细长金属管内产生的直流辉光放电等离子体及其初步应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高金属管内表面的硬度、耐磨性、抗蚀性等性能有着重要的工业应用价值。我们针对内径小于10 mm的金属管开发了一种利用直流辉光等离子体的金属管内表面改性技术。在金属管的中心轴上设置金属芯线与金属管构成同轴电极,在电极之间加恒定直流电压使管内气体激发电离,从而在正极芯线周围形成圆筒状等离子体。利用恒定直流高电压加速将离子渗注到金属管内表面。本研究主要分以下三个部分:
     (1)等离子体的产生方法
     利用同轴电极结构,在细长金属管内形成稳定的等离子体。管内等离子体的长度随放电电流的增大呈线性伸长。通过对管内等离子体伏安特性的测定确认管内产生的是直流辉光等离子体。
     (2)等离子体发射光谱研究
     利用发射光谱法对金属管内形成的稳定氩氮和氩氨直流辉光等离子体进行了研究。系统地测定了各种气体配比下的等离子体发射光谱,通过对谱线的同定确定了等离子体中的活性粒子成分,研究了活性粒子的谱线强度随压强和气体配比的变化特征。根据发射光谱计算了等离子体中的电子激发温度和分子振动温度,研究了电子激发温度和分子振动温度随压强和气体配比的变化特征。
     (3) 304不锈钢管内表面渗氮初步研究
     利用管内Ar/N_2等离子体对304不锈钢管内表面进行了渗氮改性研究。利用X射线仪、俄歇电子能谱仪和超微载荷显微硬度仪对不锈钢样品进行测试。测试结果表明我们提出的利用同轴电极结构的直流辉光等离子体方法对于内径10mm、长100mm的不锈钢管内表面改性是可行的。
Improving the hardness, wear resistance, corrosion resistance of the inner surface ofmetallic tubes has potential application in industrial practice. We proposed a normal DC glowdischarge method for the inner surface nitriding of stainless steel tubes with inner diameter of10mm. A coaxial electrode structure was constructed by coaxially stretching a tungsten wireas an anode inside of stainless steel tube. Steady DC glow discharge plasma can be generatedin the stainless steel tube by applying a negative DC high voltage to the tube. Then the ions inthe plasma will be accelerated and then implanted into the inner surface by the applyinghigh-voltage. In this work, we present our study on:
     (1) Plasma generation.
     A coaxial electrodes was constructed by coaxiaUy stretching a tungsten wire inside themetallic tube. DC discharge plasma was generated inside the tube by applying a negative dchigh voltage to the tube. It was found that the length of the plasma depends on the applied dcvoltage, and increases linearly while the applied voltage increases. The voltage-currentcharacteristic of the discharge shows that the plasma generated inside the stainless steel tubeare normal DC glow discharge.
     (2) Diagnosis of the plasma by optical emission spectroscopy.
     The diagnosis of the plasma generated inside the stainless steel tube was performed byoptical emission spectroscopy method. The active species in the plasma was identified. Thedependence of the intensity of active species on gas ratios and pressure was studied. Theelectron excitation temperature of the plasma and vibrational temperature of nitrogenmolecular in the plasma was estimated by Boltzmann plot method. The dependence of theelectron excitation temperature and molecular vibrational temperature on the gas ratios andpressure was investigated.
     (3) The preliminary study on inner surface nitriding of AISI304 stainless steel tubes.
     The AISI 304 samples after nitriding by the plasma of Ar+N_2 mixture were analysizedby Auger electron spectrometer (AES), X-ray diffraction (XRD) and microhardness tester.The preliminary results show that the normal DC glow discharge method developed in presentwork can achieve inner surface nitriding of stainless steel tube with inner diameter of 10mmand length of 100mm.
引文
[1] W. Ensinger. An apparatus for sputter coating the inner walls of tubes, Rev. Sci. Instrum, 1996, 67(1):318-321.
    [2] Conrad J R, Radtke J L. Plasma source ion-implantation technique for modification of materials. J. Appl. Phys. 1987, 62(11): 4591-4596.
    [3] Ordal Demokan. Ion Implantation and Deposition on the Inner Surfaces of Cylinders by Exploding Metallic Foils, IEEE Transactions on plasma science, 2000, 28(5):1720-1724.
    [4] K. Baba, R. Hatada. Ion implantation into the interior surface of a steel tube by plasma source ion implantation, Nuclear Instruments and Methods in Physics Research B, 1999, 148:69-73.
    [5] Koumei Baba, Ruriko Hatada. Ion implantation into inner wall surface of a 1-m-long steel tube by plasma source ion implantation. Surface and Coatings Technology, 2000, 128-129: 112-115.
    [6] Koumei Baba, Ruriko Hatada. Ion implantation into inner wall surface of millimeter size diameter steel tube by plasma source ion implantation. Surface and Coating Technology, 2002, 158-159: 741-743.
    [7] K. Baba, R. Hatada. Deposition of diamond-like carbon films on inner wall of sub-millimeter diameter steel tube by plasma source ion implantation, Nuclear Instruments and Methods in Physics Research B, 2003, 206: 704-707.
    [8] Bin Liu, Chizi Liu, Dajung Cheng et al. A new method for inner surface modification by plasma source ion implantation (PSⅡ), Nuclear Instruments and Methods in Physics Research B, 2001, 184: 644-648.
    [9] 张谷令,王久丽,杨武保等.内表面栅极等离子体源离子注入TiN薄膜及其特性研究,物理学报,2003,52(9):2213-2218.
    [10] 徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996.
    [11] Coburn J W, and Chen M. Optical emission spectroscopy of reactive plasmas: a method for correlating emission intensities to reactive particle density. Journal of Applied Physics, 1980, 51:3134-3136.
    [12] Sarfaty M, Maron Y and Krasik Y E, at al. Spectroscopic investigations of the plasma behavior in a plasma opening switch experiment, Phys. Plasma, 1995, 2:2122-2137.
    [13] Vanderelde T, Nesladek M and Stals L. Optical emission spectroscopy of the plasma during CVD diamond growth with nitrogen addition, Thin Solid Film, 1996, 290:143-147.
    [14] Kirsch B, Hanamura S and Winefordner J D. Diagnostical measurements in a single electrode, atmospheric pressure, microwave plasma, Spectrochimica Acta, 1984, 39B:955-963.
    [15] 徐克尊.高等原子分子物理学.北京:科学出版社,2000.
    [16] Grien H R. Plasma Spectroscopy, New York: MC Graw-Hill, 1964.
    [17] 陈宗柱,高树香编,气体导电(下册),南京:南京工学院出版社,1988.
    [18] Dieke G H and Grosswhite H M. J. Quant, Spectrosc. Radial. Transfer, 1962, 2:97.
    [19] Workman J M, Fletitz P A et al. Comparative study of rotation temperature in microwave plasma: OH radical versus N~(**). plus, Applied Spectroscopy, 1988, 42:96-100.
    [20] Alandari J, Diamy A M et al. Rotational temperature in helium, argon, and oxygen microwave-induced plasmas: Comparison with translation and solid surface temperatures, Applied Spectroscopy, 1989, 43:681-687.
    [21] 张家良.低温等离子体发射光谱学研究:(博士学位论文).大连:大连理工大学,2003.
    [22] Grien Hans R. Plasma Spectroscopy. New York: 1964.
    [23] Herzberg G(赫兹堡G).Molecular Spectra Molecular Structure,Ⅰ(分子光谱与分子结构,第一卷).Beijing: Science Press(北京:科学出版社),1983.
    [24] Dong Li-fang, Liu Shu-feng, et al.(董丽芳,刘峰,李树峰等).Spectroscopy and Spectral Analysis(光谱学与光谱分析).2006,26(5):802.
    [25] Nicholls R W.J. Quant. Spectrosc. Radiant. Transfer, 1962, 2:433.
    [26] Shemansky D E, Broad foot A L. J. Quant. Spectrospec. Radiant. Transfer. 1971, 11:1385.
    [27] NING S G, SHIML. The relationship of corrosion inhibition efficiency on steel in acids with electron density and the energy of frontical orbital of imidazolin derivatives [J]. J Chinese Society for Corrosion and Protection, 1990, 10(4):3832386.
    [28] SASTR Ⅳ S, PERUMAREDD I J R. Selection of corrosion inhibition for use in sourmedia[J]. Corrosion, 1994, 50(6):4322434.
    [29] Kawagoishi N, Wang Q Y, et al. Surface integrities of radical nitrided maraging steel [A] Proc of the 3 rd Inter Conf on Surface Eng[C]. Chengdu, China, 2002.
    [30] 王清远.等离子渗氮处理超级钢材的长寿命疲劳性能[J].四川大学学报(工程科学版),2003,35(6):528.
    [31] Shamin M. Malik, R.P. Fetherson, J. R. Conrad. J. Vac. Sci. Technol, A 15(1997)2875.
    [32] 王英华.X射线衍射基础.北京:原子能出版社,1993,78~92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700