噪声对肿瘤细胞动力学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依据生物体系中免疫组织抑制肿瘤细胞无限生长、转化和转移的基本理论,利用非线性动力学和统计物理学相关知识,引出免疫监视下肿瘤细胞生长的模型。讨论了非高斯噪声和Lévy噪声对免疫监视下肿瘤细胞非线性生长扩散效应的影响。本文结果为有效抑制肿瘤细胞增长以及获得更多治疗时间提供了理论依据。
     本文首先讨论了耦合的非高斯噪声和高斯噪声对免疫监视下肿瘤动力学行为的影响。综合运用路径积分和泛函数的近似方法,推导出相应的福克-普朗克方程,计算出肿瘤细胞数的稳态概率分布解析式。结果表明,肿瘤细胞数最少值的获得主要依赖于非高斯噪声偏离度的增加和高斯噪声强度的减少。通过理论推导和数值计算肿瘤细胞从不活跃态跃迁到活跃态的平均首通时间随着非高斯噪声偏离度、强度和高斯噪声强度等参量的变化情况。结果发现平均首通时间的增加依赖于非高斯噪声偏离度和高斯噪声强度的减少。
     其次,本文引入Lévy噪声到免疫监视下肿瘤细胞生长的模型,通过数值计算分析了Lévy噪声在免疫监视下肿瘤模型中对平均首通时间的影响。为了验证数值计算的有效性,我们数值比较了稳定性因子α=2和偏斜度β=0的Lévy噪声与高斯噪声的稳态概率分布。平均首通时间的计算结果表明在σ <1, β→0的情形下α取值增加,可以获得更多的治疗时间。
Since the biologic theory of immune system can control tumor cell infinite growth,transformation and metastasis, a tumor growth model under immune surveillance isobtained by using the methods of nonlinear dynamics and statistical physics. The effects ofnon-Gaussian noise and Lévy noise on the dynamical behavior of tumor growth arediscussed. The results of this paper provide a theoretical basis to restrain the tumor growthand to obtain more therapy time.
     Firstly, the effect of tumor cell growth with coupling between non-Gaussian andGaussian noise terms is investigated. The expression of the Fokker-Planck equation and thesteady state distribution function is derived through the path integral approach and thefunctional approximation. It is found that the obtaining of the minimum average tumor cellpopulation mainly depends on the increase of the departure from the Gaussian noise andthe decrease of Gaussian noise strength. And the increase of mean first passage time whichindicates the transition between active and inactive state mainly depends on the decrease ofthe departure from the Gaussian noise and the Gaussian noise strength is obtained bytheoretical analysis and numerical simulation.
     Besides, the stochastic property of tumor growth driven by Lévy noise is analyzed. Bynumerical simulation, the mean first passage time for tumor model driven by Lévy noise isdiscussed. In order to check the validity of the numerical simulation, we compare theresults of steady-state probability distribution driven by Lévy noise when the stabilityindex α=2and the skewness β=0with the results driven by Gaussian noise. And theresults of the mean first passage time which indicates the transition between active andinactive state can illuminate that more time of therapy can be obtained when the stabilityindex α is increasing while the scaling σ <1and the skewness β→0.
引文
[1] J. Ren, C. J. Li, T. Cao, K. Y. Kan, and J. Q. Duan, Mean Exit Time and EscapeProbability for a Tumor Growth System under Non-Gaussian Noise,(2011) IJBC,D11,00200.
    [2] B. Q. Ai, X. J. Wang, G. T. Liu, and L. G. Li u, Correlated noise in a logistic growthmodel, Phys. Rev. E,(2003)67,022903.
    [3] J. D. Murray, An Introduction, Mathematical Biology, vol. I, Springer-Verlag, Berlin,(2002).
    [4] J. D. Murray, Spatial Models and Biomedical Applications, Mathematical Biology,vol. II, Springer-Verlag, Berlin,(2003).
    [5] K. J. Gu, and W. B. Yu,细胞毒T淋巴细胞识别的人类肿瘤抗原, Foreign Med.Sci.(2004)31,8,575-578.
    [6] R. Schickel, B. Boyerinas, S-M. Park, and M. E. Peter, MicroRNAs: key players inthe immune system, differentiation, tumorigenesis and cell death, Oncogene,(2008)27,5959–5974.
    [7] C. C. Xiao, and K. Rajewsky, MicroRNA Control in the Immune System: BasicPrinciples Cell,(2009)136,26-36.
    [8] D. I. Gabrilovich, and S. Nagaraj, Myeloid-derived suppressor cells as regulators ofthe immune system, Nature Reviews Immunology,(2009)9,162-174.
    [9] P. Ehrlich, über den jetzigen Stand der Karzinomforschung.,Ned Tijdschr Geneeskd,(1909)5,273,120-164.
    [10] F. M. Burnet, Cancer-A biological approach, Br. Med. J,(1957)1,841-847.
    [11] G. P. Dunn, L. J. Old, R. D. Schreiber, The three Es of cancer immunoediting, Annu.Rev. Immunol.(2004)22,329.
    [12] R. Kim, M. Emi, K. Tanabe, Cancer immunoediting from immune surveillance toimmune escape, Immunology,(2007)121,1-14.
    [13] J. M. G. Vilar, R. V. Solé, Effects of Noise in Symmetric Two-Species Competition,Phys. Rev. Lett.(1998)80,18,4099-4102.
    [14] J. C. Cai, C. J. Wang, D. C. Mei, Stochastic Resonance in the Tumour Cell GrowthModel, Chin. Phys. Lett.(2006)24,5,1162-1165.
    [15] A. Fiasconaro, E. G. Nowak, Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response,Phys. Rev. E,(2006)74,041904.
    [16] C. Escudero, Stochastic models for tumoral growth, Phys. Rev. E,(2006)73,020902.
    [17] T. Bose, S. Trimper, Stochastic model for tumor growth with immunization, Phys.Rev. E,(2009)79,051903.
    [18] W. R. Zhong, Y. Z. Shao, Z. H. He, Pure multiplicative stochastic resonance of atheoretical anti-tumor model with seasonal modulability, Phys. Rev. E,(2006)73,060902.
    [19] W. R. Zhong, Y. Z. Shao, Z. H. He, Spatiotemporal fluctuation-induced transition ina tumor model with immune surveillance, Phys. Rev. E,(2006)74,011916.
    [20] J. Tian, Y. Chen, Effect of Time Delay on Stochastic Tumor Growth,Chin. Phys.Lett.(2010)27,3,030502.
    [21] L. C. Du, D. C. Mei, The critical phenomenon and the re-entrance phenomenon inthe anti-tumor model induced by the time delay, Phys. Lett. A,(2010)374,3275-3279.
    [22] A. d'Onofrio, Bounded-noise-induced transitions in a tumor-immune systeminterplay, Phys. Rev. E,(2010)81,021923.
    [23] Y. Z. Shao, W. R. Zhong, F. H. Wang, Z. H. He, Z. J. Xia, The growth dynamics oftumor subject to both immune surveillance and external therapy intervention, Chi.Sci. Bull.(2007)52,1635.
    [24] D. Hanahan, R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell (2011)144,646-674.
    [25] M. W. L. Teng, J. B. Swann, C. M. Koebel, R. D. Schreiber, M. J. Smyth, J. Leukoc,Immune-mediated dormancy: an equilibrium with cancer, Biol.(2008)84,988-993.
    [26] D. C. Mei, G. Z. Xie, and G. L. Zhang, The stationary properties and the statetransition of the tumor cell growth mode. Eur. Phys. J. B(2004)41,1072112.
    [27] J. R. R. Duarte, M. V. D. Vermelho, M. L. Lyra, Stochastic resonance of aperiodically driven neuron under non-Gaussian noise, Physica A,(2008)387,1446-1454.
    [28] M. E. J. Newman, Power laws, Pareto distributions and Zipf’s law, Contemp. Phys.(2005)46,323.
    [29] K. Wiesenfeld, D. Pierson, E. Pantazelou, Ch. Dames, F. Moss, StochasticResonance on a Circle, Phys. Rev. Lett.(1994)72,14,2125-2129.
    [30] D. Nozaki, D. J. Mar, P. Grigg, J. J. Collins, Effects of Colored Noise on StochasticResonance in Sensory Neurons, Phys. Rev. Lett.(1999)82,11,2402-2405.
    [31] M. K. Sen and B. C. Bag, Generalization of barrier crossing rate for coloured nonGaussian noise driven open systems, Eur. Phys. J. B,(2009)68253–259.
    [32] J.F.A. Jansen, H.E. Stambuk, J.A. Koutcher, and A. Shukla-Dave, Non-GaussianAnalysis of Diffusion-Weighted MR Imaging in Head and Neck Squamous CellCarcinoma: A Feasibility Study, AJNR Am J Neuroradiol,(2010)31,4,741–748.
    [33] P. D. Ditlevsen, Anomalous jumping in a double-well potential, Phys. Rev.E,(1999)60,172.
    [34] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: Afractional dynamics approach, Phys. Rep.(2000)339,1-77.
    [1] D. I. Gabrilovich, A. A. Hurwitz,Tumor-Induced Immune Suppression Springer,(2008).
    [2] George C. Prendergast, Elizabeth M. Jaffee, Cancer immunotherapy: immunesuppression and tumor growth, Science Press, Beijing (2007).
    [3] D. Q. Gao,免疫综合疗法治疗胃肠道肿瘤术后患者的临床效果,(2011).
    [4] J. Yu, G. Hu, and B. K. Ma, New growth model: The screened Eden model. Phys.Rev. B,(1989)39,4572-4576.
    [5] J. Ren, C. J. Li, T. Cao, K. Y. Kan, and J. Q. Duan, Mean Exit Time and EscapeProbability for a Tumor Growth System under Non-Gaussian Noise,(2011) IJBC, D11,00200.
    [6] S. Kar, S. K. Banik, and D. S. Ray, Class of self-limiting growth models in thepresence of nonlinear diffusion. Phys. Rev. E,(2002),65,061909.
    [7] M. Scalerandi and B. C. Sansone, Inhibition of Vascularization in Tumor Growth,Phys. Rev. Lett.(2002)89218101.
    [8] B. Q. Ai, X. J. Wang, G. T. Liu, and L. G. Li u Correlated noise in a logistic growthmodel, Phys. Rev. E,(2003)022903.
    [9] J. D. Murray, An Introduction, Mathematical Biology, vol. I, Springer-Verlag, Berlin,(2002).
    [10] J. D. Murray, Spatial Models and Biomedical Applications, Mathematical Biology,vol. II, Springer-Verlag, Berlin,(2003).
    [11] R. Lefever, R. Garay, Local Description of Immune Tumor Rejection,Biomathematics and Cell Kinetics, Elsevier, North-Holland,(1978).
    [12] B. D. Ludwing, D. D. Jones, and C. S. Holling, Qualitative analysis of insect outbrealsysytems: The spruce rudworm and forest, J. Anim. Ecol.(1978)47,315-332.
    [13]钟伟荣,非线性生物系统中的时空噪声动力学,(2007).
    [1] Y. B. Gong, B. Xua, J. Q Han, X. G. Ma, Novel effect of coupled external andinternal noise in stochastic resonance, Physica A,(2008)387,407–412.
    [2] D. Fuller, W. Chen, M. Adler, A. Groisman, H. Levine, W.J. Rappel, and W. F.Loomis, External and internal constraints on eukaryotic chemotaxis, Pnas.(2010)107,21,9656-9659.
    [3] G. Yu, M. Yi, Y. Jia, J. Tang, A constructive role of internal noise on coherenceresonance induced by external noise in a calcium oscillation system, Chaos, Solitonsand Fractals,(2009)41,273–283.
    [4] M. A. Fuentes, R. Toral, H. S. Wio, Enhancement of stochastic resonance:the role ofnon Gaussian noises, Physica A,(2001)295,114-122.
    [5] M. A. Fuentes, H. S. Wio, R. Toral, Effective Markovian approximation fornon-Gaussian noises: a path integral approach, Physica A,(2002)303,91-104.
    [6] H. S. Wio, R. Toral, Effect of non-Gaussian noise sources in a noise-inducedtransition, Physica D,(2004)193,161-168.
    [7] D. Wu, X. Luo, S. Zhu, Stochastic system with coupling between non-Gaussian andGaussian noise terms, Physica A,(2007),373203-214.
    [8] N. Bellomo, M. Delitala, From the mathematical kinetic, and stochastic game theoryto modelling mutations, onset, progression and immune competition of cancer cells,Phys. Life. Rev.(2008)5,183-206.
    [9] R. A. Weinberg, The biology of cancer, Garland Sciences–Taylor and Francis, NewYork,(2007).
    [10] J. Tian, Y. Chen, Effect of Time Delay on Stochastic Tumor Growth,Chin. Phys.Lett.(2010)27,3,030502.
    [11] L. C. Du, D. C. Mei, The critical phenomenon and the re-entrance phenomenon inthe anti-tumor model induced by the time delay, Phys. Lett. A,(2010)374,3275-3279.
    [12] F. C. Hoppensteadt and C. S. Peskin, Modeling and Simulation in Medicine and theLife Sciences, Springer-Verlag, New York,(2002).
    [13] W. R. Zhong, Y. Z. Shao, and Z. H. He, Correlated noises in a prey-predatorecosystem. Chin. Phys. Lett.(2006)23,742-745.
    [14] Y. Jia, J. R.Li, Transient properties of a bistable Kinetic model with correlationbetween additive and multiplicative noises:mean first passage time, Phys. Rev. E,(1996)53,5764-5768.
    [15] D. C. Mei, G. Z. Xie, L. Cao, Mean first passage time of abistable kinetic modeldriven by cross-correlated noises, Phys. Rev. E,(1999)59,3880-3883.
    [16] C. W. Gardiner, Handbook of Stochastic Methods, Second ed., Springer, Berlin,(1985).
    [17] H. S. Wio, An Introduction to Stochastic Processes and Nonequilibrium StatisticalPhysics, World Scientific, Singapore,(1994).
    [18] N. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland,Amsterdam,(1982).
    [19] P. Hanggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years affer Kamers,Rev. Mod. Phys.(1990)62,251
    [1] G. L. Zhou, Z. T. Hou,Stochastic Generalized Porous Media Equations with LévyJump,, Acta Mathematica Sinica,(2011)27,9,1671-1696.
    [2] A. A. Dubkov, B. Spagnolo, V. V. Uchaikin, Lévy fight superdiffusion: Anintroduction,(2008) IJBC,18,9,2649-2672.
    [3] Q.Onalan, Financial Modelling with Ornstein–Uhlenbeck Processes Driven by LévyProcess, WCE,(2009) II.
    [4] S. G. Nurzaman, Y. Matsumoto, Y. Nakamura, K. Shirai, S. Koizumi, and H.Ishiguro, From Lévy to Brownian: A Computational Model Based on BiologicalFluctuation, PLoS ONE,(2011)6,2,1618.
    [5] A. V. Chechkin, and V. Yu. Gonchar, Fractional kinetics for relaxation andsuperdiffusion in a magnetic field, Phys. Plasmas,(2002)9,1,78-88.
    [6] P. D. Ditlevsen, Anomalous jumping in a double-well potential, Phys. Rev. E,(1999)60,172.
    [7] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: Afractional dynamics approach, Phys. Rep.(2000)339,1-77.
    [8] J. Ren, C. J. Li, T. Cao, K. Y. Kan, and J. Q. Duan, Mean Exit Time and EscapeProbability for a Tumor Growth System under Non-Gaussian Noise,(2011), IJBC, D11,00200.
    [9] C. R.Gu, Y. Xu, H.Q. Zhang, Z. K. Sun,非高斯Lévy噪声驱动下的非对称稳系统的相转移和平均首次穿越时间, Acta Phys. Sin.(2011)60,11,110514.
    [10] B. Dybiec, E. G. Nowak, and P. Hanggi, Escape driven byα-stable white noise, Phys.Rev. E,(2007)75,021109.
    [11] D. Applebaum, Lévy Processes and Stochastic Calculus,2nd Edition, CambridgeUniversity Press, Cambridge,(2009).
    [12] A. Janicki,A. Weron, Simulation and Chaotic Behavior of α-stable StochasticProcesses, Marcel Dekker, New York,(1994).
    [13] R. Weron, On the Chambers-Mallows-Stuck method for simulating skewed stablerandom variables, tStat. Probab. Lett.(1996)28,165-171.
    [14] L. Z. Zeng, R. H. Bao, and B. H. Xu, Effects of Lévy noise in aperiodic stochasticresonance, J. Phys. A: Math. Theor.(2007)40,7175-7185.
    [15] B. Dybiec, E. G. Nowak, Resonant activation in the presence of nonequilibratedbaths, Phys. Rev. E,(2004)69,016105.
    [16] P. Hanggi, P. Talkner, M. Borkovec,Reaction-rate theory: fifty years affer Kamers,Rev. Mod. Phys.(1990)62,251.
    [17] G. Hu,随机力与非线性系统,上海科技教育出版社,(1994).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700