盾构刀具堆焊层设计与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京地区地层中含有大量的砂砾和卵石,地铁盾构施工时,盾构机刀具受到砂砾、卵石的冲击和高应力磨粒磨损,进口盾构机刀具的挖掘长度仅为250米左右。由此造成的刀具更换次数的提高增加了隧道塌方隐患,而且刀具的进口耗资耗时,严重影响了地铁隧道施工的进程。
     基于北京地区盾构机刀具的失效分析,本文从盾构机周边刀的修复着手,明确了盾构机刀具耐磨、耐冲击的性能要求,进行了刀具的堆焊层设计和性能研究,完成了盾构机刀具国产化的关键工作。盾构机刀具的堆焊修复条件苛刻:施焊空间狭隘,通气条件差,无法对刀体进行焊前预热和焊后热处理。本文对盾构机刀具修复用药芯焊丝进行了系统的开发研究,通过一系列配方调整和工艺性能实验,研制出了可用于盾构机刀具修复及制造的气保护堆焊药芯焊丝DG7和自保护堆焊药芯焊丝SDG7。上述两种药芯焊丝焊接工艺性能良好,满足刀具修复及制造的施焊条件和刀具的性能要求。所制堆焊层组织为低碳板条状马氏体和断续的网状奥氏体,堆焊层硬度在HRC51以上,具有一定的韧性和冲击强化性能,堆焊层冲击后的硬度可达HRC55~60。堆焊层在MLS-225型湿式橡胶轮磨粒磨损机和MLD-10型动载磨粒磨损机上均表现出良好的耐磨粒磨损性能。
     在盾构机刀具堆焊层设计方面,本文从周边刀的修复研究入手,根据周边刀的具体部位的磨损特征,对周边刀刃口、侧面和迎土面(工作面)进行了堆焊强化处理;根据齿刀的失效特征,对其正面、背面和侧面进行了堆焊强化。此外,根据盾构刀盘的失效早于强化后刀具失效的状况,对刀盘进行了耐磨复合钢板强化设计,最终实现了盾构机刀具的整体强化。在2007年2月结束的北京市地铁十号线第十一标段农展馆至亮马桥的施工中,研制的盾构机刀具一次挖掘长度达780余米,大大超过了进口刀具的使用寿命,而其制造成本仅为进口刀具的75%,研制的国产盾构机刀具具有巨大的经济效益和社会效益。
There are plenty of grits and screes in stratum of Beijing area. Shield machine cutter suffers from high stress grain-abrasion and impact when it constructs subway by shield method. The import cutter’s driving length is just about 250 meters. Cutter changing time increase caused bye cutter’s short driving length induces more hidden troubles of tunnel collapse. In addition, cutters’import needs more cost and time which delays the schedule of subway construction badly.
     Based on the shield machine cutter’s failure analyses, and launched on shield machine circumambient cutter’s repairing, the anti-abrasion and anti-impact capability of shield machine cutter was realized. Design and capability study on hardfacing layer of cutter were done, and the main homemade work of shield machine cutter was done. The condition of repairing shield machine cutter is rigorous because of narrow hardfacing space, bad ventilation and unable to preheating and post heating to cutter body. Systemic research on developing hardfacing flux-cord wire (FCW) used on repairing shield machine cutter was done. Gas shield hardfacing FCW named DG7 and self-shield FCW named SDG7 which could be used on repairing and manufacturing shield machine cutter were developed through a series of components adjusting and processing property testing of FCW. The welding processing property and the hardfacing layer’s capability of the two kinds of FCW talked in front are all right, and it can satisfy the request of cutter’s capability and the conditions of the cutter’s repairing and manufacturing. The microstructure of hardfacing layer is mainly low carbon martensite and partly discontinuous netlike austenite. The hardness of hardfacing layer is upwards HRC51. The hardfacing layer has a certain extent toughness and work hardening capability, and its hardness could achieve HRC55 to 60. The hardfacing layer puts up well abrasive wear resistance capability on MLS-225 wet sand/rubber wheel tester and MLD-10 type alterable load abrasive wear tester.
     Concerning shield machine cutter’s hardfacing layer design, launched on circumambient cutter’s repairing, and based on circumambient cutter’s different parts’worn characteristics, the circumambient cutter’s cutting edge, side face and working face were strengthened by hardfacing. Based on serrated knife’s failure characteristics, its head, back and side face were strengthened by hardfacing. Furthermore, based on the status that the cutter disk’s failure is earlier than the improved cutter’s failure, cutter disk was strengthened by wear resistant composite plate, and then shield machine cutter’s all-sided improving was achieved. In the eleventh segment of Beijing’s subway line ten which is from Agriculture Exposition to Liang Ma Bridge and complete in February 2007, the improved cutter dug 780 meters one time which greatly exceeded the import cutter’s service life. The cost of improved cutter is just three-quarter of import cutter, and it has good economic and social benefit.
引文
1. 刘建航, 候学渊. 盾构法隧道. 中国铁道出版社, 1991:1~4
    2. 尹旅超. 日本隧道盾构新技术. 华中理工大学出版社, 1999:1~2
    3. Yukinori Koyama. Present Status and Technology of Shield Tunneling Method in Japan. Tunneling and Underground Space Technology. 2003, (18):145~159
    4. Maeda, Masahiro and Kushiyama, Kotaro. Use of Compact Shield Tunneling Method in Urban Underground Construction. Tunneling and Underground Space Technology. 2005, (20):159~166
    5. 陈丹, 袁大军, 张弥. 盾构技术的发展与应用. 现代城市轨道交通. 2005, (5):25~29
    6. 傅德明. 土压盾构掘进机在我国隧道工程中的应用和发展. 地下铁道新技术文集. 北京, 2003:512~515
    7. S. L. Shen, Y. Z. Dai, J. H. Liu, J. C. Chai. Construction of Slurry Shield Tunnel under Huangpu River in Shanghai. Tunneling and Underground Space Technology. 2004, (19):397~398
    8. Tokuhisa Ishiwata, Shinichi Suzuki, Takuya Matsunaga, Shoji Kishimoto. Earth Pressure Balance Shield Driven Tunneling for Super-shallow Earth Covering (Jobando Tunnel). Tunneling and Underground Space Technology. 2004, (19):394
    9. 陈学定, 韩文政. 表面涂层技术. 机械工业出版社, 1994:1~18
    10. 徐滨士, 刘世参. 表面工程. 机械工业出版社, 2001: 8
    11. 鲜玉强. 耐磨堆焊层中花絮成分对热裂纹倾向的影响. 重庆建筑大学学报. 2000, 22(1):53~57
    12. 周永强, 李午申, 冯灵芝. 表面工程技术的发展与应用. 焊接技术. 2001,30(4):5~7
    13. 周振丰. 焊接冶金学. 机械工业出版社, 1996:167
    14. 何其平. 土压平衡盾构刀盘结构探讨, 工程机械. 2003,(11):10~16
    15. 张国京. 北京地区土压式盾构机刀具的适应性分析, 市政技术. 2005,(1): 9~13
    16. 邹积波, 朱华锋. 盾构机到盘的应急修复, 维修工艺. 2003,(6):95~96
    17. 邹积波. 盾构刀具磨损原因探析, 建筑机械化. 2003,(11):57~58
    18. Kurokawa, Tsuyoshi, Nagaoka. Characteristics of Newly Developed Flux-cored Wire for Mild Steel and High Tensile Steel. R&D: Research and Development Kobe Steel EngineeringReports. 1995,45(1)17~20
    19. Lyttle, Kevin A. Metal Cored Wires: Where Do They Fit in Your Future? Welding Journal. 1996,75(10):35~38
    20. 李建海, 陈邦固. 新型金属芯药芯焊丝的发展和应用. 焊接技术. 2001,30(3): 47~50
    21. 张文钺. 我国钢铁业发展与其相应焊接技术及焊接材料. 焊接技术. 2005,34 (2):3~6
    22. 刘政军, 刘铎, 苏允海, 程江波, 李永奎. 合金元素对抗冲击磨损堆焊材料性能的影响. 热加工工艺. 2005, (8):18~20
    23. 卢大勇. 抗冲击耐磨损焊条的研制, 沈阳工业大学硕士论文. 2005(12):5~6
    24. 朱安贞 , 高义 民 , 鲍崇高 . 低 合金钢 冲 击磨料 磨损性能 的研究 . 铸造 技术 . 1999,(4):12~13
    25. 鲜玉强. 耐磨堆焊层中花絮成分对热裂纹倾向的影响. 重庆建筑大学学报. 2000, 22(1):53~57
    26. 王志华 , 刘金 海 , 郝晓燕 等 . 耐磨铸钢 强韧性 的研究进 展 . 新技术新 工艺 . 2002,(2):30~32
    27. 蒋旻, 栗卓新, 蒋建敏. 自保护药芯焊丝的国内外研究进展. 焊接. 2003,(12):5~8
    28. 任耀剑, 江利. 耐磨材料的研究及进展. 矿山机械. 2005,33(6):73~76
    29. 张雪华. 金属耐磨材料的发展和研究. 矿山机械. 2004,(8):107~109
    30. T. Hejwowski. Wear Rresistance of Graded Coatings. Vacuum. 2002,(65):515~520
    31. J. Suchanek, J. Smrkovsky, P. Blaskovic, N. A. Grinberg. Erosive and Hydroabrasive Resistance of Hardfacing Materials. Wear. 1999,(234):229~236
    32. I. I. Garbar. Abrasion Resistance as a Function of Substructural Changes in Steel. Wear. 2005, (258):275~280
    33. Pingguang Xua, Bingzhe Bai, Fuxing Yin, Hongsheng Fang, Kotobu Nagai. Microstructure Control and Wear Resistance of Grain Boundary Allotriomorphic Ferrite/Granular Bainite Duplex Steel. Materials Science and Engineering A. 2004,(385):65~73 ?
    34. 刘臣. 抗冲击耐磨料磨损堆焊合金的研究. 沈阳工业大学硕士论文. 2005:23~26
    35. 赵冬梅. 系列奥氏体锰钢的强韧性对耐磨性的影响. 洛阳大学学报. 1996,11(2):46~50
    36. M. Goerdeler, G. Gottstein, A Microstructural Work Hardening Model Based on Three Internal State Variables. Materials Science and Engineering A. 2001,(309):377~381
    37. F. Roters, D. Raabe, G. Gottstein. Work Hardening in Heterogeneous Alloys - aMicrostructural Approach Based on Three Internal State Variables. Acta Materialia. 2000, 48(17):4181~4189
    38. 周文龙, 赵金龙, 季首华, 康伟, 孙峰. 低铬耐磨钢冲击磨料磨损的研究. 水利电力机械. 1996,(1):45~47
    39. H.K.D.H. Bhadeshia. The Bainite Transformation: Unresolved Issues. Materials Science and Engineering. 1999,273(12):58 ~ 66
    40. 石巨岩, 郑有才, 陆路. 高锰钢冲击磨粒磨损特性的研究. 太原工业大学学报. 1995, 26(4):90~94
    41. 李树索, 陈希杰. 高锰钢的发展和应用. 矿山机械. 1998,(3):70~71
    42. 魏成富, 栾道成. 贝氏体中脊形貌特征研究. 材料热处理学报. 2001,22(3):14~18
    43. 云广鹏, 黄志求. 低合金等温淬火复相钢的组织与性能. 佳木斯大学学报. 2006,24 (2):165~167
    44. 孟庆森,吴建灵. 奥氏体合金堆焊金属抗冲击磨损特性分析. 机械管理开发. 2002, (2):46
    45. M.F. Buchely, J.C. Gutieerez, L.M. Leon, A. Toro. The Effect of microstructure on Abrasive Wear of Hardfacing Alloys. Wear. 2005,(259):52~61
    46. R. Dasgupta, Rashmi Thakur, M.S. Yadav, S.K. Jha. High Stress Abrasive Wear Behaviour of a Hardfacing Alloy-Effects of Some Experimental Factors. Wear. 1999,(236):368~374
    47. Kown-yeong Lee, Sung-hoon Lee, Yangdo Kim, Hyun Seon Hong, Young-min Oh, Seon-jin Kim. The Effects of additive elements on the sliding wear behavior of Fe-base Hardfacing alloys. Wear. 2003,(255):481~488
    48. Jun-ki Kim, Geun-mo Kim, Seon-jin Kim. The Effect of Manganese on the Strain-induced Martensitic Transformation and High Temperature Wear Resistance of Fe-20Cr-1C-1Si Hardfacing Alloy. Journal of Nuclear Materials. 2001,(289):263~269
    49. X.J. Ren, R.D. James, E.J. Brookes, L. Wang. Machining of High Chromium Hardfacing Materials. Materials Processing Technology. 2001,(115):423~429
    50. R.W. Smith, A. DeMonte, W.B.F. Mackay. Development of High-manganese Steels for Heavy Duty Cast-to-shape Applications. Materials Processing Technology. 2004,(153):589~595
    51. 刘政军, 刘臣, 孙景刚, 李永奎. 抗冲击磨损奥氏体堆焊材料. 焊接学报. 2005, 26(3):9~13
    52. Tianfu Jing, Fucheng Zhang. The Work-hardening Behavior of Medium Manganese Steel under Impact Abrasive Wear Condition. Materials Letters. 1997,(31):275~279
    53. Emin Bayraktar, Fazal Khalid, Levaillant Christophe. Deformation and Fracture Behaviour of High Manganese Austenitic Steel. Journal of Materials Processing Technology. 2004, 147(2):145~154
    54. 张福成, 郑炀曾, 朱瑞富, 毛军. 介稳奥氏体锰钢耐磨性的研究. 钢铁. 1996, 31(1):58~62
    55. 李士同, 吕宇鹏, 朱瑞富等. 浅论高锰钢的加工硬化机制. 兵器材料科学与工程. 1999, 22(5):61~65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700