黑龙江省穆棱市砍椽沟钼铜矿床成矿地质条件及找矿远景评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砍椽沟钼铜矿床位于佳木斯隆起带南缘、八面通隆起的穆棱凹陷和伊林凹陷复合部位,地处佳木斯—牡丹江多金属成矿带的南东段。矿区出露地层主要为中元古界黑龙江群下亚群绿片岩系、中生界花岗质角砾岩及第三系船底山玄武岩。矿区发育岩浆岩主要有花岗岩类和第三纪玄武岩。与成矿有关的是花岗质岩石,主要是花岗闪长岩、花岗闪长斑岩、角砾状花岗斑岩。多处见到晚期石英脉,亦有矿化痕迹。花岗岩带在矿区沿光复屯背斜轴部侵入。北西向的砍椽沟断裂及其次级断裂构造为岩浆活动和矿化作用的中心。
     本文在原有矿点检查及矿产普查的基础上,深入研究该矿床的矿床成矿背景、矿床地质特征、地球化学特征基础上,分析成矿地质条件,特别是成矿作用与黑龙江群绿色片岩系及中生代花岗质岩浆岩之间的时空关系以及物质成因联系,查明Cu-Mo矿体在时间上、空间上的分布规律及矿体空间组合特征,确定找矿方向,进行找矿远景评价分析,研究成果对指导矿床深部及外围预测具有重要的理论及实际意义。
Kanchuangou Mo-Cu deposit which besides to the Dunhua-Mishan deep fault, belongs to the south-east part of Jiamusi-Mudanjiang polymetallic metallogenic belt. The main exposure strata in this area are greenschist series subsets of mesoproterozoic Heilongjiang group, Mesozoic granitic breccia, and tertiary Chuandishan basalt. Among them the granitic rocks are related to metallogenic, and most are granitic diorite, granitic diorite porphyry, breccia granitic-porphyry. Late quartz veins have be seen most place, and also have mineralization traces. The granite belt intruded along the anticline axis in Guangfutun. The North West Kanchuangou fractures and the secondary fracture tectonics are the centre of magmatism and mineralization. Metallogenic granitic diorite and granitic-porphyry present medium-fine grained and unequal grained granitoid texture, massive structure. The main mineral compositions are quartz, alkali feldspar, plagioclass, biotite and some opaque mineral. To analysis the major element content property in metallogenic granitic diorite and granitic-porphyry, it shows that the metallogenic rocks has high Sr, Na, K and low Y, Mg, and have the characteristics of calcium-alkaline magmatic evolution, which belong to the C type adak rock. The test results of trace element show that the granitic rock in this area are lack of Nb, Nd, and such HFS elements, rich of Rb, Ba and such of lithophile elements. It also shows that the granitic rock in this area have the adak rock characteristics. Ree composition has lightly negative Eu anomalies, which shows that plagipclase has some degree fractional crystallization, or had affected by the plagipclase fractional crystallization, and magma is the crust source, and the magma source area exist a certain of garnet residue. The rock alteration show potassic alteration, silicfication, clay alteration, sericitization, chloritization, carbonation and so on.
     The lindgrenite alteration generally appeared molybdenite, chalcopyrite, and granite cracks filled with a few pyrrhotite, pyrite, metal sulfides, or such minerals distributed sparsely impregnation in the granitite diorite porphyry. According to the mineralization characteristics three kinds of mineralization could be divided, such as veinlet disseminated mineralization, disseminated mineralization, and mineralization associated with quartz vein. The orebody mainly produced in granite belts which are controlled by the fault structures. In the granite belt there developed tectogenetic breccia granite-porphyry, and unequal scale quartz vein. The limit between orebody and surrounding rock isn’t clear, and the limit mainly be delineated by the sample analysis results, which mainly manifested as granodiorite and granite-porphyry locally total mineralization. Minerals as molybdenite and chalcopyrite mainly are hosted in silicification, potassic alteration, carbonation, or such alteration area. And the silicification intensity is related to the mineralize intensity. The orebodys are veiny, strike 35°~50°, and rake angles are in medium scale. The metallic minerals in ore mainly are molybdenite, chalcopyrite and pyrrhottie, with a few sphalerite and galena. The ore structures mainly are sparse disseminated structure and fine vein structure. Based on the laboratory study and the field study, the mineralization stages could be divided into quartz vein (sparse sulfide) filling stage, porphyry type molybdenum mineralization stage, and copper polymetallic mineralization stage. The main mineralization happened in Yanshan late stage(111.8±1.4 Ma). Formation of lindgrenite mainly happened in the last two stages.
     Research of fluid inclusion show that Kanchuangou lindgrenite ore-forming fluid in a kind of NaCl-H2O system fluid. Before mineralization, the fluid has high temperature and high salinity, which represented the early magma hydrothermal evolution character. At the mineralization phase, the fluid has middle-low temperature and middle-low salinity. The Kuanyuan ditch lindgrenite mineralization period fluid homogeneous temperature zone mainly concentrated in 119.8~276.1℃. The peak 170~200℃exist the trend of temperature reducing and salinity increasing. That show the ore-forming fluid mainly originated from magma period later hydrothermal.
     The cathodoluminescence photo show that zircon in this area normally are half euhedral to euhedral, particle sizes are 200-250μm, long columnar, oscillatory zones are obviously, breadth large, declared zircons are magmatic origin, formed temperature was high, microelement diffused fast. The dating results show that metallogenic granitic formed age was 111.8±1.4Ma, belong to Mesozoic Yanshan late magma activity product. It indicates the molybdenum deposit formed in Yanshan late period.
     Based on the geochemistry characteristics of ore contained magmatic, combined with the characteristics of deposit geology, the formation of aspects of ore body is controlled by the granodiorite, granite-porphyry, and the north north-east fault structure, belong to porphyry type hydrothermal vein type cause.
     Based on the mineralization enrichment regularity, the Kanchuangou lindgrenite belong to porphyry type hydrothermal vein type deposit. The orebody obviously controlled by structure. Metallogenic condition is good, and has large prospecting potential. Especially the underground blind orebody should increase the exploration degree. Geochemical anomaly and deposit geology characteristics show that the mining area has more possibility of concealed orebody. Based on existing exploration results, 4,5,6,7 orebody in inclined shaft engineering system showed north east distribution, trend is about 45°, 1~3 orebody showed north north-east distribution, trend is about 20°. Orebody morphology and scale is controlled by the structure. Rock fragmented and silicification developed area mineralization is stronger. Based on regional structure characteristics and mining area structure development, the working emphasis should be 4,5,6,7 orebody. Through further engineering control, certain scale of commercial reserves could obtain hopefully.
引文
[1]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993
    [2]谭成印.黑龙江省主要金属矿产构造—成矿系统基本特征[D].北京:中国地质大学,2009.
    [3]许亚明,廖桂香,廖莉萍.黔西北地区多元素地球化学特征与找矿标志[J].吉林大学学报:地球科学版, 2009,39(5):818-822.
    [4]任云生,牛军平,雷恩,等.吉林四平三家子钨矿床地质与地球化学特征及成因[J].吉林大学学报:地球科学版, 2010, 40(2): 314-320.
    [5]王希今,谭成印,张东才,等.黑龙江省有色、贵金属矿产区域成矿特征[J].矿物岩石地球化学通报, 2007 ,26 (4):376-381.
    [6]翟明国.埃达克岩和大陆下地壳重熔的花岗岩类[J].岩石学报, 2004,20(2):193-194.
    [7]王元龙,张旗,王强,等.埃达克质岩与Cu-Au成矿作用关系的初步探讨[J].岩石学报, 2003, 19(3):543-550.
    [8]张炯飞,李之彤,金成洙.中国东北部地区埃达克岩及其成矿意义[J].岩石学报, 2004, 20(2):361-368.
    [9]葛文春,吴福元,周长勇.兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007,52(20):2407-2417.
    [10]隋振民,葛文春,吴福元,等.大兴安岭北部察哈彦岩体的Hf同位素特征及其地质意义[J].吉林大学学报:地球科学版, 2009,39(5) :849-856,867.
    [11]李碧乐;张娟;张晗,等.内蒙古赤峰市鸭鸡山钼铜矿成矿流体特征及矿床成因[J].吉林大学学报(地球科学版),40(1):61-72,230.
    [12]韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].黑龙江人民出版社,2004
    [13]范永香.成矿规律与成矿预测[M].2003,12
    [14]薛明轩,叶松青,刘智明,等.黑龙江东安金矿床地质地球化学特征初探[J].黄金,2002,07.
    [15]韦延光,王可勇,杨言辰,等.吉林白山市大横路CuCo矿床变质成矿流体特征[J].吉林大学学报(地球科学版).2002,04.
    [16]葛文春,隋振民,吴福元,等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报,2007,023(2):423-440
    [17]曹新志,孙华山,徐伯骏.关于成矿预测研究的若干进展. [J]黄金,2003,24(4):11-14
    [18]徐兴旺,蔡新平,王杰,等.流体构造动力学及其研究现状与进展[J].地球科学进展,2001,16(3):324-331.
    [19]赵一鸣,毕承思,邹晓秋,等.黑龙江多宝山、铜山大型斑岩铜(钼)矿床中辉钼矿的铼-锇同位素年龄[J].地球学报,1997,18(1):61-67.
    [20]聂凤军,张万益,杜安道,等.内蒙古小东沟斑岩型钼矿床辉钼矿铼-锇同位素年龄及地质意义[J]地质学报, 2007,81(7):898-905.
    [21]杨言辰,张兰玲,叶松青,等.黑龙江省逊克县新民金矿床流体包裹体研究[J].黄金,2009,03
    [22]赵元艺,马志红,仲崇学.黑龙江铜山铜矿床地球化学及其找矿模型[J].地质与勘探,1995,31(3):48-54.
    [23]董传统,杨增武,赵清泉.黑龙江省金场沟铜钼金矿地电特征及找矿模式[J].黄金科学技术,2008,16(1):39-42.
    [24]时永明,崔彬,贾维林.黑龙江省铁力市鹿鸣钼矿床地质特征[J].地质与勘探,2007,43(2):19-22.
    [25]谭成印,杜杨松,赵寒冬.黑龙江右岸北西向有色、贵金属构造-成矿带的确立及其地质意义地质与资源,2009,18(4):256-264,278.
    [26]杨言辰.黑龙江小兴安岭-张广才岭成矿带金、多金属矿床成矿规律与成矿预测[R].长春:吉林大学,2005
    [27]武广,孙丰月,赵财胜,等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报, 2005,50(20):2278-2288 .
    [28]王元龙,张旗,王强,等.埃达克质岩与Cu-Au成矿作用关系的初步探讨[J].岩石学报, 2003,19(3):543-550.
    [29]王强,许继锋,赵振华.一种新的火成岩——埃达克岩的研究综述[J].地球科学进展, 2001,16(2):201-208.
    [30]戴雪灵,彭省临,胡祥昭.河北小寺沟铜钼矿埃达克岩:年龄、地球化学特征及其地质意义[J].矿床地质,2010, 29(3):517-528.
    [31]罗铭玖,林潜龙,卢欣祥,等.东秦岭含钼花岗岩的地质特征[J].河南地质,1993,11(1):2-8.
    [32]薛春纪,曾荣,高永宝,等.兰坪金顶大规模成矿的流体过程——不同矿化阶段流体包裹体微量元素约束[J].岩石学报,2006,22(4):1031-1039.
    [33]谭成印,王根厚,李永胜.黑龙江多宝山成矿区找矿新进展及其地质意义[J].地质通报,2010,29(2/3):436-445.
    [34]刘志宏.黑龙江省翠宏山钨钼锌多金属矿床地质特征及成因[D].长春:吉林大学,2009.
    [35]陈毓川,裴荣富,王登红.三论矿床的成矿系列问题[J].地质学报,2006,80(10):1501-1508.
    [36]代军治,毛景文,谢桂青,等.辽西兰家沟钼矿床成矿流体特征及成因探讨[J].矿床地质, 2007,26(4):443-454.
    [37]唐文龙.黑龙江省前进地区岩浆岩地球化学特征与成矿预测[D].长春:吉林大学,2007.
    [38]董传统.黑龙江省鸡东县金场沟铜钼矿床地质特征及找矿潜力评价[D].长春:吉林大学,2009.
    [39]李朝阳,等.中国铜矿主要类型特征及其成矿远景[ M].北京:地质出版社.2000.
    [40]唐文龙,杨言辰,李骞,等.伊春前进地区岩浆岩的地球化学特征及其对成矿的制约[J].吉林大学学报:地球科学版,2007,37(1):41-47.
    [41]杨言辰,马志红,杨宝俊.中国北方古元古代成矿带矿床成矿系列研究[M].吉林人民出版社.2002
    [42]杨言辰,王可勇,冯本智.大横路式钴(铜)矿床地质特征及成因探讨[J].地质与勘探.2004,40(1):7-11.
    [43]程裕淇,陈毓川,赵一鸣,等.初论矿床成矿系列问题[J].中国地质科学院院报, 1979, 1(1): 32-58
    [44]程裕淇,陈毓川,赵一鸣,等.再论矿床的成矿系列问题[J].中国地质科学院院报, 1983, (2): 1-64
    [45]贾伟光,王晓勇,张春辉等.黑龙江砂宝斯金矿成矿流体性质研究. [J].地质与资源, 2004, 13 (3): 148-151
    [46]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社, 1999, 1 ~ 290.
    [47]邱家骧.岩浆岩岩石学[M].北京:地质出版社, 1985, 1 ~ 340.
    [48]成建勋,叶松青,丁枫,等.藏东马牧普地区斑岩型铜金银多金属矿化带地球化学异常评价[J].世界地质,2005,12.
    [49]杨言辰,郭嘉,张兰岭,等.黑龙江磨石山铜多金属矿床流体包裹体研究[J].世界地质,2010,29(2),240-247.
    [50]韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].哈尔滨:黑龙江人民出版社.2004.
    [51]王京彬,王玉往,王莉娟.大兴安岭中南段铜矿成矿背景及找矿潜力[J].地质与勘探. 2000,36(5):1-4.
    [52]舒启海,蒋林,赖勇.内蒙古阿鲁科尔沁旗敖仑花斑岩铜钼矿床成矿时代和流体包裹体研究[J].岩石学报,2009,25(10):2601-2614.
    [53]吴福元,曹林.东北亚地区的若干重要基础地质问题[J].世界地质.1999,18(2):1-13.
    [54]陈雪.黑龙江省鸡东金场沟铜钼矿控矿条件与成矿预测[D].长春:吉林大学,2008.
    [55]张苏江.黑龙江省铁力地区钼(铜)矿床成矿地质条件及找矿潜力分析[D].长春:吉林大学,2009.
    [56]程小珍,杨伦,张晓.内蒙古小东沟钼矿成矿地质条件分析[J].地质与勘探, 2007,43(5) ,11-16.
    [57]于玺卿,陈旺,李伟.内蒙古大苏计斑岩型钼矿床地质特征及其找矿意义[J].地质与勘探,2008,2:
    [58]郭嘉.黑龙江省霍吉河钼矿床地质特征及成因[D].长春:吉林大学,2009.
    [59]杨增武,宋俊涛,董传统,等.黑龙江省金场沟区铜钼矿床地质特征及找矿标志[J]黄金科学技术, 2005,(04) .
    [60]孙丰月,王力,霍亮,等.黑龙江乌拉嘎大型金矿床流体包裹体特征及矿床成因研究[J].中国地质, 2008,35 (6):1267-1273.
    [61]王可勇,任云生,程新民,代军治.黑龙江团结沟金矿床流体包裹体研究及矿床成因[J].大地构造与成矿学, 2004,28 (2):171-178.
    [62] COLEMAN M, HODGES K. Evidence for Tibetan Plateau up-lift before 14 Ma ago from a new minimum age for east-west ex-tension[J].Nature, 1995, 374:49-52.
    [63] Kerrich R, Goldfarb R, Groves D,et al. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]Science in China(Series D:Earth Sciences), 2000,(S1) .
    [64] CHEN W J, LI Q, HAO J, et al. Post crystallization thermal evolution history of Gangdese batholithic zone and its tectonic implication[J].Science in China, 1999, 42(1): 37-44.
    [65] Candela P A.Controls on ore metal ratios in granite-related ore systems:an experimental and computational approach[J].Transac-tions of the Royal Society of Edinburgh:Earth Sciences,1992,83:317-326.
    [66] DURR S B. Provenance of Xigaze fore-arc basin clastic rock(sCretaceous, south Tibet)[J].Geol Soc Am Bull, 1996, 108:669-684.
    [67] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subduction lithosphere[J]. Na-ture,1990,347:662-665.
    [68] Tazawaa J, Chenb Z Q. Middle Permian brachiopods from the Tumenling Formation in the Wuchang area, southern Heilongjiang, NE China,and their palaeobiogeographical implications,Journal of Asian Earth Sciences [J].2006,26:327–338
    [69] Arribas A Jr. Characteristics of high-sulfidation epithermal deposits and their relation to magmatic fluid[J].Mineralogical Association of Canada Short Course Series, 1995, 23: 419-454.
    [70] Bischoff J L. Densities of liquids and vapors in boiling NaCl-H2O solutions: A PVTX summary from 300 to 500℃[J]. America Journal of Science, 1991. 291: 309-338.
    [71] All Gre C J, Girardeau J, Marcoux X J,et al. Struc-ture and evolution of the Himalayan-Tibet orogenic belt[J].Na-ture, 1984, 307: 17-22.
    [72] Zheng you-ye. Ore-forming fluid controlling minerallzation in Qulong super-large porphyry copper deposit, Tibet [J].Diqiu Kexue–Zhongguo Dizhida Daxue Xuebao /Earth Science-jlurnal of China University of Geosciences .2006,31(3):349-354.
    [73] Bell D R. Water in mantle minerals [J]. Nature,1992,357: 646-647.
    [74] Boyle R W. The geochemistry of gold and its deposit (together with a chapter on geochemical prospectingforthe element) [M]. Geological Sur-vey, Bulletin 280, 1979.
    [75]DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Na-ture,1990, 347: 662-665.
    [76] BLLSNLUK P M, HACKER B, GLODNY J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J].Na-ture, 2001,412:628-632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700