ZK60和GW103K镁合金高周疲劳行为及其喷丸强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金运动类零部件减重效应大,在交变载荷作用下容易以疲劳方式失效,研究清楚镁合金的疲劳失效行为和提升其疲劳性能意义重大。本文选取商业牌号高强变形镁合金ZK60和新型高强镁稀土合金GW103K为研究对象,首先研究不同状态、不同类型试样的高周疲劳性能和疲劳断裂行为;其次开发适合镁合金喷丸强化的表面处理关键设备;然后表征喷丸处理后合金表面形变层组织、结构和性能特征;再研究喷丸处理合金的高周疲劳性能和疲劳断裂行为;最后尝试解释喷丸强化镁合金机理。
     ZK60和GW103K镁合金不同状态、不同类型试样的高周疲劳性能研究结果表明,挤压态高于铸态,时效态高于挤压态,而固溶态低于挤压态。挤压态和挤压+时效态ZK60合金光滑试样的107次疲劳强度分别为140和150MPa;挤压态ZK60合金Kt=2.3和2.7缺口试样疲劳强度Kt.?-1分别为150和160MPa;挤压+时效态ZK60合金Kt=2.3和2.7缺口试样疲劳强度Kt.?-1分别为155和165MPa;而铸态(85MPa)、铸态+T6态(105MPa)、挤压+T4态(110MPa)、挤压+T6态(110MPa)、挤压态(150MPa)、挤压+过时效态(160MPa)、挤压+欠时效态(160MPa)、挤压+峰时效态(165MPa)GW103K合金光滑试样依次具有更高的疲劳强度。同等状态下,GW103K合金的疲劳强度高于ZK60合金。
     裂纹复型和疲劳断裂行为研究结果表明,挤压态和挤压+时效态ZK60镁合金光滑试样的疲劳裂纹萌生于试样表面,且只有一个疲劳裂纹源,裂纹从萌生源向试样横截面的对面呈扇形扩展,裂纹萌生寿命远大于扩展寿命;而缺口试样的疲劳裂纹萌生于缺口根部,且有多个裂纹源,裂纹由四周向中心扩展,裂纹萌生寿命远小于扩展寿命。
     不同状态GW103K镁合金具有不同的疲劳裂纹萌生、扩展和断裂行为。铸态、铸态+T6态、挤压+T4态和挤压+T6态合金的疲劳裂纹主要萌生于亚表面的气孔或氧化物等缺陷处,疲劳强度由非扩展裂纹决定;挤压态和时效态合金的疲劳裂纹主要萌生于表面挤压条带组织中的粗大晶粒区域,疲劳强度由疲劳裂纹萌生决定;铸态和挤压+T4态合金的疲劳断裂方式以穿晶扩展为主;铸态+T6态和挤压+T6态合金以沿晶扩展为主;挤压态和时效态合金为沿晶和穿晶混合扩展模式。
     喷丸处理后ZK60和GW103K镁合金表面变形层微观组织的研究结果表明,随喷丸强度增加,各状态合金的表面变形层深度、微观组织细化程度、显微硬度、残余压应力和表面粗糙度均增加。挤压织构显著弱化。喷丸强度为0.10mmN时,挤压态ZK60和GW103K合金部分晶粒尺寸达到150nm,表面粗糙度Ra约为1?m,变形层显微硬度增幅分别为40和45HV0.05,最大残余压应力分别约为75和120MPa。GW103K合金变形层显微硬度增幅以及最大残余压应力均高于ZK60合金,且疲劳过程中残余压应力松弛幅度更小。
     喷丸处理ZK60和GW103K镁合金的疲劳寿命表现出很大的喷丸强度敏感性和过喷效应,高周疲劳寿命随喷丸强度增加先增大,达到一个峰值,然后急剧降低。挤压态和挤压+时效态ZK60合金光滑试样的合适喷丸强度范围为0.02~0.15mmN,缺口试样的合适喷丸强度范围为0.20~0.50mmN;挤压态和挤压+时效态GW103K合金的合适喷丸强度范围为0.05~0.30mmN。
     挤压态和挤压+时效态ZK60镁合金光滑试样在最佳喷丸强度0.05mmN条件下,疲劳强度分别提高到180和195MPa,缺口试样分别在最佳喷丸强度0.30和0.40mmN条件下,疲劳强度分别提高到220和240MPa;铸态(0.40mmN)、铸态+T6态(0.50mmN)、挤压态(0.10mmN)、挤压+欠时效态(0.10mmN)、挤压+峰时效态(0.10mmN)、挤压+过时效态(0.10mmN)、挤压+T4态(0.30mmN)和挤压+T6态(0.40mmN)GW103K镁合金光滑试样在各自最佳喷丸强度条件下,疲劳强度分别提高到115、125、215、230、240、205、140和140MPa。时效状态合金喷丸强化效果优于非时效状态合金,缺口试样优于光滑试样,GW103K合金优于ZK60合金。
     喷丸后ZK60和GW103K镁合金疲劳断裂行为分析表明,挤压态和挤压+时效态ZK60合金光滑试样的疲劳裂纹萌生源先由表面转移到亚表面,而后又回到表面,裂纹源数量由未喷丸和较小喷丸强度时的单个变为高喷丸强度时的多个;而缺口试样的疲劳裂纹仍萌生于缺口根部,裂纹源数量仍为多个。铸态、铸态+T6态、挤压+T4态和挤压+T6态GW103K合金疲劳裂纹的萌生位置以及扩展行为与喷丸前无明显变化,而挤压态和挤压+时效态合金的裂纹萌生位置则由表面转移到亚表面,挤压态GW103K合金疲劳裂纹主要沿解理面扩展,挤压+时效态合金以剪切韧窝合并方式扩展。所有状态GW103K合金的疲劳裂纹萌生源数量仅为一个,不随喷丸强度变化。
     喷丸处理ZK60和GW103K镁合金疲劳性能分析结果表明,喷丸引起合金变形层组织细化、残余压应力和显微硬度的增加有利于提高其高周疲劳性能,而表面粗糙度的增加不利于提高高周疲劳性能。喷丸强度过大时,表面粗糙和微裂纹会降低组织细化、残余压应力和显微硬度的强化效果。
     ZK60和GW103K镁合金的拉压疲劳微观变形行为和喷丸强化机理分析表明,拉压疲劳循环过程中,挤压态和挤压+时效态ZK60合金在压缩过程中以孪生变形为主,拉伸过程以去孪或孪生回复为主,存在显著的拉压不对称性和孪生–去孪现象;而挤压态和挤压+时效态GW103K合金在压缩和拉伸过程中均以位错滑移为主,无明显拉压不对称性和孪生–去孪现象。喷丸处理过程中,挤压态和挤压+时效态ZK60合金以位错滑移和孪生为主,而挤压态和挤压+时效态GW103K合金以位错滑移为主。喷丸处理形成的孪晶在随后疲劳循环过程中的去孪会引起残余压应力松弛,同时较高密度的孪晶增加了疲劳裂纹的潜在萌生源,降低喷丸强化效果。
At present, it is a hot topic of research on magnesium alloys due to the possible weight saving. However, limited fatigue durability restricts the range of their applications. Shot peening is a powerful method of enhancing the fatigue performance of structural metallic materials. The present study was aimed firstly at investigating the high cycle fatigue properties and fatigue fracture behavior of the ZK60 and GW103K magnesium alloys in different conditions. The key equipments such as shot peening and rotation bending fatigue machine for magnesium alloys were machined. Further study was put on the high cycle fatigue properties and fatigue fracture behavior of peened ZK60 and GW103K alloys. Make a final attempt to explain the shot peening strengthening mechanism of magnesium alloy. ZK60 and GW103K alloys in different conditions as well as different types of amples possessed different high cycle fatigue properties. The fatigue strengths at 107 cycles of smooth and notched specimens (Kt=2.3 and 2.7) of the as-extruded (or extruded-aged) ZK60 alloy were 140, 150 and 160 MPa (or 150, 155 and 165 MPa), respectively. The fatigue strengths of smooth specimens for the as-cast, cast-T6, extruded-F, extruded-UA, extruded-PA, extruded-OA, extruded-T4 and extruded-T6 GW103K alloys were 85, 105, 150, 160, 165, 160, 110 and 110MPa, respectively.
     The study on crack initiation, propagation and fracture behaviors by using the replica method and SEM show that the fatigue cracks of smooth specimens for the as-extruded and extruded-aged ZK60 alloys initiated at sample surface with only one initiation site. Its fatigue crack nucleation life was great longer than the crack propagation life. Comparatively, the fatigue cracks of the notched specimens for the as-extruded and extruded-aged ZK60 alloys initiated at the notch root surface with multiple initiation sites, and its fatigue crack nucleation life was great shorter than the crack propagation life.
     The fatigue cracks of the as-cast, cast-T6, extruded-T4 and extruded-T6 GW103K alloys initiated at porosities or inclusions that lie subsurface, and their fatigue strengths were determined by non-propagation cracks. Comparatively, the fatigue cracks of the as-extruded and extruded-aged alloys initiated at the regions with coarse grains that lie surface, and their fatigue strengths were determined by crack initiation.
     The research on the surface characteristics of the peened ZK60 and GW103K alloys show that the deformation depth, grains refinement degree, microhardness, compressive residual stress and surface roughness increased with the increasing of Almen intensity. Comparatively, at the same Almen intensity, the microhardness improvement and maximum compressive residual stress in the GW103K alloy were higher than those in the ZK60 alloy with similar condition. Furthermore, the relaxation degree of compressive residual stress of the GW103K alloy during fatigue cycling is significantly less than that of the ZK60 alloy.
     A pronounced overpeening effect was observed in the ZK60 and GW103K alloys. The fatigue life depends on the Almen intensity, with the fatigue life first dramatically increased with the Almen intensity, and then similarly dramatically decreased. The optimum shot peening process window of the as-extruded and extruded-aged ZK60 alloys is 0.02~0.15mmN for smooth specimens and 0.20~0.50mmN for notched specimens. For the as-extruded and extruded-aged GW103K alloys, the optimum shot peening process window is 0.05~0.30mmN.
     The optimum Almen intensities of the as-extruded and extruded-aged ZK60 alloys are 0.05 mmN for the smooth specimens, and 0.30 and 0.40mmN for the notched specimens, respectively. Compared to the unpeened smooth specimens, the increase of fatigue strengths for 107 cycles was 40 MPa for the as-extruded ZK60 and 45 MPa for the extruded-aged ZK60; while compared to the unpeened notched specimens, the increase of fatigue strength ( ? a ?Kt, Kt=2.3) was 70 MPa for the as-extruded ZK60 and 85 MPa for the extruded-aged ZK60. The optimum Almen intensities of the as-cast, cast-T6, extruded-F, extruded-UA, extruded-PA, extruded-OA, extruded-T4 and extruded-T6 alloys were 0.40, 0.50, 0.10, 0.10, 0.10, 0.10, 0.30 and 0.40mmN, respectively. The fatigue strengths of the peened GW103K alloys in eight conditions were 30, 20, 65, 70, 75, 40, 30 and 30MPa higher than those of the unpeened specimens, respectively.
     The fractography observation by SEM shows that the fatigue crack nucleation site of smooth specimen of ZK60 alloy shifted from surface to the subsurface, and then shifted to the surface again, with the increase in Almen intensity. Meanwhile, a significantly higher number of fatigue crack initiation sites resulted from overpeening can be seen. Compared to smooth specimen, shot peening exhibits no significant effect on the fatigue crack initiation of notched specimen. The fatigue cracks of the peened GW103K alloys in different conditions initiated in subsurface at all Almen intensities, and they still have one crack initiation site with the increase in Almen intensity. The small fatigue crack in the peened as-extruded GW103K alloy grew alont the cleavage planes. In contrast, the small crack in the extruded-aged GW103K alloy propagated by the coalescence of the sheared dimples. The measurement results on the surface and subsurface characteristics in the peened magnesium alloys show that the improvements of grain refinement, compressive residual stress and microhardness were efficient to improve high cycle fatigue properties, while surface roughening accelerates the nucleation and early propagation of cracks.
     For the as-extruded and extruded-aged ZK60 alloys, during the compression and tension fatigue cycling, mechanical twinning dominates deformation in compression, while dislocation slip dominates deformation in tension, i.e., the as-extruded and extruded-aged ZK60 alloys exhibit twinning and detwinning phenomenon. Comparatively, dislocation slip dominates deformation in both compression and tension in the as-extruded and extruded-aged GW103K alloys. Similarly, the twinning deformation for the as-extruded and extruded-aged ZK60 alloys and dislocation slip for the as-extruded and extruded-aged GW103K alloys are the grains refinement mechanism by shot peening. The twinning induced by shot peening and detwinning during fatigue cycling leads to the residual stress relaxation. Meanwhile, the possibility of these twins acting as crack initiation sites decreases the positive effect of shot peening on fatigue resistance.
引文
[1] B. Viehweger, C. Leyens, J. Becker, P. Bogon, H. Gers, G. Pieper, A. Kiefer, K. Roll, O. Straube. Magnesium-entwicklungen für den automobilbau, ATZ– Automobiltechnische Zeitschrift, Jg. 107, 2005, 10: 922–929.
    [2] A. Luo, M.O. Pekguleryuz. Cast magnesium alloys for elevated temperature applications. Journal of Materials Science, 1994, 29: 5259–5271.
    [3] B.L. Mordike, T. Ebert. Magnesium: Properties—applications—potential. Materials Science and Engineering A, 2001, 302: 37–45.
    [4] J.E. Gray, B. Luan. Protective coatings on magnesium and its alloys—a critical review. Journal of Alloys and Compounds, 2002, 336(1–2): 88–113.
    [5] J. Becker, P. Bogon, H. Gers, A. Kiefer, C. Leyens, F. Newiak, K. Roll, O. Straube, B. Viehweger. Magnesium–Knetlegierungen für den Automobilbau. ATZ-Automobiltechnische Zeitschrift, 2005, 107(10): 922–929 (in German).
    [6]丁遂栋.断裂力学.北京:机械工业出版社, 1997.
    [7]平.修二编.郭廷玮,李安定译.热应力与热疲劳.北京:国防工业出版社, 1984.
    [8]《金属机械性能》编写组.金属机械性能.北京:机械工业出版社, 1982.
    [9]吕文阁.基于疲劳短裂纹行为的疲劳寿命估算方法.机械工程材料, 2001, 25(2): 18–20.
    [10]储佳章,王建一.学科交叉融合,寿命定量设计.中国机械工程, 1998, 9: 1–2.
    [11]福克斯[美].工程中的金属疲劳.北京:中国农业机械出版社, 1983.
    [12] J.J. Duga, W.H. Fisher, R.W. Buxbaum, A.R. Rosenfield, A.R. Buhr, E.J. Honton, S.C. McMillan. Fracture costs US $119 billion a year, says study by battelle/NBS. International Journal of Fracture, 1983, 23: R81–R83.
    [13] M.F. Kannien, C.H. Popelar. Advanced fracture mechanics. Oxford: Oxford University PRESS, 1985, 9–10.
    [14]哈宽富.金属力学性质微观理论.北京:科学出版社, 1991.
    [15]邓增杰,周敬恩.工程材料的断裂与疲劳.北京:机械工业出版社, 1995.
    [16]刘德刚,王凤洲,林春虎.国外疲劳研究及应用领域的新发展.铁道车辆, 2001, 9: 10–12.
    [17]华文林.现代疲劳技术在汽车测试中的应用.黄石高等专科学校学报, 2002, 18: 49–50.
    [18]高镇同,雄峻江.疲劳可靠性.北京:北京航空航天大学出版社, 2000.
    [19]赵少汴,王忠保.疲劳设计.北京:机械工业出版社, 1992.
    [20]赵少汴.抗疲劳设计.北京:机械工业出版社, 1994.
    [21]赵少汴,王忠保.疲劳设计-方法与设计.北京:机械工业出版社, 1995.
    [22]郑修麟.材料的力学性能.西安:西北工业大学出版社, 2001.
    [23]利用JR阻力曲线确定金属材料延性断裂韧度的实验方法. GB2038-80.北京:国家技术监督局, 1980.
    [24]刘文才.电解低钛铝基合金制备的ZL108合金疲劳性能与断裂韧性研究. [硕士论文],郑州,郑州大学, 2006.
    [25]束德林.金属力学性能.北京:机械工业出版社, 1999.
    [44] Y. Kobayashi, T. Shibusawa, K. Ishikawa. Environmental effect of fatigue crack propagation of magnesium alloy. Materials Science and Engineering A, 1997, 234–236: 220–222.
    [45] K. Gall, G. Biallas, H.J. Maier, P. Gullett, M.F. Horstemeyer, D.L. McDowell, J. Fan. In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments. International Journal of Fatigue, 2004, 26: 59–70.
    [46] K. Kusukawa, K. Takao. Fatigue crack initiation behavior and notch sensitivity of AZ92A magnesium alloy. Transactions of the Japan Society of Mechanical Engineers A, 2002, 68(7): 1092–1097.
    [47] A. Eifert J, J.P. Thomas, R.G Rateick. Influence of anodization on the fatiguelife WE43A-T6 magnesium. Scripta Materialia, 1999, 40(8): 929–935.
    [48] V.A. Sertsyuk, N.M. Grinberg, I.L. Ostapenko. Fatigue fracture of some magnesium alloys in vacuum at room and low temperatures. Materials Science, 1980, 16(4): 362–365.
    [49] I. Altenberger, B. Scholtes. Improvement of fatigue behaviour of mechanically surface treated materials by annealing. Scripta Materialia, 1999, 41(8): 873–881.
    [50]冯忠信,何家文,张建中,陈新增,魏振昌,田广东. ZM1镁合金的滚轧形变强化及机理.机械工程学报, 1996, 32(1): 103–108.
    [51]刘正,李艳春,王中光,王越,刘重阳.载荷频率和热处理对压铸镁合金AZ91HP疲劳裂纹扩展速率的影响.航空材料学报, 2000, 20(1): 7–11.
    [52] R.C. Zeng, W. Ke, E.H. Han. Influence of load frequency and ageing heat treatment on fatigue crack propagation rate of as-extruded AZ61 alloy. International Journal of Fatigue, 2009, 31: 463–467.
    [53] Y. Uematsu, K. Tokaji, M. Matsumoto. Effect of aging treatment on fatigue behaviour in extruded AZ61 and AZ80 magnesium alloys. Materials Science and Engineering A, 2009, 517(1–2): 138–145.
    [54]曾荣昌,韩恩厚,刘路,徐永波,柯伟.轧制组织对镁合金AM60疲劳性能的影响.材料科研学报, 2003, 17(3): 241–246.
    [55] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The micro-mechanism of fatigue crack propagation for a forged Mg-Zn-Y-Zr alloy in the gigacycle fatigue regime. Journal of Alloys and Compounds, 2008, 454: 123–128.
    [56] R.C. Zeng, E.H. Han, W. Ke. Effect of temperature and relative humidity on fatigue crack propagation behavior of AZ61 magnesium alloy. Materials Science Forum, 2007, 546–549: 409–412.
    [57] Y. Uematsu, K. Tokaji, M. Kamakura, K. Uchida, H. Shibata, N. Bekku. Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys. Materials Science and Engineering A, 2006, 434: 131–140.
    [44] Y. Kobayashi, T. Shibusawa, K. Ishikawa. Environmental effect of fatigue crack propagation of magnesium alloy. Materials Science and Engineering A, 1997, 234–236: 220–222.
    [45] K. Gall, G. Biallas, H.J. Maier, P. Gullett, M.F. Horstemeyer, D.L. McDowell, J. Fan. In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments. International Journal of Fatigue, 2004, 26: 59–70.
    [46] K. Kusukawa, K. Takao. Fatigue crack initiation behavior and notch sensitivity of AZ92A magnesium alloy. Transactions of the Japan Society of Mechanical Engineers A, 2002, 68(7): 1092–1097.
    [47] A. Eifert J, J.P. Thomas, R.G Rateick. Influence of anodization on the fatiguelife WE43A-T6 magnesium. Scripta Materialia, 1999, 40(8): 929–935.
    [48] V.A. Sertsyuk, N.M. Grinberg, I.L. Ostapenko. Fatigue fracture of some magnesium alloys in vacuum at room and low temperatures. Materials Science, 1980, 16(4): 362–365.
    [49] I. Altenberger, B. Scholtes. Improvement of fatigue behaviour of mechanically surface treated materials by annealing. Scripta Materialia, 1999, 41(8): 873–881.
    [50]冯忠信,何家文,张建中,陈新增,魏振昌,田广东. ZM1镁合金的滚轧形变强化及机理.机械工程学报, 1996, 32(1): 103–108.
    [51]刘正,李艳春,王中光,王越,刘重阳.载荷频率和热处理对压铸镁合金AZ91HP疲劳裂纹扩展速率的影响.航空材料学报, 2000, 20(1): 7–11.
    [52] R.C. Zeng, W. Ke, E.H. Han. Influence of load frequency and ageing heat treatment on fatigue crack propagation rate of as-extruded AZ61 alloy. International Journal of Fatigue, 2009, 31: 463–467.
    [53] Y. Uematsu, K. Tokaji, M. Matsumoto. Effect of aging treatment on fatigue behaviour in extruded AZ61 and AZ80 magnesium alloys. Materials Science and Engineering A, 2009, 517(1–2): 138–145.
    [54]曾荣昌,韩恩厚,刘路,徐永波,柯伟.轧制组织对镁合金AM60疲劳性能的影响.材料科研学报, 2003, 17(3): 241–246.
    [55] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The micro-mechanism of fatigue crack propagation for a forged Mg-Zn-Y-Zr alloy in the gigacycle fatigue regime. Journal of Alloys and Compounds, 2008, 454: 123–128.
    [56] R.C. Zeng, E.H. Han, W. Ke. Effect of temperature and relative humidity on fatigue crack propagation behavior of AZ61 magnesium alloy. Materials Science Forum, 2007, 546–549: 409–412.
    [57] Y. Uematsu, K. Tokaji, M. Kamakura, K. Uchida, H. Shibata, N. Bekku. Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys. Materials Science and Engineering A, 2006, 434: 131–140.
    [58] G. Nicoletto, R. Konecna, A. Pirondi. Fatigue crack paths in coarse-grained magnesium. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28: 237–244.
    [59] G.L. Song, A. Atrens. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1999, 1(1): 11–33.
    [60] P.N. Ross, J.A. MacCulloch, R.J. Esdaile. in: 20th Int. Die Casting Congress and Exposition, Cleveland 1999, 213–218.
    [61] H. Mayer, M. Papakyriacou, S. Stanzl-Tschegg, E. Tschegg, B. Zettl, H. Lipowsky, R. R?sch, A. Stich. Korrosionsermüdung von aluminium- und magnesium- gu?legierungen. Materials and Corrosion, 1999, 50, 81–89.
    [62] W.G. Ferguson, W. Liu, J. MacCulloch. Corrosion-fatigue performance of magnesium alloys. International Journal of Modern Physics B, 2003, 17(8–9): 1601–1607.
    [63] G. Eisenmeier. Ermüdungsverhalten der magnesiumlegierung AZ91: experimengelle untersuchungen und lebensdauervorhersage, Dr.-Ing. Diss., Univ. Erlangen-Nürnberg, 2001.
    [64] M. Papakyriacou, H. Wabusseg, H. Kaufmann, P.J. Uggowitzer. W?rmebehandlungsunter- suchungen an NRC Versuchsteilen aus Al- und Mg-Legierungen, Teil 2: Dynamische Kennwerte. Gie?erei-Praxis 2001, 291–294.
    [65] S. Lee, S.H. Lee, D.H. Kim. Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metallurgical and Materials Transactions A, 1998, 29(4): 1221–1235.
    [66] H. Haferkamp, U. Dilthey, G. Trager, I. Burmester, M. Niemeyer. Beam welding of magnesium alloys. in: Proceedings Conference: Magnesium Alloys and Their Applications, Wolfsburg, Germany, 28–30 April 1998, pp. 595–600.
    [67] M. Hilpert, L. Wagner. Corrosion fatigue behavior of the high strength magnesium alloy AZ80. Journal of Materials Engineering and Performance, 2000, 9(4): 402–407.
    [68] A. Koutsomichalis, L. Saettas, H. Badekas. Laser treatment of magnesium. Journal of Materials Science, 1994, 29: 6543–6547.
    [69] H. Haferkamp, M. Niemeyer, U. Dilthey, G. Trager. Laser and electron beam welding of magnesium materials. Weld. Cutt. 2000, 52(8): 178–180.
    [70] H. Haferkamp, M. von Alvensleben, M. Goede, J. Niemeyer. Fatigue strength of laser beam welded magnesium alloys. in: 32 ISATA, International Symposium on Automotive Technology and Automation: Advances in Automotive and Transportation Technology and Practice for the 21st Century, Vienna, Austria, 14–18 June 1999, pp. 389–397.
    [71] D. Dube, M. Fiset, A. Couture, I. Nakatsugawa. Characterization and performance of laser melted AZ91D and AM60B. Materials Science and Engineering A, 2001, 299(1–2): 38–41.
    [72]杨友,刘勇兵,杨晓红,陈华.稀土元素对AZ91D压铸镁合金高周疲劳性能的影响.金属热处理, 2006, 31(7): 18–22.
    [73]杨友. Nd对压铸镁合金AZ91D高周疲劳性能的影响.特种铸造及有色合金, 2006, 26(10): 646–649.
    [74] L. Wagner. Mechanical surface treatments on titanium, aluminum and magnesium alloys. Materials Science and Engineering A, 1999, 263: 210–216.
    [75] P. Zhang, J. Lindemann. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scripta Materialia, 2005, 52: 485–490.
    [76] D. Deiseroth, W. Zinn, B. Scholtes. Consequences of mechanical surface treatments on near surface properties of Mg-alloy AZ31. Magnesium Alloys and their Applications; Wolfsburg; Germany; 28–30 Apr. 1998. pp. 409-414.
    [77] P. Zhang, J. Lindemann. Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80. Scripta Materialia, 2005, 52: 1011–1015.
    [78] L. Wagner, M. Hilpert, J. Wendt, B. Küster. On methods for improving the fatigue performance of the wrought magnesium alloys AZ31 and AZ80. Materials Science Forum, 2003, 419–422: 93–102.
    [79] J. Wendt, M. Hilpert, J. Kiese, L. Wagner. Surface and environmental effects on the fatigue behavior of wrought and cast magnesium alloys. Magnesium Technology 2001 as held at the 2001 TMS Annual Meeting, 2001, pp. 281–285.
    [80] J.P. Nobre, A.M. Dias. M. Kornmeier. An empirical methodology to estimate a local yield stress in work-hardened surface layers. Society for Experimental Mechanics, 2004, 44(1): 76–84.
    [81]孙希泰.材料表面强化技术.化学工业出版社,北京, 2005.
    [82]倪兆荣,盛继生,吴雄彪,郑一平.喷丸处理对汽车变速箱齿轮疲劳强度影响的研究.机械传动, 2003, 27(1): 39–41.
    [83]蔡日恒,吴登真,王曙光.强化喷丸在汽车零件上的应用.汽车技术, 1994, 2: 33–39.
    [84]王仁智,汝继来.汽车内燃机汽门弹簧表面强化处理中的若干问题.中国表面工程, 2000, 47(2): 38–41.
    [85] I. Altenberger. Alternative mechanical surface treatments: microstructures, residual stresses and fatigue behavior. In: Shot peening, Wiley-VCH, Weinheim, 2003, 421–432.
    [86]陈振华.变形镁合金.北京:化学工业出版社, 2005.
    [87] L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, P.K. Liaw. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magneiusm alloy, ZK60A.
    [88] M.H. Yoo. Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical Transactions A, 1981, 12:409–418.
    [89]林金保.往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究. [博士论文],上海,上海交通大学, 2008.
    [90] D. Hull, D.J. Bacon. Introduction to dislocations, 3rd ed., Oxford, New York : Pergamon Press: 1984.
    [91] J. Koike. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metallurgical and Materials Transactions A, 2005, 36: 1689–1696.
    [92]小池淳一,宫村剛夫.多结晶マヮネツゥム合金板にぉけゐ塑性变形的微視的機構.輕金屬, 2004, 54(11), 460–464.
    [93] C.S. Roberts. Magnesium and its alloys. John Wiley ? Sons, Inc., New York 1960, 81–107.
    [94] M. Li. Constitutive modeling of slip, twinning and untwining in AZ31B magnesium, In: Materials Science and Engineering, Ph.D Thesis, Ohio State University, Columbus, OH, 2006.
    [95] E. Tenckhoff. Deformation mechanism, texture, and anisotropy in zirconium and zircaloy, American Society for Testing and Materials, Philadelphia, PA, 1988.
    [96] M.H. Yoo, B.T.M. Loh. Structural and elastic properties of zonal twin dislocations in anisotropic crystals. J.A. Simmons, R. Wit, R. Bullough. Proceedings of the conference on fundamental aspect of dislocation theory. Washington: United States National Bureau of Standards, 1970, 317: 479–493.
    [97] K. Mathis, F. Chmelik, Z. Trojanova, P. Luká, J. Lendvai. Investigation of some magnesium alloys by use of the acoustic emission technique. Materials Science and Engineering A, 2004, 387–389: 331–335.
    [98] J.W. Christian, S. Mahajan. Deformation twinning. Progress in Materials Science, 1995, 39: 1–15.
    [99]丁文江.镁合金科学与技术.北京:科学出版社, 2007.
    [100] W.D. Callister. Jr., Materials science and engineering: an introduction, 7th edition, John Wiley & Sons, Inc., York, PA, 2007.
    [101] M.D. Nave, M.R. Barnett. Microstructures and textures of pure magnesium deformed in plane-strain compression. Scripta Materialia, 2004, 51: 881–885.
    [102] S. Hwang, C. Nishimura, P.G. McCormick. Deformation mechanism of nanocrystalline magnesium in compression. Scripta Materialia, 2001, 44: 1507–1511.
    [103] J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama. Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523K. Materials Transactions, 2003, 44: 445–451.
    [104] R.C. Gifkins, T.G. Langdon. On the question of low-temperature sliding at grain boundaries. Journal of the Institute of Metals, 1964–1965, 93: 347–352.
    [105] W. Zinn, B. Scholtes. Mechanical surface treatments of light weight materials—effects on fatigue strength and near-surface microstructures. Journal of Materials Performance, 1999, 8(2): 145–151.
    [106] Xaзaновидp.Экcплyaтaциoннaянaдeжностьaвиaционнвхкoлec.мocквa:трaнспорт, 1974.Стeпновидp.Эффективностьyпpoчнeниялeгкнхcплaвовповерхноcннвхнaклепоm. Maшиновeдeниe, 1968, 3: 77–82.
    [107]钱存济,黄洪生,施引礽.航空铸镁机轮滚压强化.西北工业学院学报, 1993, 13(1): 61–65.
    [108] P. Zhang, J. Lindemann, W.J. Ding, C. Leyens. Effect of roller burnishing on fatigue properties of the hot-rolled Mg–12Gd–3Y magnesium alloy. Materials Chemistry and Physics, 2010, 124(1): 835–840.
    [109] T. Ludian, M. Hilpert, A. Kiefer, L. Wagner. Shot peening of cast magnesium alloys. Shot Peening, (L. Wagner, ed.) WILEY-VCH-Verlag, Weinheim, 2003, 374–379.
    [110] T. Dorr, M. Hilpert, P. Bechmerhagen, A. Kiefer, L. Wagner. Influence of shot peening on fatigue performance of high-strength aluminum- and magnesium alloys. ICSP7: the 7th International Conference on Shot Peening, Institute of Percision Mechanics, Warsaw, Poland, 1999, pp.153–160.
    [111]冯忠信,张建中,陈新增. ZM1Mg合金的表面滚压强化.金属学报, 1994, 30(9): A422–A426.
    [112] D. Mizer, B.C. Peters. A study of precipitation at elevated temperature in a Mg–87PctY alloys. Metallurgical and Materials Transactions B, 1972. 3: 3262–3264.
    [113] S. Kamado, S. Iwasawa, K. Ohuehi, Y. Kojima, R. Ninomiya. Aging hardening characteristics and high temperature strength of Mg–Gd and Mg–Tb alloys. Journal of Japan Institute of Light Metals , 1992, 42(12): 727–732.
    [114]陈振华.镁合金.北京:化学工业出版社, 2004.
    [115] J. Wang, D.P. Zhang, D.Q. Fang, H.Y. Lu, D.X. Tang, J.H. Zhang, J. Meng. Effect of Y for enhanced age hardening response and mechanical properties of Mg–Ho–Y–Zr alloys. Journal of Alloys and Compounds, 2008, 454: 194–200.
    [116] Q.M. Peng, J.L.Wang, Y.M. Wu, L.M. Wang. Microstructures and tensile properties of Mg–8Gd–0.6Zr–xNd–yY (x+y=3, mass%) alloys. Materials Science and Engineering A, 2006, 433: 133–138.
    [117] Z. Yang, J.P. Li, Y.C. Guo, T. Liu, F. Xia, Z.W. Zeng, M.X. Liang. Precipitation process and effect on mechanical properties of Mg–9Gd–3Y–0.6Zn–0.5Zr alloy. Materials Science and Engineering A, 2007, 454–455: 274–280.
    [118] T. Honma, T. Ohkubo, S. Kamado, K. Hono. Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Materialia, 2007, 55: 4137–4150.
    [119] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding. Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250?C. Journal of Alloys and Compounds, 2006, 421: 309–313.
    [120]顾世真,周香林,李永兵,崔华,张济山. Mg–Gd–Y合金的研究进展.材料导报, 2009, 23: 446–449.
    [121] H. Willmann, P.H. Mayrhofer, P.O.A. Persson, A.E. Reiter, L. Hultman, C. Mitterer. Thermal stability of A1–Cr–N hard coatings. Scripta Materialia, 2006, 54: 1847–1851.
    [122]何上明. Mg–Gd–Y–Zr(–Ca)合金的微观组织演变、性能和断裂行为研究. [博士论文],上海,上海交通大学, 2007.
    [123] I. A. Anyanwu, S. Kamado, Y. Kojima. Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Materials Transactions, 2001, 42: 1206–1211.
    [124] T. Honma, T. Ohkubo, S. Kamado, K. Hono. Effect of Zn on age hardening and elongation in Mg–2.0Gd–1.2Y–0.2 Zr alloy. Acta Materialia, 2007, 55: 4137–4150.
    [125] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding. Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. Journal of Alloys and Compounds, 2007, 427: 316–323.
    [126] I.A. Anyanwu, S. Kamado, Y. Kojima. Creep properties of Mg–Gd–Y–Zr alloys. Materials Transactions, 2001, 42: 1212–1218.
    [127] T. Honma, T. Ohkubo, K. Hono, S. Kamado. Chemistry of nanoscale precipitates in Mg–2.1Gd–0.6Y–0.2Zr (at.%) alloy investigated by the atom probe technique. Materials Science and Engineering A, 2005, 395: 301–306.
    [128] J.W. Chang, X.W. Guo, S.M. He, P.H. Fu, L.M. Peng, W.J. Ding. Investigation of the corrosion for Mg–xGd–3Y–0.4Zr (x=6%, 8%, 10%, 12%, mass fraction) alloys in a peak-aged condition. Corrosion Science, 2008, 50: 166–177.
    [129] J.Wang, J. Meng, D.P. Zhang, D.X. Tang. Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Materials Science and Engineering A, 2007, 456: 78–84.
    [130] X.B. Liu, R.S. Chen, E.H. Han. Effects of ageing treatment on microstructures and properties of Mg-Gd-Y-Zr alloys with and without Zn additions. Journal of Alloys and Compounds, 2008, 465: 232–238.
    [131]郭永春,刘涛,李建平,杨忠,梁民宪,夏峰. Mg–12Gd–4Y–1Zn–0.5Zr合金的显微组织和力学性能.西安工业大学学报, 2007, 27(3): 242–246.
    [132]张新明,陈健美,邓运来,肖阳,蒋浩,邓桢桢. Mg–Gd–Y–(Mn, Zr)合金的显微组织和力学性能.中国有色金属学报, 2006, 16(2): 219–227.
    [1] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding. Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. Journal of Alloys and Compounds, 2007, 427: 316–323.
    [2]余琨,黎文献,王日初.热处理工艺对挤压变形ZK60镁合金组织与力学性能的影响.中国有色金属学报, 2007, 17(2): 188–192.
    [3]张晓芳,李兆智,李保成.热挤压工艺对ZK60合金组织及性能的影响.热加工工艺, 2008, 37(4): 29–32.
    [4]严琦琦,张辉,陈振华.热处理对挤压镁合金AZ91和ZK60组织与性能的影响.金属热处理, 2006, 31(11): 71–74.
    [5]何上明. Mg–Gd–Y–Zr(–Ca)合金的微观组织演变、性能和断裂行为研究. [博士论文],上海,上海交通大学, 2007.
    [6] P. Zhang, J. Lindemann, C. Leyens. Shot peening on the high-strength wrought magnesium alloy AZ80: effect of peening media. Journal of Materials Processing Technology, 2010, 210: 445–450.
    [7] L. Wagner. Mechanical Surface Treatments on Titanium, Aluminum and Magnesium Alloys. Materials Science and Engineering A, 1999, 263: 210–216.
    [8] P. Zhang, J. Lindemann. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scripta Materialia, 2005, 52: 485–490.
    [9]储继影,关占群,李占杰.喷丸强化效果和质量的表征指标及影响因素.汽轮机技术, 2003, 45(4): 255–256.
    [10] P. Zhang, J. Lindemann, C. Leyens. Influence of shot peening on notched fatigue strength of the high-strength wrought magnesium alloy AZ80. Journal of Alloys and Compounds, 2010, 497(1–2): 380–385.
    [11]徐灏.疲劳强度.北京:高等教育出版社, 1987.
    [12] J.F. Nie, B.C. Muddle. Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Materialia, 2000, 48: 1691–1703.
    [1] L.L. Rokhlin. Advanced light alloys and composites. in: Proceedings of NATO advanced study institute, Kluwer, 1998, 1443–1448.
    [2] I.A. Anyanwu, S. Kamado, Y. Kojima. Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Materials Transactions, 2001, 42: 1206–1211.
    [3] T. Honma, T. Ohkubo, S. Kamado, K. Hono. Effect of Zn on age hardening and elongation in Mg–2.0Gd–1.2Y–0.2 Zr alloy. Acta Materialia, 2007, 55: 4137–4150.
    [4] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding. Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250oC. Journal of Alloys and Compounds, 2006, 421: 309–313.
    [5] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding. Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. Journal of Alloys and Compounds, 2007, 427: 316–323.
    [6] I.A. Anyanwu, S. Kamado, Y. Kojima. Creep properties of Mg–Gd–Y–Zr alloys. Materials Transactions, 2001, 42: 1212–1218.
    [7] H.T. Zhou, Z.D. Zhang, C.M. Liu, Q.W. Wang. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy. Materials Science and Engineering A, 2007, 445–446: 1–6.
    [8] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The fatigue crack propagation behavior of the forged Mg–Zn–Y–Zr alloy. Journal of Alloys and Compounds, 2007, 431: 107–111.
    [9] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The crack initiation mechanism of the forged Mg–Zn–Y–Zr alloy in super-long fatigue life regime. Scripta Materialia, 2007, 56: 1–4.
    [10] Z.H. Liu, E.H. Han, L. Liu. High-cycle fatigue behavior of of Mg–Zn–Y–Zr alloy. Materials Science and Engineering A, 2008, 483–484: 373–375.
    [11]张少卿. MB15镁合金的相组成及其微观形态.金属学报, 1989, 25(5): A346–A351.
    [12] C.J. Bettles, M.A. Gibson, K. Venkatesan. Enhanced age-hardening behaviour in Mg–4wt.%Zn micro-alloyed with Ca. Scripta Materialia, 2004, 51: 193–197.
    [13] J.S. Chun, J.G. Byrne. Precipitate strengthening mechanisms in magnesium zinc alloy single crystals. Journal of Materials Science, 1969, 4: 861–872.
    [14] L. Sturkey, Mechanism of age-hardening in the magnesium-zinc alloys. Journal of the Institute of Metals, 1959, 88: 177–181.
    [15] W.C. Liu, J. Dong, P. Zhang, Z.Y. Yao, C.Q. Zhai, W.J. Ding. High cycle fatigue behaviour of as-extruded ZK60 magnesium alloy. Journal of Materials Science, 2009, 44(11): 2916–2924.
    [16] W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, J.D. Lee. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia, 2003, 51: 3293–3307.
    [17] T. Mukai, M. Yamanoi, H. Watanabe, K. Higashi. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Materialia, 2001, 45: 89–94.
    [18]余琨,黎文献,王日初.热处理工艺对挤压变形ZK60镁合金组织与力学性能的影响.中国有色金属学报, 2007, 17(2): 188–192.
    [19]陈水先,张辉,严琦琦,李落星,刘文华.热处理对挤压镁合金ZK60拉伸变形与断裂行为的影响.金属热处理, 2008, 33(6): 85–88.
    [20]张晓芳,李兆智,李保成.热挤压工艺对ZK60合金组织及性能的影响.热加工工艺, 2008, 37(4): 29–32.
    [21]严琦琦,张辉,陈振华.热处理对挤压镁合金AZ91和ZK60组织与性能的影响.金属热处理, 2006, 31(11): 71–74.
    [22] T. Honma, T. Ohkubo, K. Hono, S. Kamado. Chemistry of nanoscale precipitates in Mg–2.1Gd–0.6Y–0.2Zr (at. %) alloy investigated by the atom probe technique. Materials Science and Engineering A, 2005, 395: 301–306.
    [23] P.J. Apps, H. Karimzadeh, J.F. King, G.W. Lorimer. Precipitation reactions in magnesium-rare earth alloys containing Yttrium, Gadolinium or Dysprosium. Scripta Materialia, 2003, 48: 1023–1028.
    [24] Z.Y. Nan, S. Ishihara, A.J. McEvily, H. Shibata, K. Komano. On the sharp bend of the S-N curve and the crack propagation behavior of extruded magnesium alloy. Scripta Materialia, 2007, 56: 649–652.
    [25] X.B. Liu, R.S. Chen, E.H. Han. Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. Journal of Alloys and Compounds, 2008, 465: 232–238.
    [26]何上明. Mg–Gd–Y–Zr(–Ca)合金的微观组织演变、性能和断裂行为研究. [博士论文],上海,上海交通大学, 2007.
    [27] A.A. Nayeb-Hashemi, J.B. Clark. Phase diagrams of binary magnesium alloys. Metals Park, OH: ASM International; 1988.
    [28] R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, 3rd Edition, PWS Publishing, Boston, 1994, 194–202.
    [29] P. Zhang, J. Lindemann. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scripta Materialia, 2005, 52: 485–490.
    [1] H.T. Zhou, Z.D. Zhang, C.M. Liu, Q.W. Wang. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy. Materials Science and Engineering A, 2007, 445–446: 1–6.
    [2] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The fatigue crack propagation behavior of the forged Mg–Zn–Y–Zr alloy. Journal of Alloys and Compounds, 2007, 431: 107–111.
    [3]丁遂栋.断裂力学.北京,机械工业出版社, 1997.8.
    [4] W.C. Liu, J. Dong, P. Zhang, Z.Y. Yao, C.Q. Zhai, W.J. Ding. High cycle fatigue behaviour of as-extruded ZK60 magnesium alloy. Journal of Materials Science, 2009, 44(11): 2916–2924.
    [5] J.S. Chun, J.G. Byrne. Precipitate strengthening mechanisms in magnesium zinc alloy single crystals. Journal of Materials Science, 1969, 4: 861–872.
    [6]钟群鹏,张峥,武淮生,左尚志.金属疲劳扩展区和瞬断区的数学物理模型.航空学报, 2000, 21(Z1): 11–14.
    [7] W.C. Liu, J. Dong, X. Song, J.P. Belnoue, F. Hofmann, W.J. Ding, A.M. Korsunsky. Effect of microstructures and texture development on tensile properties of Mg–10Gd–3Y alloy. Materials Science and Engineering A. 2011, 528: 2250–2258.
    [8] S.K. Das, C.F. Chang. Magnesium Alloys and Their Applications. Manchester: FRG.DGM Internation Sgesellschaft, 1992: 487–492.
    [9] C.J. Bettles, M.A. Gibson, K. Venkatesan. Enhanced age-hardening behaviour in Mg–4wt.%Zn micro-alloyed with Ca. Scripta Materialia, 2004, 51: 193–197.
    [10] K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding. Effect of pre-deformation on aging characteristics and mechanical properties of a Mg–Gd–Nd–Zr alloy. Materials Science and Engineering A, 2008, 491: 103–109.
    [11] J.F. Huang, H.Y. Yu, Y.B. Li, H. Cui, J.P. He, J.S. Zhang. Precipitation behaviors of spray formed AZ91 magnesium alloy during heat treatment and their strengthening effect. Materials and Design, 2009, 30: 440–444.
    [12] L. Sturkey. Mechanism of age-hardening in the magnesium-zinc alloys. Journal of the Institute of Metals, 1959, 88: 177–181.
    [13] K.U. Kainer. Magnesium Alloy and Technology. Weinheim: Wiley-VCH Verlag Gmbh & Co KgaA, 2003, 1–5.
    [14] J.P. Benson, D.V. Edmonds. Effect of microstructure on fatigue in threshold region in low-alloy steel. Metal Science, 1978, 12: 223–232.
    [15] U.F. Kocks. Kinetics of solution hardening. Metallurgical and Materials Transactions A 1985, 16: 2109–2129.38.
    [16]冯端.金属物理学,第三卷:金属力学性质,北京,科学出版社, 1999, 561–595.
    [17] W.K. Miller. Creep of die cast AZ91 magnesium at room temperature and low stress. Metallurgical and Materials Transactions A, 1991, 22: 873–877.
    [18]哈宽富.金属力学性质的微观理论,北京:科学出版社, 1983.
    [19] J.B. Lin, L.M. Peng, Q.D. Wang, H.J. Roven. Anisotropic plastic deformation behavior of as-extruded ZK60 magnesium alloy at room temperature. Science in China E, 2008.
    [20] L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, P.K. Liaw. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Materialia, 2008, 56 (4): 688–695.
    [21] P. Klimanek, A. Potzsch. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Meterials Science and Engineering A, 2002, 324: 145–150.
    [22] J.T. Wang, D.L. Yin, J.Q. Liu, J. Tao, Y.L. Su, X. Zhao. Effect of grain size on mechanical property of Mg–3Al–1Zn alloy. Scripta Materialia, 2008, 59: 6–66.
    [23] C.S. Roberts. Magnesium and its alloys. New York: John Wiley & Sons, Inc.; 1960.
    [24] Y.N. Wang, J.C. Huang. The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy. Acta Materialia, 2007, 55: 897–905.
    [25] A.J. Ardell. Precipitation hardening, Metallurgical and Materials Transactions A, 1985, 16: 2131–2165.
    [26] J.F. Nie, X. Gao, S.M. Zhu. Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scripta Materialia, 2005, 53: 1049–1053.
    [27] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding. Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250oC. Journal of Alloys and Compounds, 2006, 421: 309–313.
    [28] J.F. Nie, B.C. Muddle. Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C. Scripta Materialia, 1999, 40(10): 1089–1094.
    [29] J.F. Nie, B.C. Muddle. Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Materialia, 2000, 48(8): 1691–1703.
    [30]何上明. Mg–Gd–Y–Zr(–Ca)合金的微观组织演变、性能和断裂行为研究. [博士论文],上海,上海交通大学, 2007.
    [31] H. Mayer, M. Papakyriacou, B. Zettl, S.E. Stanzl-Tschegg. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. International Journal of Fatigue, 2003, 25: 245–256.
    [32] Z.Y. Nan, S. Ishihara, A.J. McEvily, H. Shibata, K. Komano. On the sharp bend of the S-N curve and the crack propagation behavior of extruded magnesium alloy. Scripta Materialia, 2007, 56: 649–652.
    [33] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The crack initiation mechanism of the forged Mg–Zn–Y–Zr alloy in the super-long fatigue life regime. Scripta Materialia, 2007, 56: 1–4.
    [34] J.H. Kim, M.G. Kim. Considerations in non-propagating crack of pure titanium. Materials Science and Engineering A, 2003, 346: 216–222.
    [35] P. Zhang, W.J. Ding, J. Lindemann, C. Leyens. Mechanical properties of the hot-rolled Mg–12Gd–3Y magnesium alloy. Materials Chemistry and Physics, 2009, 118: 453–458.
    [36] I. A. Anyanwu, S. Kamado, Y. Kojima. Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Materials Transactions, 2001, 42: 1206–1211.
    [37] T. Honma, T. Ohkubo, S. Kamado, K. Hono. Effect of Zn on age hardening and elongation in Mg–2.0Gd–1.2Y–0.2 Zr alloy. Acta Materialia, 2007, 55: 4137–4150.
    [38] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding. Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. Journal of Alloys and Compounds, 2007, 427: 316–323.
    [39] I.A. Anyanwu, S. Kamado, Y. Kojima. Creep properties of Mg–Gd–Y–Zr alloys. Materials Transactions, 2001, 42: 1212–1218.
    [40] T. Honma, T. Ohkubo, K. Hono, S. Kamado. Chemistry of nanoscale precipitates in Mg–2.1Gd–0.6Y–0.2Zr (at.%) alloy investigated by the atom probe technique. Materials Science and Engineering A, 2005, 395: 301–306.
    [41] P. Zhang, J. Lindemann. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scripta Materialia, 2005, 52: 485–490.
    [42] W.C. Liu, J. Dong, P. Zhang, C.Q. Zhai, W.J. Ding. Effect of shot peening on surface characteristics and fatigue properties of T5-treated ZK60 alloy. Materials Transactions, 2009, 50: 791–798.
    [1] S. Tekeli. Enhancement of fatigue strength of SAE 9245 steel by shot peening. Materials Letters, 2002, 57: 604–608.
    [2] M.A.S. Torres, H.J.C. Voorwald. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. International Journal of Fatigue, 2002, 24: 877–886.
    [3] A. Ali, X. An, C.A. Rodopoulos, M.W. Brown, P. O’Hara, A. Levers, S. Gardiner. The effect of controlled shot peening on the fatigue behaviour of 2024-T3 aluminium friction stir welds. International Journal of Fatigue, 2007, 29: 1531–1545.
    [4] J. Lindemann, C. Buque, F. Appel. Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy. Acta Materialia, 2006, 54: 1155–1164.
    [5] P. Zhang, J. Lindemann. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scripta Materialia, 2005, 52: 485–490.
    [6]储继影,关占群,李占杰.喷丸强化效果和质量的表征指标及影响因素.汽轮机技术, 2003, 45(4): 255–256.
    [7] N.R. Tao, M.L. Sui, J. Lu, K. Lu. Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostructured Materials, 1999, 11(4): 433–440.
    [8] L.F. Hou, Y.H. Wei, B.S. Liu, B.S. Xu. Microstructure evolution of AZ91D induced by high energy shot peening. Transactions of Nonferrous Metals Society of China, 2008, 18: 1053–1057.
    [9] W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, J.D. Lee. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia, 2003, 51: 3293–3307.
    [10] W.C. Liu, J. Dong, P. Zhang, C.Q. Zhai, W.J. Ding. Effect of shot peening on surface characteristics and fatigue properties of T5-treated ZK60 alloy. Materials Transactions, 2009, 50: 791–798.
    [11] P. Zhang, J. Lindemann, C. Leyens. Influence of shot peening on notched fatigue strength of the high-strength wrought magnesium alloy AZ80. Journal of Alloys and Compounds, 2010, 497: 380–385.
    [1] B.R. Sridhar, K. Ramachandra, K.A. Padmanabhan. Effect of shot peening on the fatigue and fracture behaviour of two titanium alloys. Journal of Materials Science, 1996, 31: 5953–5960.
    [2] O. Hatamleh. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints. International Journal of Fatigue, 2009, 31(5): 974–988.
    [3]高玉魁,殷源发,李向斌,刘天琦.喷丸强化对0Cr13Ni8Mo2Al钢疲劳性能的影响.材料工程, 2001,12: 46–48.
    [4] M. Larsson, A. Melander, R. Blom, S. Preston. Effects of shot peening on fatigue strength of spring steel SS2090. Materials Science Technology, 1991, 7: 998–1004.
    [5] R.A. Chernenkoff, S. Mocarski, D.A. Yeager. Increased fatigue strength of powder forged connecting rods by optimized shot peening. Powder Metallurgy, 1995, 38(3): 196–200.
    [6] J. Wendt, M. Hilpert, J. Kiese, L. Wagner. Surface and environmental effects on the fatigue behavior of wrought and cast magnesium alloys. In: Proc Magnesium Technology 2001, TMS Annual Meeting, New Orleans, LA, USA, Minerals, Metals and Materials Society/AIME, Warrendale, PA 2001, pp. 281–285.
    [7] A. Drechsler, T. Dorr, L. Wagner. Mechanical surface treatments on Ti–10V–2Fe–3Al for improved fatigue resistance. Materials Science and Engineering A, 1998, 243: 217–220.
    [8] P. Zhang, W.J. Ding, J. Lindemann, C. Leyens. Mechanical properties of the hot-rolled Mg–12Gd–3Y magnesium alloy. Materials Chemistry and Physics, 2009, 118: 453–458.
    [9] W.J. Evans. Optimising mechanical properties in alpha+beta titanium alloys. Materials Science and Engineering A, 1998, 243: 89–96.
    [10] K. Gall, G. Biallas, H.J. Maier, P. Gullett, M.F. Horstemeyer, D.L. McDowell, J. Fan. In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments. International Journal of Fatigue, 2004, 26: 59–70.
    [11] P. Zhang, J. Lindemann, W.J. Ding, C. Leyens. Effect of roller burnishing on fatigue properties of the hot-rolled Mg–12Gd–3Y magnesium alloy. Materials Chemistry and Physics. 2010, 124(1): 835–840.
    [12] H. Boeckels, L. Wagner, in: V. Schulze, A. Niku-Lari (Eds.), Proc. ICSP9, IITT, Paris, 2005, p. 332.
    [13] M. Papakyriacou, H. Mayer, U. Fuchs, S.E. Stanzl-Tschegg, R.P. Wei. Influence of atmospheric moisture on slow fatigue crack growth at ultrasonic frequency in aluminium and magnesium alloys. Fatigue & Fracture of Engineering Materials & Structures. 2002, 25: 795–804.
    [14] H.C. Jung, C.D. Yim, W.W. Park, C.S. Lee, K.S. Shin. Fatigue crack propagation behavior of AZ91D magnesium alloy. Materials Science Forum. 2003, 419–422: 75–80.
    [15] M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell. Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Materialia, 2004, 52: 5093–5103.
    [16] S. Kleiner, P.J. Uggowitzer. Mechanical anisotropy of extruded Mg–6%Al–l%Zn alloy. Materials Science and Engineering A. 2004, 379: 258–263.
    [17] Y.N. Wang, J.C. Huang. The role of twinning and untwining in yielding behavior in hot–extruded Mg–Al–Zn alloy. Acta Materialia. 2007, 55: 897–905.
    [18]林金保.往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究. [博士论文],上海,上海交通大学, 2008.
    [19] J.B. Lin, L.M. Peng, Q.D. Wang, H.J. Roven, W.J. Ding. Anisotropic plastic deformation behavior of as-extruded ZK60 magnesium alloy at room temperature. Science in China E, 2009, 52(1): 161–165.
    [20] L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, P.K. Liaw. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Materialia, 2008, 56(4): 688–695.
    [21] P. Klimanek, A. Potzsch. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Materials Science and Engineering A, 2002, 324: 145–150.
    [22] J.T. Wang, D.L. Yin, J.Q. Liu, J. Tao, Y.L. Su, X. Zhao. Effect of grain size on mechanical property of Mg–3Al–1Zn alloy. Scripta Materialia, 2008, 59: 63–66.
    [23] S.M. Yin, H.J. Yang, S.X. Li, S.D. Wu, F. Yang. Cyclic deformation behavior of as-extruded Mg–3%Al–1%Zn. Scripta Materialia, 2008, 58: 751–754.
    [24] S.H. Park, S.G. Hong, W. Bang, C.S. Lee. Effect of anisotropy on the low-cyclie fatigue behavior of rolled AZ31 magnesium alloy. Materials Science and Engineering A, 2010, 527: 417–423.
    [25] J. Koike, N. Fujiyama, D. Ando, Y. Sutou. Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys. Scripta Materialia, 2010, 63: 747–750.
    [26] S. Hasegawa, Y. Tsuchida, H. Yano, M. Matsui. Evaluation of low cycle fatigue life in AZ31 magnesium alloy. International Journal of Fatigue, 2007, 29: 1839–1845.
    [27] S. Begum, D.L. Chen, S. Xu, A.A. Luo. Low cycle fatigue properties of an extruded AZ31 magnesium alloy. International of Fatigue, 2009, 31: 726–735.
    [28] J.X. Zhang, Q. Yu, Y.Y. Jiang, Q.Z. Li. An experimental study of cyclic deformation of extruded AZ61A magnesium alloy. International Journal of Plasticity, in press, doi:10.1016/j.ijplas.2010.09. 004.
    [29] Q.Z. Li, Q. Yu, J.X. Zhang, Y.Y. Jiang. Effect of strain amplitude on tension–compression fatigue behavior of extruded Mg6Al1ZnA magnesium alloy. Scripta Materialia, 2010, 62: 778–781.
    [30] L. Wu, S.R. Agnew, D.W. Brown, G.M. Stoica, B. Clausen, A. Jain, D.E. Fielden, P.K. Liaw. Internal stress relaxation and load redistribution during the twinning–detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A. Acta Materialia, 2008, 56: 3699–3707.
    [31] S. Suresh. Fatigue of materials. Cambridge: Cambridge University Press, 1998.
    [32]鲁克成.晶粒尺寸与取向对Mg–10Gd–2Y–0.5Zr(wt.%)合金力学性能的影响. [硕士论文],南京,南京理工大学, 2008.
    [33] K.H. Eckelmeyer, R.W. Herzberg. Deformation in wrought Mg–9%Y(wt.%). Met. Trans, 1970, 1(12): 3411–3414.
    [34]周铖. Mg–12Gd–3Y–0.5Zr (wt.%)合金力学性能及变形孪生研究. [硕士论文],南京,南京理工大学, 2009.
    [35] L.L. Rokhlin, N.I. Nikitina. Mechanical properties of magnesium alloys with dysprosium (Dy). Obrabotka Metallov, 1999, 6:37–39.
    [36]陈振华.变形镁合金.北京:化学工业出版社, 2005.
    [37] K. D. Xu, A.H. Wang, Y. Wang, X.P. Dong, X.L. Zhang, Z.W. Huang. Surface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding. Applied Surface Science, 2009, 256: 619–626.
    [38] S. Ando, H. Tonda. Non-basal slip in magnesium-lithium alloy single crystals. Materials Transactions, 2000, 41(9): 1188–1191.
    [39] S. Ando, M. Tanaka, H. Tonda. Pyramidal slip in magnesium alloy single crystals. Materials Science Forum, 2003, 419–422: 87–92.
    [40] W.C. Liu, J. Dong, X.W. Zheng, P. Zhang, W.J. Ding. Influence of shot peening on notched fatigue properties of magnesium alloy ZK60. Materials Science and Technology, 2011, 27(1): 201–207.
    [41] W.C. Liu, J. Dong, P. Zhang, C.Q. Zhai, W.J. Ding. Effect of shot peening on surface characteristics and fatigue properties of T5-treated ZK60 alloy. Materials Transactions, 2009, 50(4): 791–798.
    [42]高玉魁.高强度钢喷丸强化残余压应力场特征.金属热处理, 2003, 28(4): 42–44.
    [43] P. Juijerm, I. Altenberger. Residual stress relaxation of deep-rolled Al–Mg–Si–Cu alloy during cyclic loading at elevated temperatures. Scripta Materialia, 2006, 55: 1111–1114.
    [44] P. Juijerm, I. Altenberger, B. Scholtes. Influence of ageing on cyclic deformation behavior and residual stress relaxation of deep rolled as-quenched aluminium alloy AA6110. International Journal of Fatigue, 2007, 29: 1374–1382.
    [45] P. Juijerm, I. Altenberger, B. Scholtes. Fatigue and residual stress relaxation of deep rolled differently aged aluminium alloy AA6110. Materials Science and Engineering A, 2006, 426: 4–10.
    [46]王仁智.喷丸强化手册.北京:航空航天部AFFD系统工程, 1988: 1–9.
    [47]高玉魁.超高强度钢喷丸表面残余应力在疲劳过程中的松弛规律.材料热处理学报, 2007, 28(8): 102–105.
    [48] J.P. Nobre, A.M. Dias, M. Kornmeier. An empirical methodology to estimate a local yield stress in work-hardened surface layers. Society for Experimental Mechanics, 2004, 44(1): 76–84.
    [49] M. Hilpert, L. Wagner. Response of light alloys to mechanical surface treatments: comparison of magnesium and aluminum alloys. Magnesium alloys and their applications, Kainer K U (ed.), Wiley-VCH-Verlag, Weinheim, 2000, 525: 463–468.
    [50] P. Zhang, J. Lindemann. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scripta Materialia, 2005, 52: 485–490.
    [51] W.X. Sun, S. Nishida, N. Hattori, I. Usui. Fatigue properties of cold-rolled notched eutectoid steel. International Journal of Fatigue, 2004, 26: 1139–1145.
    [52] P.J. Haagensen. Residual stress techniques for fatigue life improvement. Fatigue 2002: Proceeding of the Eighth International Fatigue Congress. 2002, pp. 1–10.
    [53] B. Küster, M. Hilpert, A. Kiefer, L. Wagner. Influence of mechanical surface treatments on notched fatigue strength of magnesium alloys. In: Shot Peening (ed L. Wagner), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. 2006, pp. 367–373.
    [54] N. Tsuji, S. Tanaka, T. Takasugi. Effect of combined plasma-carburizing and deep-rolling on notch fatigue property of Ti–6Al–4V alloy. Materials Science and Engineering A, 2009, 499: 482–488.
    [55] J. Lindemann, C. Buque, F. Appel. Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy. Acta Materialia, 2006, 54: 1155–1164.
    [56] C.L. Fan, D.L. Chen, A.A. Luo. Dependence of the distribution of deformation twins on strain amplitudes in an extruded magnesium alloy after cyclic deformation. Materials Science and Engineering A, 2009, 519: 38–45.
    [57] L. Wagner, M. Hilpert. In: Proceedings of the second international conference on shot peening and blast cleaning (Ed. M.C. Sharma), Bhopal, India, 2001, pp. 49.
    [58] L. Wagner. Mechanical surface treatments on titanium, aluminum and magnesium alloys. Materials Science and Engineering A, 1999, 263: 210–216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700