人IRF-3基因启动子的克隆与初步鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     克隆人干扰素调节因子3(Interferon regulatory factor 3,IRF-3)基因启动子并寻找其核心功能区域,鉴定与IRF-3基因启动子结合的转录因子,为阐明其表达调控机制奠定基础。
     方法:
     以HEK 293细胞基因组DNA为模板,采用PCR方法获取IRF-3基因5’侧翼序列,测序正确后插入pGL3-Basic载体。运用双荧光素酶报告基因检测系统鉴定其启动子活性。采用缺失分析法分别从IRF-3基因5’侧翼的5’端逐段缺失,克隆得到不同长度的截短片段,插入pGL3-Basic载体,使用双荧光素酶检测系统定位IRF-3基因启动子核心功能区域,鉴定其启动子活性。利用点突变技术、凝胶迁移实验(EMSA)、染色质免疫沉淀(ChIP)、RNA干扰和基因过表达等实验,分析IRF-3启动子区的转录因子结合位点。
     结果:
     克隆到的IRF-3基因5’侧翼序列与Genbank中记录完全一致,荧光素酶活性分析结果显示其在HEK 293细胞中具有明显的启动子活性。自5’端缺失的截短片段其活性表现为先升高后降低,-149~+18 bp截短片段表现出接近最高的启动子活性,而-93~+18 bp截短片段的活性基本消失,提示IRF-3的核心启动子区域位于-149~-93 bp之间。生物信息学预测该区域包含了Sp1/3、E2F、CEBP-α和GATA-1等结合位点,点突变结果表明Sp1/3和E2F位点维持了IRF-3的基本转录活性。EMSA和ChIP实验结果表明Sp1、Sp3和E2F1转录因子与IRF-3的启动子区有结合。RNA干扰和基因过表达实验表明Sp1和Sp3增强了IRF-3的启动子活性,E2F1抑制了IRF-3的启动子活性。
     结论:
     人IRF-3基因的核心启动子区域位于转录起始位点上游-149至-93 bp处,在核心启动子调控方面,Sp1、Sp3和E2F1起关键调控作用,Sp1和Sp3正调控,E2F1负调控。
Objective To clone IRF-3 gene promoter and identify its core promoter region.
     Methods Approximately 1 kb of the 5' flanking sequence of IRF-3 was cloned from the genomic DNA of HEK 293 cells.After sequencing, the 5'flanking sequence was directly subcloned into pGL3-Basic vector and then the dual-luciferase reporter assay system was employed to identify its transcriptional activity in HEK 293 cells.In the deletion analysis of IRF-3 promoter, we prepared 5' truncations of 1 kb fragments and identified the core promoter essential for transcriptional activation.With point mutations, electrophoresis mobility shift assay (EMSA), chromatin immune precipitation (ChIP), small RNA interference and overexpression, we identified the location and features of the core promoter and its upstream regulatory region of IRF-3.
     Results In this study, the 5'flanking sequence of IRF-3 is consistent with the record in Genbank.In HEK 293 cells,the IRF-3 promoter exhibited high transcriptional activities.The transcriptional activity increased first and then decreased with 5' truncations.In HEK 293,-149 to -93 bp truncated fragment exhibited the maximal transcriptional activity.Sp1/3 and E2F sites were essential for maintaining the basal transcriptional activity of the human IRF-3 promoter. EMSA and ChIP assays demonstrate the occupancy of the IRF-3 promoter by Sp1、Sp3 and E2F1 in vitro or in vivo. Overexpression of Sp1 or Sp3 transactivated the human IRF-3 promoter, whereas small interfering RNA-mediated blockage of Sp1 or Sp3 gene expression inhibited markedly its activity. Overexpression of E2F1 protein reduced the transcription activity, while small interfering RNA-mediated blockage of E2F1 gene expression upregulated markedly its activity.
     Conclusion The -149 to -93 bp region in IRF-3 promoter was the core promoter region.Sp1、Sp3 and E2F1 played a critical role in regulating basal IRF-3 promoter activity in HEK 293 cells.
引文
1.王景锋,邵军军,常惠芸,高闪电,李菁.固有免疫识别受体研究进展.细胞与分子免疫学杂志,2009,25:1217-1220.
    2. Bowzard JB, Ranjan P, Sambhara S, Fujita T. Antiviral defense: RIG-Ing the immune system to STING. Cytokine Growth Factor Rev,2009,20:1-5.
    3.丘创华,侯敢,黄迪南. TNF-α信号传导通路的分子机理.中国生物化学与分子生物学报, 2007, 23:430-435.
    4.刘殿波,钱远宇,张七斤,陈忠斌.抗病毒天然免疫通路中IRF-3调控新机制.中国生物化学与分子生物学报, 2009, 25:1090-5.
    5. H. Nguyen, J. Hiscott and P.M. Pitha. The growing family of IRF transcription factors. Cytokine Growth Factor Rev,1997,8:293-312.
    6. T. Maniatis, J.V. Falvo, T.H. Kim, T.K. Kim, C.H. Lin, B.S. Parekh and M.G. Wathelet. Structure and function of the interferon-beta enhanceosome. Cold Spring Harb. Symp. Quant. Biol,1998,63:609-620.
    7. B. Barnes, B. Lubyova and P.M. Pitha. On the role of IRF in host defense. J. Interferon Cytokine Res,2002,22: 59-71.
    8. Y. Mamane, C. Heylbroeck, P. Genin, M. Alqarte, M.J. Servant, C. LePaqe, C. DeLuca, H. Kwon, R. Lin and J. Hiscott. Interferon regulatory factors: the next generation. Gene,1999,237:1-14.
    9. A. Takaoka, T. Tamura and T. Taniguchi. Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Sci,2008,99: 467-478.
    10. M. Miyamoto, T. Fujita, Y. Kimura, M. Maruyama, H. Harada, Y. Sudo, T. Miyata and T. Taniguchi. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements.Cell,1988,54: 903-913.
    11. K. Uegaki, M. Shirakawa, T. Fujita, T. Taniguchi and Y. Kyogoku. Characterization of the DNA binding domain of the mouse IRF-2 protein. Protein Eng,1993,6:195-200.
    12. K. Honda, A. Takaoka and T. Taniguchi. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity,2006,25:349-360.
    13. Harada, H., T. Taniguchi, and N. Tanaka. The role of interferon regulatory factors in the interferon system and cell growth control. Biochimie,1998,80:641-650.
    14. Nguyen, H., J. Hiscott, and P. M. Pitha. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev,1997,8:293-312.
    15. Lin R, Heylbroeck C, Pitha PM, Hiscott J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol,1998,18:2986- 2996
    16. Weaver BK, Prasanna Kumar K, Reich NC. Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol Cell Biol,1998,18:1359-1386
    17. Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T. Direct triggering of the type I interferon system by virus infection: Activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J ,1998,7:1087-1095
    18. Spiegel M, Pichlmair A, Martinez-Sobrido L, et al. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol,2005,9:2079-2086.
    19. Foy E, Li K, Wang C, et al. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science,2003,300:1145-1148.
    20. Honda K and Taniguchi. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nature Rev Immunol,2006,6:644-658.
    21. Fuse K,Chan G, Liu Y, et al. Myeloid differentiation factor-88 plays a crucial role in the pathogenesis of coxsackievirus B3-induced myocarditis and influences type I interferon production. Circulation,2005,112:2276-2285.
    22. Chow EK, Castrillo A, Shahangian A, et al. A role for IRF3-dependent RXRαrepression in hepatotoxicity associated with viral infections. J Exp Med, 2006,203:2589-2602.
    23. Takaoka A, Hayakawa S, Yanai H, et al. Integration of interferon-α/βsignalling to p53 responses in tumour suppression and antiviral defence. Nature, 2003, 424:516-523.
    24. Rocca SAL, Herbert RJ, Crooke H, et al. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J Virol,2005,79:7239-7247.
    25. Bentz GL, Liu R, Hahn AM, Shackelford J, Pagano JS. Epstein-Barr virus BRLF1 inhibits transcription of IRF3 and IRF7 and suppresses induction of interferon-beta. Virology,2010,402:121-128.
    26. Fuse K,Chan G, Liu Y, et al. Myeloid differentiation factor-88 plays a crucial role in the pathogenesis of coxsackievirus B3-induced myocarditis and influences type I interferon production. Circulation,2005,112:2276-2285.
    27. Bringmann A, Schmidt SM, Weck MM, et al. Zoledronic acid inhibits the function of Toll-like receptor 4 ligand activated monocyte-derived dendritic cells. Leukemia,21:732-738.
    28. Nechaev S, Adelman K. Promoter-proximal Pol II: when stalling speeds things up. Cell Cycle,2008,11: 1539-1544.
    29. Juven-Gershon T, Hsu JY, Theisen JW, Kadonaga JT. The RNA polymerase II core promoter - the gateway to transcription. Curr Opin Cell Biol,2008,20: 253-259.
    30. Wet J R, Wood K V, Deluea M, et a1. Firefly luciferase gene: Structure and expression in mammalian cells. Mol Cell Biol,1987,7:725-737.
    31. Ross W, Gourse RL. Analysis of RNA polymerase-promoter complex formation. Methods,2009,47: 13-24.
    32. Zeng J, Zhu S, Yan H. Towards accurate human promoter recognition: a review of currently used sequence features and classification methods. Brief Bioinform,2009,10: 498-508.
    33. de Vooght KM, van Wijk R, van Solinge WW. Management of gene promoter mutations in molecular diagnostics. Clin Chem,2009,55: 698-708.
    34. Pedersen A G, Baldi P, Chauvin Y, et a1. The biology of eukaryotic promoter prediction. Computers&chemistry,1999,23:191-207.
    35. G. Hagen, S. Muller, M. Beato, G. Suske, SP1-mediated transcriptional activation is repressed by Sp3. EMBO J,1994,13:3843-3851.
    36. A. Sapetschnig, G. Rischitor, H. Braun, A. Doll, M. Schergaut, F. Melchior, G. Suske, Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J,2002,21:5206-5215.
    37. R. Xu, P. Zhang, J. Huang, S. Ge, J. Lu, G. Qian, SP1 and Sp3 regulate basal transcription of the survivin gene. Biochem. Biophys. Res. Commun,2007,356: 286-292.
    38. M. H?cker, R.. Raychowdhury, T. Plath, H. Wu, D.T. O'Connor, B. Wiedenmann, S. Rosewicz, T.C. Wang, SP1 and CREB Mediate Gastrin-dependent Regulation of Chromogranin A Promoter Activity in Gastric Carcinoma Cells. J. Biol. Chem,1998,273: 34000-34007.
    39. Tan NY, Khachigian LM. SP1 phosphorylation and its regulation of gene transcription. Mol Cell Biol,2009,29:2483-2488.
    40. Bracken AP, Ciro M, Cocito A, Helin K. E2F target genes: unraveling the biology. Trends Biochem Sci,2004,29:409-417.
    41. Johnson DG, Cress WD, Jakoi L, Nevins JR. Oncogenic capacity of the E2F1 gene. Proc. Natl. Acad. Sci. USA,1994,91:12823-12827.
    42. Alonso MM, Fueyo J, Yung WK, Gomez-Manzano C. E2F1 and telomerase: alliance in the dark side. Cell Cycle,2006,5:930-935.
    43. Trimarchi JM, Lees JA: Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol,2002,3:11-20.
    44. Trimarchi JM, Fairchild B, Wen J, Lees JA: The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc Natl Acad Sci,2001,98:1519-1524.
    45. Dimova DK, Dyson NJ: The E2F transcriptional network: old acquaintances with new faces. Oncogene,2005,24:2810-2826.
    46. Bukur J, Herrmann F, Handke D, Recktenwald C, Seliger B: Identification of E2F1 as an important transcription factor for the regulation of tapasin expression. J Biol Chem,2010,285:30419-30426.
    47. Zhou D, Masri S, Ye JJ, Chen S: Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1. Gene,2005,361: 89-100.
    1. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol, 2004, 5:987-95.
    2. Theoèlopoulos AN, Baccala R, Beutler B, Kono DH. Type 1 interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol, 2005, 23:307-35.
    3. Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol, 2006, 7:131-7.
    4. Ludwig S, Pleschka S, Planz O, Wolff T. Ringing the alarm bells: signalling andapoptosis in inéuenza virus infected cells. Cell Microbiol, 2006, 8:375-86.
    5. Vremec D, O?Keeffe M, Hochrein H, et al. Production of interferons by dendritic cells, plasmacytoid cells, natural killer cells, and interferon-producing killer dendritic cells. Blood, 2007, 109:1165-73.
    6. Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Ann Rev Biochem, 2007, 76:447-80.
    7. Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J, 2009, 420:1-16.
    8. Oda K, Kitano H. A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol, 2006, 2:0015.
    9. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol, 2009, 21:317-37.
    10. Meylan E, Tschopp J. Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell, 2006, 22:561-9.
    11. Honda K, Takaoka A, Taniguchi T. Type 1 interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity,2006,25:349-60.
    12. Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev, 2006, 6:644-58.
    13. Karin M. The IkappaB kinase-a bridge between inéammation and cancer. Cell Res, 2008, 18:334-42.
    14. Panne D, Maniatis T, Harrison SC. An atomic model of the interferon-beta enhanceosome. Cell, 2007, 129:1111-23.
    15. Uze G, Lutfalla G, Mogensen KE. Alpha and beta interferons and their receptor and their friends and relations. J Interferon Cytokine Res, 1995, 15:3-26.
    16. Foster GR, Rodrigues O, Ghouze F, et al. Different relative activities of human cell-derived interferon-alpha subtypes: IFN-alpha 8 has very high antiviral potency. J Interferon Cytokine Res, 1996, 16:1027-33.
    17. Yamaoka T, Kojima S, Ichi S, Kashiwazaki Y, Koide T, Sokawa Y. Biologic and binding activities of IFN-alpha subtypes in ACHN human renal cell carcinomacells and Daudi Burkitt?s lymphoma cells. J Interferon Cytokine Res, 1999, 19:1343-9.
    18. Jaks E, Gavutis M, Uze G, Martal J, Piehler J. Differential receptor subunit afènities of type 1 interferons govern differential signal activation. J Mol Biol, 2007, 366:525-39.
    19. Sato M, Hata N, Asagiri M, Nakaya T, Taniguchi T, Tanaka N. Positive feedback regulation of type 1 IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett, 1998, 441:106-10.
    20. Lin R, Genin P, Mamane Y, Hiscott J. Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol Cell Biol, 2000, 20:6342-53.
    21. Lin R, Mamane Y, Hiscott J. Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains. Mol Cell Biol, 1999, 19:2465-74.
    22. Marie I, Smith E, Prakash A, Levy DE. Phosphorylation-induced dimerization of interferon regulatory factor 7 unmasks DNA binding and a bipartite transactivation domain. Mol Cell Biol, 2000, 20:8803-14.
    23. Hiscott J. Triggering the innate antiviral response through IRF-3 activation. J Biol Chem, 2007, 282:15325-9.
    24. Honda K, Yanai H, Mizutani T, et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci USA, 2004, 101:15416-21.
    25. Hoshino K, Sugiyama T, Matsumoto M, et al. IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature, 2006, 440:949-53.
    26. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science, 2003, 300:1148-51.
    27. Fitzgerald KA, McWhirter SM, Faia KL, et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 2003, 4:491-6.
    28. Suhara W, Yoneyama M, Kitabayashi I, Fujita T. Direct involvement of CREB-binding protein/p300 in sequence-specièc DNA binding of virus-activated interferon regulatory factor-3 holocomplex. J Biol Chem, 2002, 277:22304-13.
    29. Panne D, McWhirter SM, Maniatis T, Harrison SC. Interferon regulatory factor 3 is regulated by a dual phosphorylation-dependent switch. J Biol Chem, 2007, 282:22816-22.
    30. Kumar KP, McBride KM, Weaver BK, Dingwall C, Reich NC. Regulated nuclear cytoplasmic localization of Interferon regulatory factor 3, a subunit of double-stranded RNA activated factor 1. Mol Cell Biol, 2000, 20:4159-68.
    31. Sen GC, Sarkar SN. Transcriptional signaling by double-stranded RNA: role of TLR3. Cyt Growth Factor Rev, 2005, 16:1-14.
    32. Collins SE, Noyce RS, Mossman KL. Innate cellular response to virus particle entry requires IRF3 but not virus replication. J Virol, 2004, 78:1706-17.
    33. Qin BY, Liu C, Srinath H, et al. Crystal structure of IRF-3 in complex with CBP. Structure, 2005, 13:1269-77
    34. Hiscott J, Lin R. IRF-3 releases its inhibitions. Structure, 2005, 13:1235-6.
    35. Yang H, Lin CH, Ma G, BafèMO, Wathelet MG. Interferon regulatory factor-7 synergizes with other transcription factors through multiple interactions with p300/CBP coactivators. J Biol Chem, 2003, 278:15495-504.
    36. Caillaud A, Hovanessian AG, Levy DE, Marie IJ. Regulatory serine residues mediate phosphorylation-dependent and phosphorylation-independent activation of interferon regulatory factor 7. J Biol Chem, 2005, 280:17671-7.
    37. Caillaud A, Prakash A, Smith E, et al. Acetylation of interferon regulatory factor-7 by p300/CREB-binding protein (CBP)-associated factor (PCAF) impairs its DNA binding. J Biol Chem, 2002, 277:49417-21.
    38. Panne D, Maniatis T, Harrison SC. Crystal structure of ATF-2/c-Jun and IRF-3 bound to the interferon-beta enhancer. EMBO J, 2004, 23:4384-93.
    39. Escalante CR, Brass AL, Pongubala JM, et al. Crystal structure of PU. 1/IRF-4/DNA ternary complex. Mol Cell, 2002, 10:1097-105.
    40. Escalante CR, Yie J, Thanos D, Aggarwal AK. Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature, 1998, 391:103-6.
    41. Escalante CR, Nistal-Villan E, Shen L, Garcia-Sastre A, Aggarwal AK. Structure of IRF-3 bound to the PRDIII-I regulatory element of the human interferon-beta enhancer. Mol Cell, 2007, 26:703-16.
    42. Morin P, Braganc?a J, Bandu M-T, et al. Preferential binding sites for interferon regulatory factors 3 and 7 involved in interferon-A gene transcription. J Mol Biol, 2002, 316:1009-22.
    43. Sato M, Suemori H, Hata N, et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity, 2000, 13:539-48.
    44. Honda K, Yanai H, Negishi H, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature, 2005, 434:772-7.
    45. Genin P, Lin R, Hiscott J, Civas A. Differential regulation of human interferon a gene expression by interferon regulatory factors 3 and 7. Mol Cell Biol, 2009, 29:3435-50.
    46. Kawai T, Sato S, Ishii KJ, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol, 2004, 5:1061-8.
    47. Honda K, Yanai H, Mizutani T, et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci USA, 2004, 0:15416-21.
    48. Lu R, Pitha PM. Monocyte differentiation to macrophage requires interferon regulatory factor 7. J Biol Chem, 2001, 276:45491-6.
    49. Izaguirre A, Barnes BJ, Amrute S, et al. Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J Leukoc Biol, 2003, 74:1125-38.
    50. Coccia EM, Severa M, Giacomini E, et al. Viral infection and Toll-like receptor agonists induce a differential expression of type 1 and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol, 2004, 34:796-805.
    51. Lu R, Au WC, Yeow WS, Hageman N, Pitha PM. Regulation of the promoter activity of interferon regulatory factor-7 gene: activation by interferon and silencing by hypermethylation. J Biol Chem, 2000, 275:31805-12.
    52. tenOever BR, Sharma S, Zou W, et al. Activation of TBK1 and IKKvarepsilon kinases by vesicular stomatitis virus infection and the role of viral ribonu-cleoprotein in the development of interferon antiviral immunity. J Virol, 2004, 78:10636-49.
    53. Ning S, Huye LE, Pagano JS. Regulation of the transcriptional activity of the IRF7 promoter by a pathway independent f interferon signaling. J Biol Chem, 2005, 280:12262-70.
    54. Genin P, Lin R, Hiscott J, Civas A. Differential regulation of human interferon agene expression by interferon egulatory factors 3 and 7. Mol Cell Biol, 2009, 29:3435-50.
    55. Au WC, Pitha PM. Recruitment of multiple interferon regulatory factors and histone acetyltransferase to the transcriptionally active interferon a promoters. J Biol Chem, 2001, 276:41629-37.
    56. Prakash A, Levy DE. Regulation of IRF7 through cell type-specièc protein stability. Biochem Biophys Res Commun, 2006, 342:50-6.
    57. Hassan AH, Neely KE, Vignali M, Reese JC, Workman JL. Promoter targeting of chromatin-modifying complexes. Front Biosci, 2001, 6:D1054-6.
    58. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin andmark and transcription initiation at most promoters in human cells. Cell, 2007, 130:77-88.
    59. Shilatifard A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol, 2008, 20:341-8.
    60. Merika M, Thanos D. Enhanceosomes. Curr Opin Genet Dev, 2001, 11:205-8.
    61. Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell, 2002, 111:381-92.
    62. Yamamoto Y, Verma UN, Prajapati S, Kwak YT, Gaynor RB. Histone H3 hosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature, 2003, 423:655-9.
    63. Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature, 2003, 423:659-63.
    1. Ren B, et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev, 2002, 16:245-256.
    2. Cam H, et al. A common set of gene regulatory networks links metabolism and growth inhibition. Mol Cell, 2004, 16:399-411.
    3. Bracken AP, et al. E2F target genes: unraveling the biology. Trends Biochem Sci, 2004, 29: 409-417.
    4. Dimova DK, Dyson NJ. The E2F transcriptional network: old acquaintances with new faces. Oncogene, 2005, 24:2810-2826.
    5. DeGregori J, Johnson DG. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med, 2006, 6:739-748.
    6. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell, 2002, 2: 103-112.
    7. Di Stefano L, et al. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J, 2003, 22:6289-6298.
    8. Li J, et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell, 2008, 14:62-75.
    9. Dimri GP, et al. Regulation of a senescence checkpoint response by the E2F1transcription factor and p14 ARF tumor suppressor. Mol Cell Biol, 2000, 20:273-285.
    10. Lomazzi M, et al. Suppression of the p53- or pRB-mediated G1 checkpoint is required for E2F-induced S-phase entry. Nat Genet, 2002, 31:190-194.
    11. Kong LJ, et al. Compensation and speciècity of function within the E2F family. Oncogene, 2007, 26:321-327.
    12. Wu L, et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature, 2001, 414:457-462.
    13. Aslanian A, et al. Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev, 2004, 18:1413-1422.
    14. Timmers C, et al. E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol, 2007, 27:65-78.
    15. Rowland BD, et al. E2F transcriptional repressor complexes are critical downstream targets of p19 ARF/p53-induced proliferative arrest. Cancer Cell, 2002, 2:55-65.
    16. Stanelle J, Putzer BM. E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol Med, 2006, 12:177-185.
    17. Iaquinta PJ, Lees JA. Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol, 2007, 19:649-657.
    18. Paulson QX, et al. E2F3a stimulates proliferation, p53-independent apoptosis and carcinogenesis in a transgenic mouse model. Cell Cycle, 2006, 5:184-190.
    19. Saavedra HI, et al. Speciècity of E2F1, E2F2, and E2F3 in mediating phenotypes induced by loss of Rb. Cell Growth Differ, 2002, 13:215-225.
    20. Ziebold U, et al. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev, 2001, 15:386-391.
    21. Lipinski MM, et al. Cell-autonomous and non-cell-autonomous functions of the Rb tumor suppressor in developing central nervous system. EMBO J, 2001, 20:3402-3413.
    22. Vousden KH, Lu X. Live or let die: the cell?s response to p53. Nat Rev Cancer, 2002, 2:594-604.
    23. Rogoff HA, et al. E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis. Mol Cell Biol, 2002, 22:5308-5318.
    24. Berkovich E, Ginsberg D. ATM is a target for positive regulation by E2F-1. Oncogene, 2003, 22:161-167.
    25. Powers JT, et al. E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res, 2004, 2:203-214.
    26. Rogoff HA, et al. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol, 2004, 24:2968-2977.
    27. Chen D, et al. Apoptosis-stimulating protein of p53-2(ASPP2/53BP2L) is an E2F target gene. Cell Death Differ, 2005, 12:358-368.
    28. Fogal V, et al. ASPP1 and ASPP2 are new transcriptional targets of E2F. Cell Death Differ, 2005, 12:369-376.
    29. Hershko T, et al. Novel link between E2F and p53: proapoptotic cofactors of p53 are transcriptionally upregulated by E2F. Cell Death Differ,2005,12: 377-383.
    30. Hsieh JK, et al. Novel function of the cyclin A binding site of E2F in regulating p53- induced apoptosis in response to DNA damage. Mol Cell Biol, 2002, 22:78-93.
    31. Bell LA. et al. DNA-binding independent cell death from a minimal proapoptotic region of E2F-1. Oncogene, 2006, 25:5656-5663.
    32. Wikonkal NM, et al. Inactivating E2f1 reverts apoptosis resistance and cancer sensitivity in Trp53-deècient mice. Nat Cell Biol, 2003, 5:655-660.
    33. Moon NS, et al. Drosophila E2F1 has context-specièc pro-and antiapoptotic properties during development. Dev Cell, 2005, 9:463-475.
    34. Dick FA, Dyson N. pRB contains an E2F1-specièc binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. Mol Cell, 2003, 12:639-649.
    35. Markham D, et al. DNA-damage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep, 2006, 7:192-198.
    36. Lin WC, et al. Selective induction of E2F1 in response to DNA damage, mediated by ATM- dependent phosphorylation. Genes Dev, 2001, 15:1833-1844.
    37. Stevens C, et al. Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol, 2003, 5:401-409.
    38. Pediconi N, et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol, 2003, 5:552-558.
    39. Hallstrom TC, Nevins JR. Speciècity in the activation and control of transcription factor E2F-dependent apoptosis. Proc Natl Acad Sci USA, 2003, 100:10848-10853.
    40. Hallstrom TC, Nevins JR. Jab1 is a speciècity factor for E2F1-induced apoptosis. Genes Dev, 2006, 20:613-623.
    41. Giangrande PH, et al. Identiècation of E-box factor TFE3 as a functional partner for the E2F3 transcription factor. Mol Cell Biol, 2003, 23, 3707-3720.
    42. Schlisio S, et al. Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for speciècity of E2F function. EMBO J, 2002, 21:5775-5786.
    43. Morris EJ, et al. Functional identiècation of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet, 2006, 2:e196
    44. Moon NS, et al. A gradient of epidermal growth factor receptor signaling determines the sensitivity of rbf1 mutant cells to E2F-dependent apoptosis. MolCell Biol, 2006, 26:7601-7615.
    45. Liu K, et al. Regulation of TopBP1 oligomerization by Akt/PKB for cell survival. EMBO J, 2006, 25:4795-4807.
    46. Hallstrom TC, et al. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell, 2008, 13:11-22.
    47. Chaussepied M, Ginsberg D. Transcriptional regulation of AKT activation by E2F. Mol Cell, 2004, 16:831-837.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700