mg-Al. Mg-Gd solid solution successively decreased, is129.1VV/m·K,89.4W/nvK.38.46W/m·K, respectively. In Mg alloys, when foreign atoms are added, they cause disturbance in the periodicity of the lattice, and electrons are deflected in the absence of thermal agitation. Addition of materials of the same atomic size leads to small differences, whereas addition of materials with different atomic sizes leads to large variations.
     The microstructure of as-cast Mg-Zn-Mn alloy consists of a-Mg solid solution, Mg7Zn3phases, and MgZn2phases. With increasing Zn content, the grain size of the alloys decreased and gradually formed a network structure. No new phase emerged as the Zn content increased. During solution treatment, almost all of the Mg-Zn phases dissolved and a-Mn phases precipitated from the supersaturated a-Mg solid solution. After T6treatment, the Mg grains contained rod precipitate phases and coarse particles considered to be the transition phases β1' and a-Mn particles, respectively.
     The dependence of the thermal conductivity of Mg-Zn-Mn alloys on temperature and Zn content, and the effect of heat treatment on their thermal properties were investigated. The results revealed that the thermal conductivity of alloys was depended on the microstructure. The thermal diffusivity and thermal conductivity of Mg-Zn-Mn alloys decreased remarkably with increasing composition of Zn but exponentially increased with increasing temperatures ranging from20℃to300℃. Thermal diffusivity and thermal conductivity of T4Mg-Zn-Mn alloys were higher than those of the as-cast alloys, which could be attributed to the dissolution of Mg-Zn phases and a-Mn precipitation from the Mg matrix. In Mg-Zn-Mn alloys, the addition of Zn atoms to the Mg matrix had minor effects on thermal conductivity, while the addition of Mn atoms caused considerable lattice distortions and thus significantly affected thermal conductivity. T6heat treatment caused a significant improvement in thermal heat transfer characteristics due to the decrease in amount of dissolved Zn and Mn by precipitation. The thermal conductivity of extruded Mg-Zn-Mn alloys after T5and T6aging treatments reached that of aluminium levels.
     The homogenization parameters of Mg-Zn-Mn alloys were determined. On the basis of the experiment results and diffusion kinetics calculation, the proper parameters of the Mg-5Zn-1Mn alloy for homogenizing heat treatment is heating at370℃for12h. An optimized two-step homogenization treatment as340℃×24h+370℃×4h for ZM51alloy was investigated to avoid over burning.
     The solution treatment and aging temper of Mg-Zn-Mn alloys were investigated. The optimized solution treatment of hot extruded Mg-Zn-Mn alloys is400℃for90min. In this study, T5and T6heat treatments were applied to the Mg-Zn-Mn alloys to reveal their effect on the Mg-Zn-Mn alloys'microstructures and strengths. The T6-tempered alloys are observed to attain peak-strength faster than the T5-tempered ones in ZM51and ZM81alloys. TEM observed showed that T5and T6have same preciatiates:rod-shaped and plate-like. The microstructures observed by same zone axis of the aged ZM51reveal that precipitation occurred much denser in T6condition than in T5condition. In Mg-Zn-Mn alloys, aging treatment can improve the mechanical properties. The UTS of ZM31, ZM51, ZM81alloys under T5and T6conditions were283MPa,311MPa,323MPa and275MPa,347MPa,383MPa, respectively. The results showed the thermal conductivity and strength of ZM51and ZM81alloys meet the requirements of aerial material.
     The creep behaviors of Mg-Zn-Mn alloys were studied. In100-150℃/50MPa test condition within100h, the creep resistance of different states Mg-5Zn-1Mn alloys increased in the following order:as-extruded     The industrial production Mg-5Zn-1Mn alloy exhibited a strong basal fiber texture in which the majority of grains are oriented to their (0001) basal planes are nearly parallel to the extrusion direction. It shows that ZM51alloy exhibits mechanical anisotropy. The highest UTS value is measured along the ED and the lowest along the TD. Additionally, the yield point is much more pronounced in the ED than in any other orientations. The elongation-to-failure is higher in ED than in other orientations.
     We found the thermal conductivity of industrial production ZM51alloy exhibited distinct anisotropy. The thermal conductivity of ED specimen was higher than that of TD and ND specimen. The value of thermal conductivity is estimated to be110.7,117.9,117.4W/(m·K) for IT). TD and ND specimens, respectively, the strong IT)‖<1()1()> fiber texture resulted in the coMPactness of the crystal lattice along FT) is very dense that reduce the mean free path of electrons and phonons of crystals along ED.
     Creep experiments performed in100~150C750~90MPa conditions in the longitudinal and transverse orientations of industrial production Mg-5Zn-1Mn alloy revealed that ZM51alloy exhibit significant creep anisotropy. The creep resistance in the longitudinal orientation (IT)) is2~3times greater than that in the transverse orientation (ND). The creep anisotropy for Mg-5Zn-l Mn alloy was related to crystallographic texture. In the longitudinal orientation, the preferred basal slip systems within the grain interior are unfavorably oriented with respect to the applied stress because of a strong texture. In the transverse orientation, the basal slip systems are favorably oriented and the critical resolved shear stresses under the macroscopic applied stress levels are high resulting in dislocation activity.
引文
[1]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工、l业出版社,2002:16-69
    [2]陈振华.镁合金[M].北京:化学工业出版社,2004:9—20
    [3]Mordike B.L., Ebert T.. Magnesium Properties-Applications-Potential[J]. Materials Science and Engineering A,2001,302(1):37-45
    [4]Friedrich H.E., Mordike B.L.. Magnesium Technology-Metallurgy, Design Data, Applications [M]. Germany:Verlag Berlin Heidelberg,2006:1-28
    [5]李永军.Mg-Y-RE-Zr合金的制备及组织与性能研究[D].北京:北京有色金属研究总院,2009
    [6]马鸣龙.Mg-Y-MM-Zr合金组织及性能研究[D].北京:北京有色金属研究总院,201 1
    [7]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].工程与技术,2002,(4):41-42
    [8]丁文江,付彭怀,彭立明,等.先进镁合金材料及其在航空航天领域中的应用[J].航天器环境工程,2011,28(2):103-109
    [9]Peet M.J., Hasan H.S., Bhadeshia H.K.D.H.. Prediction of Thermal Conductivity of Steel[J]. International Journal of Heat and Mass Transfer,2011,54(11-12):2602-2608
    [10]Bruce G., Paul L.. Magnesium Alloys in Aerospace Applications, Past Concerns, Current Solutions Magnesium[R]. Triennial International Aircraft Fire & Cabin Safety Research Conference,2007
    [11]Aghion E., Bronfin B., Eliezer D.. The Role of the Magnesium Industry in Protecting the Environment[J]. Journal of Materials Processing Technology,2001,117(3): 381-385
    [12]连法增.材料物理性能[M].沈阳:东北大学出版社,2005:94-112
    [13]王人曾.材料性能学[M].北京:高等教育出版社,2001:137-159
    [14]Chen C.J., Wang Q.D., Yin D.D.. Thermal Properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) Alloy [J]. Journal of Alloys and Compounds,2009,487(1-2):560-563
    [15]陈长江,王渠东,尹冬弟,等.两种Mg-Gd-Y-Zr镁合金的热物理性能[J].2009,29(10):950-952
    [16]Rudajevova A., Kiehn J., Kaincr K.U.. Intcrfacial Effects on the Thermal Conductivity of QE22 Alloy in SiC/QE22 Compositcs[J]. Materials Science and Engineering A, 2002.324(1-2): 118-121
    [17]Rudajevova A., Kiehn J., Kainer K.U.. Thermal DilTusivity of Short-Fibre Reinorced Mg-Al-Zn-Mn Alloy[J].Scripta Materialia. 1999, 40(1): 57-62
    [18]Rudajevova A., Stanek M., Lukac. P.. Determination of Thermal Diffusivity and Thermal Conductivity of Mg-Al Alloys[J]. Journal of Alloys and Compounds, 1999, 292(1-2): 27-30
    [19]Rudajevova A., Buch F.V., Mordike B.L.. Thermal Diffusivity and Thermal Conductivity of MgSc Alloys[J]. Materials Science and Engineering A, 2003, A341(l-2): 152-157
    [20]Rudajcvova A., Lukac. P.. CoMParison of the Thermal Properties of AM20 and AS21 Magnesium Alloys[J]. Materials Science and Engineering A, 2005(1 -2), 397: 16-21
    [21]Yamasaki M., Kawamura Y.. Thermal DilTusivity and Thermal Conductivity of Mg-Zn-Rarc Earth Element Alloys with LonCg-Period Stacking Ordered Phase[J]. Scripta Materialia, 2009, 60(4): 264-267
    [22]Shahzad M., Wagner L.. Microstructure Eevelopment during Extrusion in a Wrought Mg-Zn-Zr Alloy[J]. Scripta Materialia. 2009. 60(6): 536-538
    [23]Somekawa H., Singh A.. Mukai T. Microstructure Evolution of Mg-Zn Binary Alloy during a Direct Extrusion Process[J]. Scripta Materialia, 2009, 60(6): 411-414
    [24]Gao X., Nie J.F.. Structure and Thermal Stability of Primary Intermetallic Particles in an Mg-Zn Casting AlIoy[J]. Scripta Materialia, 2007, 57(7): 655-658
    [25]Sturkey L., Clark J.B.. Mechanism of Age-Hardening in Magnesium-Zinc Alloys[J]. J. Inst. Metals, 1959-60, 88: 177-181
    [26]Clark J.B.. Transmission Electron Microscopy Study of Age Hardening in an Mg-5 wt.%ZnAlloy[J].Acta Metallurgies 1965, 13(12): 1281-1289
    [27]Wei L.Y., Dunlop G.L., Westengen H.. Precipitation Hardening of Mg-Zn and Mg-Zn-RE Alloys[J]. Metallurgical and Materials Transactions A, 1995, 26A: 1705-1716
    [28]El-Baradie Z.M.. Structure and Properties of Magnesium-zinc Composite Alloys Thermo Mechanically Treated[J]. Materials Letters, 2003, 57(21): 3269-3275
    [29]Buha J.. Reduced Temperature (22-100℃) Aging of an Mg-Zn Alloy[J]. Materials Science and Engineering A,2008,492(1-2):11-19
    [30]Mendis C.L., Oh-ishi K., Hono K.. Enhanced Age Hardening in a Mg-2.4 at.% Zn Alloy by Trace Additions of Ag and Ca[J]. Scripta Materialia,2007,57(6):485-488
    [31]Singha A., Tsaib A.P.. Structural Characteristics of β1' Precipitates in Mg-Zn-Based Alloys[J]. Scripta Materialia.2007,57(10):941-944
    [32]Bettles C.J., Gibson M.A., Venkatesan K.. Enhanced Age-hardening Behaviour in Mg-4 wt.%Zn Micro-Alloyed with Ca[J]. Scripta Materialia,2004,51(3):193-197
    [33]Gao X., Nie J.F.. Characterization of Strengthening Precipitate Phases in a Mg-Zn Alloy[J]. Scripta Materialia,2007,56(8):645-648
    [34]Chun J.S., Byrne J.G.. Precipitate Strengthening Mechanisms in Magnesium-Zinc Alloy Single Crystals[J]. Journal of materials science,1969,4:861-872
    [35]张丁非,赵霞兵,石国梁.Zn含量及热处理对Mg-Zn-Mn变形镁合金显微组织和力学性能的影响[J].稀有金属材料与工程,2011,40(3):418—423
    [36]Yin D.S., Zhang E.L, Zeng S.Y.. Effect of Zn on Mechanical Property and Corrosion Property of Extruded Mg-Zn-Mn Alloy[J]. Transactions of Nonferrous Metals Society of China,2008,18(4):763-768
    [37]Stanford N.. The Effect of Calcium on the Texture, Microstructure and Mechanical Properties of Extruded Mg-Mn-Ca Alloys[J]. Materials Science and Engineering A, 2010,528(1):314-322
    [38]Zhang M.X., Kelly P.M.. Edge-to-edge Matching and its Applications Part Ⅱ. Application to Mg-Al, Mg-Y and Mg-Mn Alloys[J]. Acta Materialia,2005,53(4): 1085-1096
    [39]Han G., Ma G.L., Liu X.F.. Effect of Manganese on the Microstructure of Mg-3A1 Alloy [J]. Journal of Alloys and Compounds,2009,486(1-2):136-141
    [40]Tong L.B., Zheng M.Y., Xu S.W., Kamado S. Du Y.Z.. Effect of Mn Addition on Microstructure, Texture and Mechanical Properties of Mg-Zn-Ca Alloy[J]. Materials Science and Engineering A,2011,528(10-11):3741-3747
    [41]Celikina M., Kaya A.A., Pekguleryuz M.. Effect of Manganese on the Creep Behavior of Magnesium and the Role of a-Mn Precipitation during Creep[J]. Materials Science and Engineering A, 2012,534: 129-141
    [42]Robsona J.D., Henrya D.T., Davis B.. Particle Effects on Recrystalli/ation in Magnesium-Manganese Alloys[J]. Materials Science and Engineering A. 2011, 528(12): 4239-4247
    [43]Zhang J., Fang C., Yuan F.Q.. A CoMParativc Analysis of Constitutive Behaviors of Mg-Mn Alloys with Different Heat-Treatment Parameters[J]. Materials and Design, 2011,32(4): 1783-1789
    [44]Robsona J.D., Henrya D.T., Davis B.. Particle Effects on Recrystalli/ation in Magnesium-Manganese Alloys[J]. Materials Science and Engineering A, 2011, 528(12): 4239-4247
    [45]Skjerpe P.M., Simensen C.J.. Precipitation in Mg-Mn AlloysfJl. Metal Science, 1983, 17:403-407
    [46]张丁非、齐福刚、石国梁.Mn含量对Mg-Zn-Mn变形镁合金显微组织和力学性能的影响[J].稀有金属材料与工程.2010,39(12):2206—2210
    [47]Zhang D.F., Shi G.L., Zhao X.B., et al. Microstructure Evolution and Mechanical Properties of Mg-xwt.%Zn-lwt.%Mn (x=4.5.6.7.8.9) Wrought Magnesium Alloys[J]. Transactions of Nonferrous Metals Society of China. 2011, 21 (1): 15-25
    [48]Oh-ishi K., Hono K., Shin K.S., Effect of Pre-aging and Al Addition on Age-hardening and Microstructure in Mg-6 vvt.% Zn Alloys[J]. Materials Science and Engineering A, 2008,496(1-2): 425-433
    [49]Kassner M.E.. Fundamentals of Creep in Metals and Alloys [M]. Netherlands: Elsevier Science, 2004: 1-21
    [50]Kassner M.E., Hayes T.A.. Creep Cavitation in Metals[J]. International Journal of Plasticity, 2003, 19(10): 1715-1748
    [51]陈振华.耐热镁合金[M].北京:化学工业出版社.2002:508-533
    [52]Suzuki M., Kimura T., Koike J., et al. Strengthening Effect of Zn in Heat Resistant Mg-Y-Zn Solid Solution Alloys[J]. Scripta Materialia, 2003,48(8): 997-1002
    [53]Vogel M., Kraft O., Arzt E.. Creep Behavior of Magnesium Die-cast Alloy ZA85[J]. Scripta Materialia, 2003,48(8): 985-990
    [54]Pekguleryuz M.O., Kaya A.A.. Creep Resistant Magnesium Alloys for Powertrain Applications[J]. Advanced Engineering Materials, 2003, 5: 866-878
    [55]Pekguleryuz, M.O., Celikin M.. Creep Resistance in Magnesium Alloys[J]. International Materials Reviews,2010,55(4):197-217
    [56]Moreno I.P., Nandy T.K., Jones J.W., et al. Microstructural Stability and Creep of Rare-earth Containing Magnesium Alloys[J]. Scripta Materialia,2003,48(8): 1029-1034
    [57]Luo A.A., Balogh M.P.. Creep and Microstructure of Magnesium-Aluminum-Calcium based Alloys[J]. Metallurgical Materials Transanctions A,2002,33:567-572
    [58]Polmear I.J.. Light Alloys [M]. London:Edward Arnold.1995:67-125
    [59]Alizadeh R., Mahmudi R., Langdon T.G.. Creep Mechanisms in an Mg-4Zn Alloy in the As-cast and Aged Conditions[J]. Materials Science and Engineering A,2013, 564:423-430
    [60]Spigarelli S., Mehtedi M.E., et al. Constitutive Equations in Creep of Wrought Mg-Zn Alloys[J]. Materials Science and Engineering A,2009,527(1):126-131
    [61]Nie J.F., Gao X., Zhu S.M.. Enhanced Age Hardening Response and Creep Resistance of Mg-Gd Alloys Containing Zn[J]. Scripta Materialia,2005,53(9):1049-1053
    [62]Gibson M.A., Fang X., Bettles C.J., et al. The Effect of Precipitate State on the Creep Resistance of Mg-Sn Alloys[J]. Scripta Materialia,2010,63(12):899-902
    [63]Suzuki M., Kimura T., Koike J., et al. Strengthening Effect of Zn in Heat Resistant Mg-Y-Zn Solid Solution Alloys[J]. Scripta Materialia,2003,48(8):997-1002
    [64]Spigarelli S., Mehtedi M.E., Regev M., et al. High Temperature Creep and Superplasticity in a Mg-Zn-Zr Alloy[J]. J. Mater. Sci. Technol.,2012,28(5):407-413
    [65]Mehtedi M.E., Spigarelli S., Evangelista E., et al. Creep Behaviour of the ZM21 Wrought Magnesium Alloy[J]. Materials Science and Engineering A,2009,510-511: 403-406
    [66]Chino Y., Kimura K., Hakamada M., et al. Mechanical Anisotropy Due to Twinning in an Extruded AZ31 Mg Alloy[J]. Materials Science and Engineering A,2008,485 (1-2): 311-317
    [67]Jain J., Poole W.J., Sinclair C.W.. Reducing the Tension-compression Yield Asymmetry in an Mg-8Al-0.5Zn Alloy via Precipitation[J]. Scripta Materialia,2010, 62(5):301-304
    [68]丁文江,靳丽,吴文祥,等.变形镁合金中的织构及其优化设计[J].中国有色金属 学报,2011,21(10):2372—2381
    [69]陈振华,夏伟军,程永奇.等.镁合金织构与各向异性[J].中国有色金属学报,2005,15(1):1-11
    [70]Homma T., Hirawatari S., Sunohara H., et al. Room and Elevated Temperature Mechanical Properties in the As-extruded Mg-Al-CVMn Alloys[J]. Materials Science and Engineering A. 2012.539: 163-169
    [71]Li L.. Deformation Band and Texture of a Cast Mg-RE Alloy under Uniaxial Hot Compression[J]. Materials Science and Engineering A. 2011,528(24): 7178-7185
    [72]Yang X.Y., Sun Z.Y.. Xing J., et al. Grain Size and Texture Changes of Magnesium Alloy AZ31 during Multi-directional Forging[J]. Transactions of Nonferrous Metals Society of China, 2008. 18s: 200-204
    [73]Barnett M.R., Sullivan A.. Stanford N., et al. Texture Selection Mechanisms in Uniaxially Extruded Magnesium Alloys[J]. Scripta Materialia. 2010,63(7): 721-724
    [74]Choi S.H., Shin E.J., Scong B.S.. Simulation of Deformation Twins and Deformation Texture in an AZ31 Mg Alloy under Uniaxial Compression[J]. Acta Materialia. 2007, 55(12): 4181-4192
    [75|Barnett M.R.. Twining and the Ductility of Magnesium Alloys Part Ⅰ: "Tension" Twins[J]. Materials Science and Engineering A, 2007,464( 1-2): 1-7
    [76]Wang Y.N., Huang J.C.. The Role of Twinning and Untwining in Yielding Behavior in Hot-extruded Mg-Al-Zn Alloy[J]. Acta Materialia. 2007, 55(3): 897-905
    [77]陈振华.变形镁合金[M].北京:化学工业岀版社,2005:321—350
    [78]Mishra R.K., Gupta A.K., Rao P.R., et al. Influence of Cerium on the Texture and Ductility of Magnesium Extrusions[J]. Scripta Materialia. 2008, 59(5): 562-565
    [79]Ball E.A., Prangnell P.B.. Tcnsile-compressive Yield Asymmetries in High Strength Wrought Magnesium Alloys[J]. Scripta Metallurgica et Materialia, 1994, 31(2): 111-116
    [80]Yi S.B., Davies C.H., Brokmeier H.G., et al. Deformation and Texture Evolution in AZ31 Magnesium Alloy during Uniaxial Loading[J]. Acta Materialia, 2006, 54(2): 549-562
    [81]Wan G., Wu B.L., Zhang Y.D., et al. Anisotropy of Dynamic Behavior of Extruded AZ31 Magnesium Alloy[J]. 2010,527(12): 2915-2924
    [1]GB/T 228.1—2010,金属材料室温拉伸试验方法[S].北京,国家技术监督局,2002
    [2]GB/T 2039—1997,金属拉伸蠕变及持久试验方法[S].北京,国家技术监督局,1997
    [3]GB/T 1423—1996,贵金属及其合金密度的测试方法[S].北京,国家技术监督局,1996
    [4]ASTM E 1461-1992, Test Method for Thermal Diffusivity of Solids by the Flash Method [S]. American Society for Testing Material,1992
    [5]Yamasaki M., Kagao S., Kawamura Y., et al. Thermal Diffusivity and Conductivity of Supercooled Liquid in Zr41Ti14Cu12Ni10Be23 Metallic Glass[J]. Applied Physics Letters, 2004,84:4653-4655
    [1]Paul A., Llewellyn R.. Modern Physics[M]. New York:W.H. Freeman CoMPany,2003: 66-69
    [2]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002:16-69
    [3]Ren Y.P., Guo Y., Qin G.W.. et al. Isothermal Section of Mg-Zn-Zr Ternary System at 345℃[J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2011,35:411-415
    [4]Shahzad M., Wagner I,.. Microstructure Eevelopment during Extrusion in a Wrought Mg-Zn-Zr Alloy[J]. Scripta Matcrialia. 2009, 60(7): 536-538
    [5]罗治平、张少卿.Mg-Zr, Mg-Zn 及 Mg-Zn-Zr合金的微观结构[J].金属学报,1993,29(4):A176-A181
    [6]李立碑、孙玉福.金属材料物理性能手册[M].北京:机械工业岀版社2011:14-19
    [7]GB/T 1423—1996,贵金属及其合金密度的测试方法[S].北京、国家技术监督局1996
    [8]Chen C.J., Wang Q.D.. Yin D.D.. Thermal Properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) Alloy[J]. Journal of Alloys and Compounds, 2009.487(1-2): 560-563
    [9]Rudajevova A.. Lukae. P.. CoMParison of the Thermal Properties of AM20 and AS21 Magnesium Alloys[J]. Materials Science and Engineering A, 2005. 397(1-2): 16-21
    [10]Rudajevova A., Buch F.V., Mordike B.L.. Thermal Diffusivity and Thermal Conductivity of MgSc Alloys[J]. Materials Science and Engineering A. 2003, A341(1-2): 152-157
    [11]Chase M.W.. NIST-JANAF Themochcmical Tables[M]. Journal of Physics and Chemistry Referece Data, 1998: 1-1951
    [12]Yamasaki M., Kawamura Y.. Thermal Diffusivity and Thermal Conductivity of Mg-Zn-Rare Earth Element Alloys with Long-Period Stacking Ordered Phase[J]. Scripta Materialia, 2009,60(4): 264-267
    [13]连法增.材料物理性能[M].沈阳:东北大学出版社,2005:94-112
    [14]王人曾.材料性能学[M].北京:高等教育出版社,2001:137—159
    [15]Rudajevova A.. Thermal Diffusivity and Thermal Conductivity of Ni53.6Mn27.1Ga19.3 Shape Memory Alloy[J]. International Journal of Thermal Sciences, 2008, 47(9): 1243-1248
    [16]Rudajevova A., Stanek M., Lukac P.. Determination of Thermal Diffusivity and Thermal Conductivity of Mg-Al Alloys[J]. Journal of Alloys and Compounds, 1999, 292(1-2): 27-30
    [17]Lumley R.N., Polmear I.J., Groot H., et al. Thermal Characteristics of Heat-treated Aluminum High-pressure Die-castings[J]. Scripta Materialia,2008,58:1006-1009
    [18]Terada Y., Ohkubo K., Mohri T., et al. Thermal Conductivity in Pt-based Alloys[J]. Journal of Alloys and Compounds,1999.285(11):233-237.
    [19]Peet M.J., Hasan H.S., Bhadeshia H.K.D.H.. Prediction of Thermal Conductivity of Steel[J]. International Journal of Heat and Mass Transfer,2011,54(1-2):2602-2608
    [20]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1985:41—149
    [21]Cheon J.S., Oh S.J., Lee B.O., et al. The Effect of RE-rich Phase on the Thermal Conductivity of U-Zr-RE Alloys[J]. Journal of Nuclear Materials,2009,385(3): 559-562
    [22]Aksoz S., Ocak Y., Cadirli E., et al. Dependency of the Thermal and Electrical Conductivity on the Temperature and Composition of Cu in the Al Based Al-Cu Alloys[J]. Experimental Thermal and Fluid Science,2010,34(8):1507-1516
    [23]Yokota H., Abe H., Ibukiyama M.. Effect of Lattice Defects on the Thermal Conductivity of β-Si3N4[J]. Journal of the European Ceramic Society,2003,23(10): 1751-1759
    [24]Ocak Y, Aksoz S., Maras N., et al. Thermal and Electrical Conductivity of Sn-Ag-In Alloys[J]. Journal of Non-Crystalline Solids,2010,356(35-36):1795-1801
    [25]Cheon J.S., Oh S.J., et al. The Effect of RE-rich Phase on the Thermal Conductivity of U-Zr-RE Alloys[J]. Journal of Nuclear Materials,2009,385 (3):559-562
    [1]刘正,张奎,曾小勤.镁基轻质合金理论基础及应用[M].北京:机械工业出版社,2002:51-53
    [2]张丁非,方霖,段红玲,等.Mg-6wt.%Zn-lwt.% Mn(?)美合金均匀化处理研究[J].材料热处理技术,2011,40(2):148-152
    [3]Zhang D.F., Shi G.L., Zhao X.B., et al. Microstructure Evolution and Mechanical Properties of Mg-Zn-Mn Wrought Magnesium Alloys[J]. Transactions of Nonferrous Metals Society of China, 2011.21(1): 15-19
    [4]Zhang D.F., Shi G.L., Dai Q.W., et al. Microstructure and Mechanical Properties of High Strength Mg-Zn-Mn Alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1): 59-64
    [5]尹东松,张二林.Mg-3Zn-Mn合金均匀化处理工艺研究[J].铸造技术,2008,29(12):1647-1651
    [6]陈振华.耐热镁合金[M].北京:化学工业出版社,2007:10-11
    [7]丁文江.镁合金科学与技术[M].北京:科学岀版社,2007:91—92
    [8]He L.Q., Li X.G., Zhang K., et al. Homogenization Heat Treatment of Mg-9.0 Y-3.0 MM-0.6 Zr Alloy[J]. Chinese Journal of Rare Metals, 2011, 35(2): 164-68
    [9]Zhang K., Zhang K., Li X.G., et al. Influence of Homogenization on Microstructure of AZ151 Mg Alloy[J]. Chinese Journal of Rare Metals. 2009, 33(3): 328-332
    [10]Ma M.L., Zhang K., Li X.G., et al. Homogenization Heat Treatment of GWN751 K Alloy [J]. Chinese Journal of Non-ferrous Metals. 2010, 20(1): 1-6
    [11]马志新,张家振,李德富,等.铸态Mg-Gd-Y-Zr(?)镁合金均匀化工艺研究[J].特种铸造及有色合金.2007,27(9):659—663
    [12]刘晓涛,崔建忠.铝合金均匀化扩散动力学研究[J].材料导报.2004,18(6):102—107
    [13]李永军.张奎,李兴刚,等Mg-Y-Nd-Zr合金均匀化处理工艺及微观组织的研究[J].稀有金属,2008,32(6):679-684
    [14]Shewman P.G.. Diffusion in Solids[M]. New York: Mcgrawhill, 1963: 36-38
    [15]潘金生,全健民,田民波.材料科学与基础[M].北京:清华大学出版社,1998:460-461
    [1]Muhammad S., Lothar W.. Microstructure Development during Extrusion in a Wrought Mg-Zn-Zr Alloy[J]. Scripta Materialia,2009,60(7):536-538
    [2]Sasaki T.T., Yamamoto K., Honma T., et al. A High-strength Mg-Sn-Zn-Al Alloy Extraded at Low Temperature[J]. Scripta Materialia,2008,59(10):1111-1114
    [3]Sun Y.S., Xue F., Xue S., et al. Effect of Extrusion on Microstructures, and Mechanical and Creep Properties of Mg-Al-Sr and Mg-Al-Sr-Ca Alloys[J]. Scripta Materialia, 2006,55(12):1163-1166
    [4]Xu D.K., Liu L., Xu Y.B., et al. Effect of Microstructure and Texture on the Mechanical Properties of the As-extruded Mg-Zn-Y-Zr Alloys[J]. Materials Science and Engineering A,2007,443(1-2):248-256
    [5]Kleiner S., Uggowitzer P.J.. Mechanical Anisotropy of Extruded Mg-6% Al-1% Zn Alloy[J]. Materials Science and Engineering A,2004,379(1-2):258-263
    [6]Xu S.W., Oh-ishi K., Kamado S., et al. High-strength Extruded Mg-Al-Ca-Mn Alloy[J]. Scripta Materialia,2011,65(3):269-272
    [7]Kamado S.. Fabrication of Extraordinary High-strength Magnesium Alloy by Hot Extrusion[J]. Scripta Materialia,2009,61(6):644-647.
    [8]陈振华.变形镁合金[M].北京:化学工业出版社,2005:281—285
    [9]Galiyev A., Kaibyshev R., Gottstein G.. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60[J]. Acta Materialia. 2001,49(7): 1199-1207
    [10]Yan H.. Xu S.W., Chen R.S., et al. Twins, Shear Bands and Recrystallization of a Mg-2.0%Zn-0.8%Gd Alloy during Rolling[J]. Scripta Materialia, 2011, 64(2): 141-144
    [11]Barnett M.R.. Twinning and the Ductility of Magnesium Alloys Part 1: "Tension" twins[J]. Materials Science and Engineering A. 2007,464(1-2): 1-7
    [12]Choi S.H., Shin E.J., Seong B.S.. Simulation of Deformation Twins and Deformation Texture in an AZ31 Mg Alloy under Uniaxial Compression[J]. Acta Materialia, 2007, 55(12): 4181-4192
    [13]姚素娟.Mg-Gd-Y (Sc)合金的制备技术和高温性能研究[D].长沙:中南大学2009
    [14]曾苏民.影响铝合金固溶温度保温时间的多因素相关规律[J].中国有色金属学报.19999,9(1):79—82
    [1]郑修麟.材料的力学性能[M].西安:西北工业大学岀版社,2000:72—124
    [2]冯端.金属物理学[M].北京:科学岀版社,1998:311-588
    [3]张俊善.材料强度学[M].哈尔滨:哈尔滨工业大学出版社,2004:261-285
    [4]Evans R.W.. Wilshire B.. Creep of Metals and Alloys [M]. London: Institute of Metals, 1985
    [5]Kassner M.E., Perez-Prado M.T.. Five Power-law Creep in Single Phase Metals and Alloys[J]. Progress in Materials Scienee. 2000, 45(1): 1-12
    [6]Cane B.J.. Relationship between Deformation and Rupture during Power-law Creep in Engineering Materials[J]. Materials Science and Engineering A, 1978, 35(2): 229-238
    [7]Kim H.K., KimW.J.. Creep Behavior of AZ31 Magnesium Alloy in LowTemperature Range between 423K and 473K[J]. Journal of Materials Seience, 2007, 42(15): 6171-6176
    [8]Regev M., Rosen A., Bamberger M.. Qualitative Model for Creep of AZ91D Magnesium Alloy[J]. Metallurgical and Materials Transactions A, 2001, 32: 1335-1345
    [9]Alizadeh R., Mahmudi R., Langdon T.G.. Creep Mechanisms in an Mg-4Zn Alloy in the As-cast and Aged Conditions[J]. Materials Science and Engineering A, 2013, 564: 423-430
    [10]Mahmudi R., Rezaee-Bazzaz A., Banaie-Fard H.R., Investigation of Stress Exponent in the Room-temperature Creep of Sn-40Pb-2.5Sb Solder Alloy[J]. Journal of Alloys and Compounds, 2007,429(1-2): 192-197
    [11]Mathew M.D., Yang H., Movva S., et al. Creep Deformation Characteristics of Tin and Tin-based Electronic Solder Alloys[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,2005,36A:99-105
    [12]Luo A.A.. Recent Magnesium Alloy Development for Elevated Temperature Applications[J]. International Materials Reviews,2004,49(1):13-29
    [13]Golmakaniyoon S., Mahmudi R.. Microstructure and creep behavior of the rare-earth doped Mg-6Zn-3Cu cast alloy [J]. Materials Science and Engineering:A.,2011, 528(3):1668-1677
    [14]Vagarali S.S., Langdon T.G.. Deformation Mechanisms in h.c.p. Metals at Elevated Temperatures-Ⅱ. Creep Behavior of a Mg-0.8%A1 Solid Solution Alloy[J]. Acta metall.,1982,30(6):1157-1170
    [15]Regev M., Rosen A., Bamberger M.. Qualitative Model for Creep of AZ91D Magnesium Alloy[J]. Metallurgical Materieals Transanctions A,2001,32A: 1335-1445
    [16]Luo A.A., Balogh M.P., Powell B.R.. Creep and Microstructure of Magnesium-aluminum-calcium based Alloys[J]. Metallurgical Materieals Transanctions A,2002,33A:567-574
    [17]Frost H.J., Ashby M.F.. Deformation Mechanisms Maps[M]. London:Pergamon Press, 1982:44-46
    [18]Sherby O.D., Weertman J.. Diffusion-controlled Dislocation Creep:a Defense [J]. Acta Metallurgics 1979,27(3):387-400
    [19]Spigarelli S., Cabibbo M., Evaangelista E., et al. Analysis of the Creep Behaviour of Thixoformed AZ91 Magnesium Alloy [J]. Materials Science and Engineering A,2000, 289A:172-181
    [20]Han B.Q., Dunand D.C.. Creep of Magnesium Strengthened with High Volume Fractions of Yttria Dispersoids[J]. Materials Science and Engineering A,2001, 300(1-2):235-244
    [21]Pekguleryiiz M.O.. Development of Creep Resistant Magnesium Die Casting Alloys[J]. Material Science Forum,2000,350(1-2):131-140
    [22]Vagarali S.S., Langdon T.G.. Deformation Mechanisms in h.c.p. Metals at Elevated Temperatures-I. Creep Behavior of Magnesium [J]. Acta Metallurgica,1981,29(12): 1969-1982
    [23]Boehlert C. J.. The Tensile and Creep Behavior of Mg-Zn Alloys with and without Y and Zr as Ternary Elements[J]. Journal of Material Science. 2007, 16(42): 3675-3684
    [24]Zhao P., Wang Q.D., Zhai C.Q., et at. Effects of Strontium and Titanium on the Microstructure, Tensile Properties and Creep Behavior of AM50 Alloys[J]. Materials Science and Engineering A. 2007,444(1-2): 318-326
    [25]赫奈康著,张猛等译.金属塑性变形[M].重庆:重庆大学岀版社,1989:37—60
    [26]Nave M.D., Barnett M.R.. Microstructures and Textures of Pure Magnesium Deformed in Plane-strain Compression[J]. Scripta Materialia, 2004, 51(9): 881-885
    [27]Sato T., Kral M.V.. Microstructural Evolution of Mg-Al-Ca-Sr Alloy during Creep[J]. Materials Science and Engineering A. 2008. 498(1-2): 369-376
    [28]Christian J.W., Mahajan S.. Deformation Twinning[J]. Progress In Materials Science, 1995.39: 1-157
    [29]Mahajan S., Williams D.E.. Deformation Twinning in Metals and Alloys[J]. Influnecs. Metal. Reviews, 1973. 18: 43-61
    [30]Zhang P.. Watzinger B.. Blum W.. Changes in Microstmcture and Deformation Resistance during Creep of the Die-cast Mg-Al-base Alloy AZ91hp at Intermediate Temperatures up tol50℃[J]. Physicals. Status. Solidis. A, 1999, 175: 481-489
    [31]Bai J., Zhang C.H., Wang T.. et al. Creep Behaviors of Mg-5Li-3Al-(0,1)Ca Alloys[J]. Materials and Design, 2012. 34: 863-866
    [32]Myers M.A., Vbringer O., Lubarda V.A.. The Onset of Twining in Metals: A Constitutive Description[J]. Acta Materilia., 2001,49(19): 4025-4039
    [33]Terada Y., Itoh D., Sato T.. Dislocation Analysis of Die-cast Mg-Al-Ca alloy after Creep Deformation[J]. Materials Science and Engineering A, 2009, 523(1-2): 214-219
    [34]Bai J., Sun Y.S., Xue F., et al. Effect of Extrusion on Microstructures, and Mechanical and Creep Properties of Mg-Al-Sr and Mg-Al-Sr-Ca Alloys[J]. Scripta Materialia, 2006,55(12): 1163-1166
    [35]Suzuki M., Kimura T., Koike J., et al. Effects of Zinc on Creep Strength and Deformation Substructures in Mg-Y Alloy[J]. Materials Science and Engineering A. 2004,387-389: 706-709
    [36]Suzuki M., Kimura T., Koike J., et al. Creep Behavior and Deformation Substructure of Mg-Y Alloys Containing Dilute Content of Zinc[J]. Materials Science Forum,2003, 426-432:593-598
    [37]Cheong K.S., Stevens K.J., Suzuk Y., et al. The effects of Microstructure on Creep Behaviour-A Study through Synchrotron X-ray Tomography [J]. Materials Science and Engineering:A,2009,513-514:222-227
    [38]丁文江.镁合金科学与技术[M].北京:科学出版社,2007:137-144
    [39]刘满平Mg-Al-Ca合金微观组织、力学性能和蠕变性能研究[D].上海:上海交通大学.2004
    [40]Wang X.D., Du W.B., Liu K., et al. Microstructure, Tensile Properties and Creep Behaviors of As-cast Mg-2Al-1Zn-xGd (x=1,2,3, and 4 wt.%) Alloys[J]. Journal of Alloys and Compounds,2012,522(10):78-84
    [41]Zou H.H.. Effects of microstructure on creep behavior of Mg-5%Zn-2%Al(-2%Y) Alloy[J]. Transactions of Nonferrous Metals Society of China,2008,18(3):580-587
    [42]宋维锡.金属学[M].北京:冶金工业出版社,2000:10-41
    [43]Waddington J.S., Lofthouse K.J.. The Effect of Irradiation on the High-temperature Fracture of Stainless Steel[J]. Journal of Nuclear Materialia,1967.22(2):205-213
    [44]Stiegler J.O., Farrell K., Loh B.T.M., et al. Nature of Creep Cavities in Tungsten[J]. Trans. ASM Quart,1967,60(3):494-503
    [45]Chen I.W., Argon A.S.. Creep Cavitation in 304 Stainless Steel[J]. Acta Metall,1981, 29(7):1321-1333
    [46]Kassner M.E., Hayes T.A.. Creep Cavitation in Metals[J]. International Journal of Plasticity,2003,19(10):1715-1748
    [47]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007:22—29
    [48]郭建亭.高温合金材料学[M].北京:科学出版社,2008:426—450
    [49]Evans R.W., Wilshire B.. Creep of Metals and Alloys [M]. London:Institute of Metals, 1985:1-21
    [50]Kassner M.E., Perez-Prado M.T.. Five Power-law Creep in Single Phase Metals and Alloys[J]. Progress in Materials Science,2000,45(1):1-12
    [51]Cane B.J.. Relationship between Deformation and Rupture during Power-law Creep in Engineering Materials[J]. Materials Science and Engineering A,1978,35(2):229-238
    [52]Lombard R., Vehoff H.. Nucleation and Growth of Cavities at Defined Grain Boundaries in Bicrystals[J]. Scripta Metall,1990,24(3):581-586
    [53]Yousefiani A., Mohamed F.A., Earthman J.C.. Creep Rupture Mechanisms in Annealed and Overheated 7075 Al under Multiaxial Stress States[J]. Metallurgical Materials Transactions.,2000,31 A(11):2807-2821
    [54]Lee Y.S., Yu J.. Effect of Matrix Hardness on the Creep Properties of a 12CrMoVNb Steel[J]. Metallurgical Transanctions A,1999.30A(9):2331-2339
    [1]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学岀版社,2002:41-47
    [2]毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社,1993:22—29
    [3]张信钰.金属和合金织构[M].北京:科学岀版社,1976:101—128
    [4]陈振华.变形镁合金[M].北京:化学工业出版社,2005:321—350
    [5]Safaeirad M., Toroghinejad M.R., Ashrafizadeh F.. Effect of Microstructure and Texture on Formability and Mechanical Properties of Hot-dip Galvanized Steel Sheets[J]. Journal of Materials Processing Technology,2008,196(1-3):205-212
    [6]Wisniowski P., Kanak J., Reiss G., et al. Influence of Buffer Layer Texture on Magnetic and Electrical Properties of IrMn Spin Valve Magnetic Tunnel Junctions[J]. Journal of Applied Physics,2006,100(01):013906-013913
    [7]Sutou Y., Omori T., Koeda N., et al. Effects of Grain Size and Texture on Damping Properties of Cu-Al-Mn-based Shape Memory Alloys[J]. Materials Science and Engineering A,2006,438-440:743-746
    [8]Zainuddin B.S., Miyashita Y., Hosokai Y., et al. Effects of Mn Content and Texture on Fatigue Properties of As-cast and Extruded AZ61 Magnesium Alloys[J]. International Journal of Mechanical Sciences,2006,48(2):198-209
    [9]Trnovcova'V., I. Fura'R., Hanic F.. Influence of Technological Texture on Electrical Properties of Industrial Ceramics[J]. Journal of Physics and Chemistry of Solids,2007, 68(5-6):1135-1139
    [10]Amini S., Barsoum M.W.. On the Effect of Texture on the Mechanical and Damping Properties of Nanocrystalline Mg-matrix Composites Reinforced with MAX Phases[J]. Materials Science and Engineering A,2010,527(16-17):3707-3718
    [11]Watanabea H., Fukusumi M., Somekawa H., et al. Texture and Mechanical Properties of Superplastically Deformed Magnesium Alloy Rod[J]. Materials Science and Engineering A,2010,527(23):6350-6358
    [12]Whittaker M.T.. Evans W.J., Lancaster R., et al. The Effect of Microstructure and Texture on Mechanical Properties of Ti6-4[J]. International Journal of Fatigue,2009, 31(11-12):2022-2030
    [13]Blawert C., Manova D., Stormer M., et al. Correlation between Texture and Corrosion Properties of Magnesium Coatings Produced by PVD[J]. Surface and Coatings Technology,2008,202(11):2236-2240
    [14]Homma T., Hirawatari S., Sunohara H., et al. Room and Elevated Temperature Mechanical Properties in the As-extruded Mg-Al-Ca-Mn Alloys[J]. Materials Science and Engineering A,2012,539:163-169
    [15]Oh-ishi K., Mendis C.L., Homma T., et al. Bimodally Grained Microstructure Development during Hot Extrusion of Mg-2.4Zn-0.1 Ag-0.1Ca-0.16Zr(at.%) Alloys[J]. Acta Materialia,2009,57(18):5593-5604
    [16]Xu D.K., Liu L., Xu Y.B., et al. Effect of Microstructure and Texture on the Mechanical Properties of the As-extruded Mg-Zn-Y-Zr Alloys[J]. Materials Science and Engineering A,2007,443(1-2):248-256
    [17]Kleiner S., Uggowitzer P.J.. Mechanical Anisotropy of Extruded Mg-6% Al-1% Zn Alloy[J]. Materials Science and Engineering A,2004,379(1-2):258-263
    [18]Shahzad M., Wagner L.. Influence of Extrusion Parameters on Microstructure and Texture Developments, and their Kffccts on Mechanical Properties of the Magnesium Alloy AZ80[J]. Materials Science and Engineering A, 2009. 506(1-2): 141-147
    [19]梁书锦,王欣,刘祖岩,等.镁合金不同温度挤压后组织性能研究[J].稀有金属材料与工程,2009、38(7):1276—1279
    [20]余琨,芮守泰、王日初、等.AZ31镁合金挤压薄板织构及力学各向异性[J].中国有色金属学报,2008,18(12):2127—2131
    [21]Yi S.B., Davies C.H.J., Brokmeier H.G., et al. Deformation and Texture Evolution in AZ31 Magnesium Alloy during Uniaxial Loading[J]. Acta Materialia, 2006, 54(2): 549-562
    [22]Galiyev A., Kaibyshev R., Gottstein G.. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy[J]. Acta Materialia, 2001, 49(7): 1199-1207
    [23]Agnew S.R.. Plastic Anisotropy and the Role of Non-basal Slip in Magnesium Alloy AZ31B[J]. International Journal of Plasticity. 2005. 21(6): 1161-1193
    [24]Maruyama K., Nakashima H.. Materials Science of High Temperature Strength [M]. Tokyo: Uchida Rokakuho Publication. 1997: 163-165
    [25]Hsu S.E., Edwards G.R.. Shcrry O.D.. Inllence of Texture on Dislocation on Creep and Grain Boundary Sliding in Fine-Grained Cadmium[J]. Acta Metallurgica, 1983, 31(5): 763-772
    [26]Edington J.W., Melton K..N., Cutler C.P.. Superplasticity[J]. Progress in Materials Science, 1976,21(1-2): 61-70
    [27]Edwards G.R., Mcnelley T.R., Sherby O.D.. High Temperature Texture Strengthening in Zinc[J]. Scripta Metallurgica, 1974,8(5): 475-479
    [28]Reed-Hill R.E., Robertson W.D.. The Crystallographic Characteristics of Fracture in Magnesium single Crystals[J]. Acta Metallurgica, 1957,5(12): 728-737
    [29]Yoshinaga H.. Horiuchi R.. On the Flow Ftress of a Solid Solution Mg-Li Alloy Single Crystals[J]. Transactions of JIM, 1963,4: 134-141
    [30]Frost H.J.. Deformation-Mechanism Maps [M]. Oxford: Pergamon Press, 1982: 43-45
    [31]Nave M.D., Barnett M.R.. Microstructures and Textures of Pure Magnesium Deformed in Plane-strain Compression[J]. Scripta Materialia, 2004, 51(9): 881-885
    [32]Somekaw A.H., Mukai T.. Effect of Texture on Fracture Toughness in Extruded AZ31 Magnesium Alloy[J]. Scripta Materialia,2005,53(5):541-545
    [33]Godet S., Jiang L., Luo A.A., et al. Use of Schmid Factors to Select Extension Twin Variants in Extruded Magnesium Alloy Tubes[J]. Scripta Materialia,2006,55(11): 1055-1058
    [34]Del Valle J.A., Ruano O.A.. Separate Contributions of Texture and Grain Size on the Creep Mechanisms in a Fine-grained Magnesium Alloy [J]. Acta Materialia,2007, 55(2):455-466
    [35]Bohlen J., Nurnberg M.R., Senn J.W., et al. The Texture and Anisotropy of Magnesium-zinc-rare Earth Alloy Sheets[J]. Acta Materialia,2007,55(6):2101-2112
    [36]Stanford N., Barnett M.. Effect of Composition on the Texture and Deformation Behaviour of Wrought Mg Alloys[J]. Scripta Materialia,2008,58(3):179-182
    [37]Celikin M.. Anisotropy of Creep Resistance in Extruded Magnesium[J]. Scripta Materialia,2009,61(12):1109-1112
    [38]Murty K.L., Charit I.. Texture Development and Anisotropic Deformation of Zircaloys[J]. Progress in Nuclear Energy,2006,48(4):325-359
    [39]Li W., Holt R.A.. Anisotropic Thermal Creep of Internally Pressurized Zr-2.5Nb Tubes[J]. Journal of Nuclear Materials,2010,401(1-3):25-37
    [40]Coleman C.E., Causey A.R., Fidleris V.. In-reactor Creep of Zirconium-2.5 wt.% Niobium at 570 K[J]. Journal of Nuclear Materials,1976,60(2):185-194
    [41]Bell L.G.. An Improvement Creep Resistance of Zr-2.5%Nb Tubes[J]. Journal of Nuclear Materials,1975,57(3):258-270
    [42]Causey A.R.. Anisotropy of Irradiation Creep of Zr-2.5 wt.% Nb and Zircaloy-2 Alloys[J]. Journal of Nuclear Materials,1981,98(3):313-321
    [43]Ibrahim E.F., Holt R.A.. Anisotropy of Irradiation Creep and Growth of Zirconium Alloy Pressure Tubes[J]. Journal of Nuclear Materials,1980,91(2-3):311-321
    [44]Holicky M.J., Schroeder J.. Anisotropy of Secondary In-reactor Creep of Zirconium Alloys Related to Texture[J]. Journal of Nuclear Materials,1972,44(1):31-42
    [45]Schroeder J., Holickyon M.J.. On Secondary Creep of Anisotropic Nuclear Materials[J]. Journal of Nuclear Materials,1969,33(1):52-63
    [46]Holt R.A., Ibrahim E.F.. Factors Affecting the Anisotropy of Irradiation Creep and Growth of Zirconium Alloys[J]. Acta Metallurgica,1979,27(8):1319-1328
    [47]Holt R.A.. Effect of Microstructure on Irradiation Creep and Growth of Zircaloy Pressure Tubes in Power Reactors[J]. Journal of Nuclear Materials,1979,82(2): 419-429
    [48]彭继华,李文芳,Bechade J.L..,等.织构对先进锆合金蠕变性能各向异性的影响[J].稀有金属,2008,32(1):1—6
    [49]彭继华,李文芳,Bechade J.L.,等.织构对锆合金内压蠕变性能的影响[J].特种铸造及有色合金,2007,27(7):499-502
    [50]Murty K.L., Tanikella B.V., Earthman J.C.. Effect of Grain Shape and Texture on Equi-biaxial Creep of Stress Relieved and Recrystallized Zircaloy-4[J]. Acta metallurgical,1994.42(11):3653-3661
    [51]Holt R.A., Bickel G.A.. Effect of Fast Neutron Fluence on the Creep Anisotropy of Zr-2.5NbTubes[J]. Journal of Nuclear Materials,2008.373(1-3):130-136
    [52]Hsu S.. Edwards G.R.. Influence of Texture on Dislocation Creep and Grain Boundary Sliding in Fine-grained Cadmium[J]. Acta Metallurgica.1983,31(5):763-772
    [53]Hayes R.W., Soboyejo W.O.. An Investigation of the Creep Behavior of an Ordered Nb-11Al-41Ti-1.5Mo-1.5Cr Intermetallic Alloy[J]. Materials Science and Engineering A,2001.319-321:827-832
    [54]Bystrzanowski S., Bartels A., Clemens II., et al. Creep Behaviour and Related High Temperature Microstructural Stability of Ti-46Al-9Nb Sheet Material[J]. Intermetallics,2005,13(5):515-524
    [55]Yoshinaga H., Horiuchi R.. On the Elow Stress of a Solid Solution Mg-Ei Alloy Single Crystals[J]. Transactions of the Japan Institute of Metals,1963,4(3):134-141
    [56]Watanabe H., Takara A., Somekawa H., et al. Effect of Texture on Tensile Properties at Elevated Temperatures in an AZ31 Magnesium Alloy[J]. Scripta Materialia,2005, 52(6):449-454
    [57]Kleiner S., Uggowitzer P.J.. Mechanical Anisotropy of Extruded Mg-6%Al-1%Zn Alloy[J]. Materials Science and Engineering A.2004,379(1-2):258-263

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700