结直肠癌发生和肝转移相关蛋白质差异表达及其意义的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     结直肠癌肝转移是影响结直肠癌预后的重要因素,25%的结直肠癌患者确诊时即伴随肝转移,另有25%患者在结直肠癌根治术后伴随肝转移。结直肠癌肝转移的早期诊断治疗对延长患者生命至关重要。为了深入研究结直肠癌发生、发展及肝转移的分子机理,以提高对结直肠癌肝转移的防治效果,我们采用蛋白质组学、细胞生物学及免疫组织化学研究方法,对结直肠癌原发灶和肝转移灶及不同分期的结直肠癌组织进行实验研究,为揭示结直肠癌肝转移机制及筛选临床肿瘤标志物和治疗靶标提供依据。
     【材料和方法】
     标本采集实验所用标本均取自北京军区总医院普通外科,选取经临床影像学诊断为结直肠癌伴随肝转移患者共16例,术中切取适量的结直肠癌原发灶、肝转移灶和癌旁正常肠粘膜标本,立即贮于液氮中冻存备用。所选标本术后病理证实为结直肠中低分化腺癌并伴随肝转移,临床TNM分期Ⅳ期(T2-4N1-2M1)。其中男9例女7例。年龄41-75岁。其中结肠癌8例,腹膜反折外直肠癌8例。
     蛋白质样品制备及双向凝胶电泳双向荧光差异凝胶电泳(2-D DIGE)按照GE Healthcare提供的Ettan DIGE使用手册操作方法进行。将每例患者的各种样品等量混和作为内标(Cy2标记),然后将各样品50μg分别与CyDye DIGE最小标记法染料(Cy3、Cy5)400pmol混和上样。将样品加入IPG胶条槽内并放置好24cmIPG胶条。使用等电聚焦仪PROTEAN IEF Cell ( Bio-Rad )进行第一向等电聚焦电泳(IEF);使用Ettan DALT Twelve电泳系统(Amersham)进行蛋白样品的二向分离。电泳结束后室温下在避光容器中将凝胶存放于SDS电泳缓冲液中,立即对凝胶进行扫描。
     图像采集与分析用Typhoon 9410扫描仪在488/520nm, 532/580nm, 633/670nm波长分别对Cy2, Cy3, Cy5荧光染料标记的图像进行扫描,用DeCyder v.5.02图像分析软件对DIGE图像进行分析和差异点寻找。计算各块胶与MASTER胶的匹配率,差异点满足条件:p≤0.05。
     质谱分析及质谱数据库搜寻使用液相色谱-电喷雾-串联质谱(LC-ESI-MS/MS)及MALDI-TOF-MS质谱仪对胶上消化后的差异蛋白点进行质谱分析。获得的肽序列信息(PSD)及肽质量指纹谱(PMF)数据用Mascot软件在SWISSPORT数据库中搜寻鉴定蛋白质。
     细胞生物学实验用常规RT-PCR方法克隆差异表达蛋白基因全长cDNA。构建真核表达载体pcDNA3.1-CAII。采用脂质体转染法将pcDNA3.1-CAII转染人直肠腺癌HR-8348细胞。四唑盐(MTT)比色试验:以转染pcDNA3.1-CAII的细胞为实验组;以未转染pcDNA3.1-CAII的细胞为对照组。分别观察5-Fu及奥沙利铂药物对其的抑制率。抑制率=[1-(实验组吸光度值/空白对照组吸光度值)]×100%。
     免疫组织化学实验用常规免疫组织化学方法验证人精氨酸酶在结直肠癌不同分期各种组织中的表达情况。使用美国ZYMED公司SP试剂盒在组织石蜡切片上进行免疫染色。
     【结果】
     双向凝胶电泳及质谱鉴定在16个病例组结直肠癌原发灶、肝转移灶及正常肠粘膜组织标本的2-D DIGE中,蛋白点清晰可辨,每块胶获得蛋白点约为900个。结直肠癌原发灶与肝转移灶蛋白质组分有明显差别。用DeCyder v.5.02图像分析软件对DIGE图像进行分析和差异点寻找。我们选择了22个差异蛋白点进行了质谱鉴定。鉴定出有意义的蛋白质20种。2种蛋白在各种癌组织中低表达而在正常肠粘膜中高表达,分别为碳酸酐酶II(CAII)和蛋白质二硫键异构酶(PDI);2种蛋白在结直肠癌原发灶组织中表达上调而在肝转移灶中表达下调,分别为激活蛋白因子2B,腺苷蛋氨酸变异体;16种蛋白在肝转移灶组织中表达上调,包括锌指蛋白64同系物,鸟嘌呤核苷酸交换因子4,人精氨酸酶,人谷胱甘肽S-转移酶A3,肿瘤坏死因子α-诱导蛋白9,谷氨酸脱氢酶载脂蛋白链A,转接分子受体2,核苷酸还原酶M2多肽等。
     细胞生物学实验转染CAII基因的直肠腺癌细胞HR8348对奥沙利铂和5-Fu化疗药物更敏感,耐药性更低。
     免疫组化验证人精氨酸酶定位结直肠癌组织细胞质中,人精氨酸酶在正常肠粘膜、无淋巴结转移的结直肠癌原发灶组织、有淋巴结转移的直肠癌原发灶组织、有肝转移的直肠癌原发灶组织、肝转移灶组织中的阳性表达率逐步增高。特别是在伴淋巴结转移的结直肠癌和肝转移灶组织中的表达阳性率显著高于无淋巴结转移的结直肠癌原发灶组织及正常肠粘膜。
     【结论】
     应用差异蛋白质组学方法研究结直肠癌发生过程中蛋白质组的改变,,是筛选结直肠癌肿瘤标志物及探讨结直肠癌发生及转移机制的有效手段。双向荧光差异凝胶电泳(2-D DIGE)作为近几年广泛应用的蛋白质组学新技术也开始应用于结直肠癌的研究,其精确度和可重复性都大大超过常规方法。本实验应用双向荧光差异凝胶电泳方法,对结直肠癌原发灶、肝转移灶及癌旁正常肠粘膜三种组织进行差异蛋白质组学研究,发现碳酸酐酶II(CAII)、蛋白质二硫键异构酶(PDI)在癌组织和复发转移灶中表达显著下调;发现激活蛋白因子2B(activator protein 2B)和腺苷蛋氨酸变异体(transgelin variant)在结直肠癌原发灶组织中表达显著增高。发现人精氨酸酶(Homo sapiens arginase)、谷胱甘肽转移酶A3(GSTA3)、鸟嘌呤核苷酸交换因子4 (ASEF)等在肝转移灶组织中表达显著增高;
     转染CAII基因的直肠腺癌细胞HR8348增强了奥沙利铂和氟尿嘧啶(5-Fu)对该细胞的细胞毒作用,使癌细胞对化疗药物更敏感,耐药性更低,提示癌组织中CAⅡ表达与癌组织的侵袭、转移和生物学行为有关,CAⅡ在抑制结直肠癌发生、转移中发挥作用,为肿瘤的基因诊断及基因治疗奠定了理论基础。
     免疫组织化学方法检测结直肠癌不同阶段各种组织发现,人精氨酸酶在伴淋巴结转移的结直肠癌原发灶和肝转移灶组织中的表达阳性率显著高于无淋巴结转移的结直肠癌原发灶组织和正常肠粘膜组织。人精氨酸酶的高表达不仅与结直肠癌的发生相关,在结直肠癌的发展转移,特别是淋巴结转移、肝转移中发挥重要作用。人精氨酸酶可能成为结直肠癌淋巴结转移、肝转移、预后评估的候选蛋白标志物。
     我们对结直肠癌肝转移做了初步的差异蛋白质组学研究,获得了一些差异蛋白,这些蛋白将是我们进一步研究结直肠癌肝转移机理的突破口,更深入的研究这些蛋白质在肿瘤的发生及转移过程中的作用,对揭示肝转移发生的机制和发现新的有意义的肿瘤标志物有一定的意义。本研究发现人精氨酸酶可能成为预测结直肠癌肝转移的标志物,但尚需要大样本多中心的临床实验进一步验证。相信,随着结直肠癌肝转移蛋白质组学研究的深入,肝转移发生机制将进一步阐明,新的有意义的生物标志物将被发现。
Colorectal cancer is one of the common malignant tumors in our country. A large number of statistical data indicates that the rates of incidence and mortality of the disease in our country have been going up in recent years.Liver metastasis caused severe and fatal effect on patients that underwent radical resecsion for large intestine primary cancer. Early forecast and diagnosis of liver metastasis is the key to improving survival rate for coloretcal cancer patients. Now proteome study methods and techniques, especially two-dimensional electrophoresis (2-DE), provide useful and important support for the research of liver metastasis of coloretcal cancer.
     【Objective】To study differential proteins and their biological functions associated with colorectal cancer genesis and liver metastasis by proteomics and molecular biology immunohistochemistry techniques.
     【Methods】The samples of colorectal cancer liver metastasis corresponding to sixteen patients were tested with proteomic analysis. And the highly sensitive two-dimensional differential gel electrophoresis (2-D DIGE) coupled with mass spectrometry (MS) for the identification of proteins differentially expressed in primary cancer lesion and liver metastasis cancer of colorectal cancer were used. The differentially expressed proteins found by 2-D DIGE would be confirmed and validated by immunohistochemistry analyses in those few cases which antibodies were available. Transfection experiment of rectum cancer HR-8348 cells was performed with the differential protein cDNA, and the changes of cell biological behavior was observed.
     【Results】Significant differences of protein expression were found on two-dimensional electrophoresis. Twenty two differential protein spots were analysed and identified. Human carbonic anhydraseⅡand protein disulfide isomerase were detected in normal colorectal mucosa, but lost in primary cancer lesion. activator protein 2B and transgelin variant were expressed in primary cancer. The expressions of zinc finger protein 64 homolog, guanine nucleotide exchange factor 4, Homo sapiens arginase, homo sapiens glutathione S-transferase A3, tumor necrosis factor alpha-induced protein 9, chain A structure of human glutamate dehydrogenase-apo form, toll-like receptor adaptor molecule 2, ribonucleotide reductase M2 polypeptide increased in the liver metastasis lesion in comparison to those in the primary cancer lesion.After transfection with human carbonic anhydraseⅡcDNA, the HR-8348 cell changed obviously with reduce of drug tolerance. Homo sapiens arginase expressions was assayed by immunohistochemistry method in Colorectal carcinoma associated tissue.
     【Conclusion】Differential expression of proteins are found among the normal colorectal mucosa ,colorectal cancer genesis and liver metastasis. Loss of carbonic anhydrase II expression and protein disulfide isomerase and enhancement expression of activator protein 2B and transgelin variant are related with colorectal carcinogenesis and colorectal cancer cell biological behavior. Enhancement expression of arginase ,zinc finger protein 64 homolog, guanine nucleotide exchange factor 4 and are related with colorectal cancer liver metastasis. This study of the colorectal cancer proteome represents a step toward a better understanding of the mechanism of the colorectal cancer liver metastasis,and arginase perhaps could be used as biomarkers for colorectal cancer liver metastasis risk
引文
1. Sadahiro S, Suzuki T, Ishikawa K, et al. Recurrence patterns after curative resection of colorectal cancer in patients followed for a minimum of ten years. Hepatogastroenterology. 2003 Sep-Oct; 50(53):1362-6.
    2. Fuks D, Cook MC, Bréhant O, et al. Colorectal carcinoma with potentially resectable metastases: Factors associated with the failure of curative schedule. Gastroenterol Clin Biol. 2008 Apr 9
    3. AG Buckland, DC Wilton: Anionic phospholipids, interfacial binding and regulation of cell functions. Biochimica et Biophysica Acta .2000,1483: 200.
    4.刘景生,主编。细胞信息与调控。北京:北京医科大学和中国协和医科大学联合出版社。1998,5-7。
    5. Ohanian J, Liu G, Ohanian V, Heagerty AM: Lipid second messengers derived from glycerolipids and sphingolipids. And their role in smooth muscle function. Acta Physiol Scand ,1998,164: 533-48.
    6. Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996;13:19-50.
    7. Kahn P. From genome to proteome: looking at a cell's proteins. Science. 1995 Oct 20;270(5235):369-70
    8. Klose J. Isoelectric focusing and electrophoresis combined as a method for defining new point mutations in the mouse. Genetics, 1979, 92:s13~s24
    9. Gelfi C, Righetti PG. Preparative isoelectric focusing in immobilized pH gradients. II. A case report. J Biochem Biophys Methods, 1983, 8:157~172
    10. Smith RD, Loo JA, Edmonds CG, et al. New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem, 1990, 62:882~899
    11. Yip TT, Hutchens TW. Mapping and sequence-specific identification of phosphopeptides in unfractionated protein digest mixtures by matrix-assisted laser desorption /ionization time-of-flight mass spectrometry. FEBS Lett, 1992, 308:149~153
    12. Lemkin P, Merril C, Lipkin L, et al. Software aids for the analysis of 2D gelelectrophoresis images. Comput Biomed Res, 1979, 12:517~544
    13. Lemkin PF, Lipkin LE. GELLAB: a computer system for 2D gel electrophoresis analysis I. Segmentation of spots and system preliminaries. Comput Biomed Res, 1981, 14: 272~297.
    14. Yu L R,Zheng R,Shao XX, et al. Identigication of differentially expressed proteinsbetween human hepatoma and normal liber cell lines by two-dimensional electrophoresis and liquid chromatography-ion trapmass spectrometry [J]. Electrophoresis,2000,21(14):3058
    15. Gorg A, Obermaier C,Boguth G,et al. The current state of two-dimensional electrophoresis with immobilized pH gradients [J]. Electrophoresis, 2000,21(6):1037
    16. Stulik J, Koupilova K, Osterreieher J, et al. Protein aboundance alterations in matched sets of macroscopicaily normal colon mucosa and colorectal carcinoma. Electrophoresis,1999,20:3638-3646
    17. Jungblut PR, Zimny Arndt U, Zeindl Eberhart E, et al. Pro-temics in human disease:cancer, heart and infectious diseases. Electrophoresis, 1999,20:2100-2110
    18. Simpson RJ, Connolly LM, Eddies JS, et al. Proteomic analysis of the human colon carcinoma cell line(LIM1215): develop- ment of a membrane protein database. Electrophoresis,2000,21:1707-1732
    19. Stulik J, Hernychova L, Porkerova S, et al. Proteome study of colorectal carcinogenesis. Electrophoresis,2001,22:3019-3025
    20. Simone NL, Remaley AT, Charboneau L, et al. Sensitive Immunoassay of tissue cell proteins procured by laser capture microdissection. Am J Pathol,2000,156:445-452
    21. Ahmed N, Olive K, Wang Y, et al. Proteomic profiling of proteins associated with urokinase plasminogen activator receptor in a colon cancer cell line using an antisense approach. Proteomics,2003,3:288-298
    22. Tan S, Seow TK, Liang RC. et al. Proteome analysis of butyrate-treated human colon cancer cells (HT-29). Int J Cancer,2002,98:523-531
    23.颜子颖,王海林译.精编分子生物学实验指南.北京,科学出版社, 1998: 332 (Ausubel F M, Kingston R E, Seidman J G, Struhl K, Brent R, Moore D D, Smith J A ed. Short protocols in molecular biology. 3rd ed. John Wiley and Sons, Inc. 1995).
    24. Read S M, Northcote D H. Minimization of variation in the response to differentproteins of coomassie blue G dyeibinding assay for protein. Anal Biochem, 1981,116: 53-64
    25. Bearden J C. Quantitation of submicrogram quantities of protein by an improve protein-dye binding assay. Biochem Biophys, 1978,533: 525-9 Acta.
    26. Ben R. Herbert, Mark P. Molloy, Andrew A. Gooley, Bradley J. Walsh, Warren G. Bryson, Keith L. Williams: Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis, 1998,19: 845-51.
    27. Guo Yao-Jun. The exprimental advisement of and the updated advancement in electrophoresis technique. Prog Biochem Biophys, 1991,18(1): 32-7.
    28. UnlüM, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997 Oct;18(11):2071-7
    29. Abbott A. How to spot a protein in a crowd. Nature, 1999, 402(6763): 716-7.
    30. Weise C, Lenz C. Identification of protein phosphorylation sites by advanced LC-ESI-MS/MS methods. Methods Mol Biol. 2008;446:33-46.
    31. Simpson RJ,D orow DS.Cancer proteomics : from signaling networks to tumor markers[J]. Trends Biotechnol, 2001,19(10 Suppl):40-48.
    32. Simpson RJ,D orow DS.Cancer proteomics : from signaling networks to tumor markers[J]. Trends Biotechnol, 2001,19(10 Suppl):40-48.
    33. Charles N McEwen,Barbara S Larsen. Instrumentation and ion ization methods for the analysis of biological materials by massspectrometry [M].Mass Spectrometry of biologica; materials. New York: Marcel Dek ker, Inc.2000:1-28.
    34. Aaron T Timperman, Ruedi Aebersold. Peptide electroextraction for direct coupling of in-gel digests with capillary LC/MS/MS for protein identification and sequencing [J] .Anal. Chem, 2000,72(17)∶4115~4121.
    35. Yokoyama S, Shatney CH, Mochizuki,et al. The potential role of fecal carbonic anhydrase II in screening for colorectal cancer. Am Surg. 1997 Mar;63(3):243-6; discussion 246
    36. Meneu JC,Wanebo HJ,Nistal JA,et al.Abdominosacral resection for locoregional recurrence rectal cancer. Rev-Esp-Enferm-Dig, 1999; 91: 374-379
    37. Scheele J,Stangl R,Altendorf-Hofmann A.Resection of colorectal liver metastases. World J Surg,1995;19:59-71
    38. 38. Rullier E, Laurent C, CarlesJ. Local recurrence of low rectal cancer after abdominoperineal and anterior refection.Br J Surg, 1997,84:525-528.
    39. Bozzetti F,Bertariool J,Rossetti C,et al.Surgical treatment of locally recurrent rectal carcinoma.Dis-Colon-Rectum,1997;40:1421-1424
    40. Scheele J,Stangl R,Altendorf-Hofmann A.Hepatic metastases from colorectal carcinoma:impact of surgical resection on the matural history.Br J Surg, 1990; 77: 1241-1246
    41.熊向华,刘志敏.二硫键异构酶.中国生物工程杂志.2005(增):176-179
    42. Stierum R, Gaspari M, Dommels Y, et al. Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2. Biochim Biophys Acta. 2003 Aug 21;1650(1-2):73-91.
    43. Walter S, Buchner J. Molecular chaperones--cellular machines for protein folding. Angew Chem Int Ed Engl. 2002 Apr 2;41(7):1098-113
    44.葛常辉,宋今丹.维甲酸诱导大肠癌细胞分化后内质网结构及标志酶G6PA细胞化学的改变.中华物理医学杂志,1995,17(4):223
    45.尚德淑王芸庆宋今丹,不同人大肠癌细胞内质网合成的二硫键异构酶研究。解剖科学进展Vol.6 No.4 366
    46.王秋雨,宋今丹.几种不同进化程度动物细胞蛋白二硫键异构酶活性及含量研究.中国动物科学研究,北京,中国林业出版社,1999,1036
    47. Johansson AS, Mannervik B. Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones. J Biol Chem. 2001 Aug 31;276(35):33061-5. Epub 2001 Jun 20.
    48. Porembska Z, Mielczarek M, Nyckowski P , et al. Arginase as a marker of cancerogenesis. I. Monitoring patients after resection of colorectal cancer. Pol Merkuriusz Lek. 2002 Oct;13(76):284-5.
    49. del Ara RM, Gonzalez-Polo RA, Caro A, et al. Diagnostic performance of arginase activity in colorectal cancer. Clin Exp Med. 2002 May;2(1):53-7.
    50. Mitin N, Betts L, Yohe ME,et al. Release of autoinhibition of ASEF by APC leads toCDC42 activation and tumor suppression. Nat Struct Mol Biol. 2007 Sep;14(9):814-23. Epub 2007 Aug 19.
    51. Ryu JW, Kim HJ, Lee YS,et al. The proteomics approach to find biomarkers in gastric cancer. J Korean Med Sci. 2003 Aug;18(4):505-9.
    52. Gorg A,Obermaier C, Boguth G,et,al. The current state of two–dimensional electrophoresis with immobilized pH gradients [J].Electrophoresis, 2000,21(6):1037
    53. Celis A,R asmuusen HH,Celis P,et,al. Short-term culturing of low-grade super ficialbl adder transitional cell carcinoma leads to changes in the express on levels of several proteins in volved in key cellular activities [J]. Electrophoresis, 1999, 20 (2):355
    54. Tomita M,Hashimoto K, Takahashi K,et, al. E-cell:sofeware environment for whole-cell simulation[J].Bio informatics,1999,15(1):72
    55. Gygi SP,Rist B,Gerber SA, et,al.Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J].Natl Biotechnol, 1999, 17(10) :994
    56. Jain KK, Applications of proteomics in oncology [J]. Pharmacogenomics, 2000,1:385-393
    1. Levy M, Visokai V, Lipska L, Topolcan O. Tumor markers in staging and prognosis of colorectal carcinoma. Neoplasma. 2008;55(2):138-42.
    2. Ki DH, Jeung HC, Park CH,et,al. Whole genome analysis for liver metastasis gene signatures in colorectal cancer. Int J Cancer. 2007 Nov 1;121(9):2005-12.
    3. Kivela AJ, Saarnio J, Karttunen TJ, et,al. Differential expression of cytoplasmic carbonic anhydrases, CA I and II, and membrane-associated isozymes, CA IX and XII, in normal mucosa of large intestine and in colorectal tumors. Dig Dis Sci. 2001 Oct;46(10):2179-86.
    4. Mielczarek M, Chrzanowska A, Scibior D, et,al. Arginase as a useful factor for the diagnosis of colorectal cancer liver metastases. Int J Biol Markers. 2006 Jan-Mar;21(1):40-4.
    5.人直肠腺癌细胞系—HR-8348的建立和生物学特性,张宗显,许沉华,钱丽娟,中国科学(B辑),1986,11:1197-1204
    6.姜泊,张亚历,周殿元主编.分子生物学常用实验方法,第1版,北京:人民军医出版社.1996,58, 125-126,157-159
    7.萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T,等着,金东雁,黎孟枫等译,分子克隆实验指南,第二版,科学出版社,1992
    8.司徒镇强,吴军正主编,细胞培养.第1版.西安:世界图书出版公司.1996,53-84,186-187
    9.姜泊,张亚历,周殿元主编.分子生物学常用实验方法,第1版,北京:人民军医出版社.1996,58, 125-126,157-159
    10.蔡文琴等,现代适用细胞与分子生物学实验技术。北京:人民军医出版社。2003,107-110
    11. Yokoyama S, Shatney CH, Mochizuki,et al. The potential role of fecal carbonic anhydrase II in screening for colorectal cancer. Am Surg. 1997 Mar;63(3):243-246.
    12. 12 .Bonapace G,Iuliano F,Molica S,et al.Cytosolic carbonic anhydrase activity in chronic myeloid disorders with different clinical phenotype[J].Biochim Biophys Acta,2004,1689(3):179-181.
    13. Kuo WH,Chiang WL,Yang SF,et al.The differential expression of cytosolic carbonic anhydrase in human hepatocellar[J].Life Sci, 2003, 73 (17) : 2211-2223.
    14. Cheng P N M, Leung Y C, Lo W H,et al. Remission of hepatocellular carcinoma with arginine depletion induced by systemic release of endogenous hepatic arginase due to transhepatic arterial embolisation, augmented by high-dose insulin: arginase as a potential drug candidate for hepatocellular carcinoma[J].CancerLett, 2005,224:67-80·
    15. Wheatley DN, KilfeatherR, StittA. et al. Integrity and stability of the citrulline-arginine pathway in normal and tumour cell lines[J].CancerLett, 2005, 227(2):141-152·
    16. Iyer R, Jenkinson CP, Vockley JG,et,al. The human arginases and arginase deficiency. J Inherit Metab Dis. 1998;21 Suppl 1:86-100.
    17. Philip R, Campbell E, Wheatley D N. Arginine deprivation,growth inhibition and tumour cell death:2.Enzymatic degradation of arginine in normal and malignant cell cultures[J].Br J Cancer, 2003,88(4):613-62
    18. Porembska Z, Mielczarek M, Nyckowski P , et al. Arginase as a marker of cancerogenesis. I. Monitoring patients after resection of colorectal cancer. Pol Merkuriusz Lek. 2002 Oct;13(76):284-5.
    19. del Ara RM, Gonzalez-Polo RA, Caro A, et al. Diagnostic performance of arginase activity in colorectal cancer. Clin Exp Med. 2002 May;2(1):53-7.
    1. Boyle P, Langman JS. ABC of colorectal cancer: Epidemiology. BMJ, 2000,321(7264):805-808.
    2. Walsh JM, Terdiman JP. Colorectal cancer screening: scientific review. JAMA, 2003,289(10):1288-1296.
    3. Jacinto FV, Ballestar E, Ropero S, Esteller M. Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Res. 2007,67(24):11481-11486.
    4. Nosho K, Yamamoto H, Takahashi T, et al. Genetic and epigenetic profiling in early colorectal tumors and prediction of invasive potential in pT1 (early invasive) colorectal cancers. Carcinogenesis. 2007,28(6):1364-1370.
    5. Nagasaka T, Sasamoto H, Notohara K, et al. Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol. 2004,22(22):4584-4594.
    6. Oskouian B, Sooriyakumaran P, Borowsky AD, et al. Sphingosine- 1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc Natl Acad Sci U S A. 2006,103(46):17384-17389.
    7. Topal B, Roskams T, Fevery J, et al. Aggregated colon cancer cells have a higher metastatic efficiency in the liver compared with nonaggregated cells: an experimental study. J Surg Res, 2003,112 (1):31-37.
    8. Harada K, Hiraoka S, Kato J, et al. Genetic and epigenetic alterations of Ras signalling pathway in colorectal neoplasia: analysis based on tumour clinicopathological features. Br J Cancer,2007,97 (10) : 1425-1431.
    9. Zlobec I, Minoo P, Baumhoer D, et al. Multimarker phenotype predicts adverse survival in patients with lymph node-negative colorectal cancer. : Cancer, 2007,112(3):495-502.
    10. Lassmann S, Tang L, Capanu M, et al. Predictive molecular markers for colorectal cancer patients with resected liver metastasis and adjuvant chemotherapy. Gastroenterology, 2007,133(6):1831-1839.
    11. Patel BB, Li XM, Dixon MP, et al. Searchable high-resolution 2D gel proteome of the human colon crypt. J Proteome Res,2007,6(6): 2232-2238.
    12. Stulík J, HernychováL, PorkertováS, et al. Proteome study of colorectal carcinogenesis. Electrophoresis. 2001,22(14):3019-3025.
    13. Espina V, Milia J, Wu G, et al. Laser capture microdissection. Methods Mol Biol, 2006,319:213-229.
    14. Jackson D, Craven RA, Hutson RC, et al. Proteomic profiling identifies afamin as a potential biomarker for ovarian cancer. Clin Cancer Res, 2007,13(24):7370-7379.
    15. Sitek B, Potthoff S, Schulenborg T, et al. Novel approaches to analyse glomerular proteins from smallest scale murine and human samples using DIGE saturation labelling. Proteomics, 2006,6(15):4337-4345.
    16. Zinkin NT, Grall F, Bhaskar K, et al. Serum Proteomics and Biomarkers in Hepatocellular Carcinoma and Chronic Liver Disease. Clin Cancer Res,2008,14(2):470-477.
    17. Colangelo CM, Williams KR. Isotope-coded affinity tags for protein quantification. Methods Mol Biol. 2006,328:151-158.
    18.李世拥,于波,安萍,等.金属硫蛋白和FasL在大肠癌组织中的表达及临床意义的研究.中华外科杂志, 2005,43(17):1118-1120.
    19.于波,李世拥,安萍,等.组织蛋白酶B在结直肠癌中的表达及临床意义.中华胃肠外科杂志,2005,8(6):507-509.
    20.左富义,李世拥,安萍,等. FasL相互作用蛋白的筛选及其在大肠及其在大肠癌研究中的应用.中国现代医学杂志, 2006, 16(1)32-36.
    1. Wasinger VC,Cordwell SJ,Cerpa-Poljak A et al. Progress with geneproduct mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis. 1999,16:1090-1094.
    2. Dove A. Proteomics;tra-nslation genomics into products? Nature Biotechnol,1999 Mar,17(3):233-236.
    3. Simpson RJ,Dorow DS.Cancer proteomics:from signaling networks to tumor markers. Trends Biotechnol,2001,19(10 suppl):s40-s48
    4. Kim, S.H.Shining a light on structural genomics.Nature Struct Biol,1998,5:643-645.
    5. Michael J,Simon J.Advances in mass spectrometry gor proteome analysis. Current Opinion in Biotechnology,2000,11:384-390.
    6. Medzihradszky KF et al. Anal Chem,2000,72:552-558.
    7. David S,Roos.Bioinformatics-trying to swim in a sea of data. Science, 2001,291: 1260-1261
    8. Bichsel VE,Liotta LA,Petricoin EF 3rd . Cancer proteomics:from biomarker discovery to signal pathway profiling. Cancer J,2001,7(1): 69-78
    9. Celis JE, Ostergaard M, Rasmussen HH, et al. A comprehensive protein resource for the study of bladder cancer: http://biobase.dk /cgi-bin/celis. Electrophoresis, 1999, 20(2);300-309.
    10. Rasmussen RK, Ji Hong, Eddes JS, et al. Teo-dimensional gel database of human breast carcinoma cell expressed proteins: An update. Electrophoresis, 1998,19(5);818-828.
    11. Sarto C, Frutiger S, Cappellsno F, et al. Modified expression of plasma glutathione peroxidase and manganese superoxide dismutase in human renal cell carcinoma. Electrophoresis, 1999,20(17);3458-3466.
    12. Steinert R,Buschmann T,van der Linden M,et al.The role of proteomics in the diagnosis and outcome prediction in colorectal cancer.Technol Cancer Res Treat.2002 Aug;1(4): 297-304
    13. Simpson RJ,Connolly LM,Eddes JS,et al.Proteomic analysis of the human colon carcinoma cell line(LIM215):development of a membrane protein database. Electrophoresis, 2000, 21 (9):1707-1732
    14. Chaurand P ,Da Gue BB,Pearsall RS,et al.Profiling proteins from azoxy methane- induced color tumors at the molecular level by matrix-assisted laser desorption /ionization mass spectrometry. Proteomics , 2001,1(10):1320-1326
    15. 15.Bryumor W,Robert S,Shannon B,et al.Detection of early-stage cancer by serum protein analysis. Am Lab,2001,33(9):32-36
    16. Jungblut PR, Zimny-Arndt U, Zeindl-Eberhart E, et al. Proteomics in human disease: cancer, heart and infectious disease. Electrophoresis, 1999,20 (10); 2100-2110.
    17. Stulik J, Koupilova K, Osterreicher J, et al. Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma. Electrophoresis, 1999,20(18);3638-3646.
    18. Stulik J, Hernychova S,et al.Proteome study of colorectal carcinogenesis. Electrophoresis,2001,22(14):3019-3025
    19. Stulik J, Kovarova H, Macela A, et al. Overexpression of calcium-binding protein calgraulin B in colonic mucosal diseases. Clin-Chim-Acta, 1997 Sep 8, 265(1);41-55.
    20. Stulik J, Bures J, Jandik P, et al. The different expression of proteins recognized by monoclonal anti-heat shock protein 70 (hsp70) antibody in human colonic diseases. Electrophoresis,1997 Mar-Apr, 18(3-4);625-628.
    21. Melis R, White R. Characterization of colonic polyps by two-dimensional gel electrophoresis. Electrophoresis, 1999 Apr-May, 20(4-5);1055-1064.
    22. Izzo RS, Pellecchia C. Comparison of nuclear matrix protein composition in colon cancer and dysplasia. Scand-J-Gastroenterol, 1998 Feb, 33(2);191-194.
    23. Binz P A,Muller M,Walther D,et al. A molecular scanner to automate proteomic research and to display proteome images. Anal Chem,1999,71 (21):4981- 4988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700