Ginsenoside Rg1对脊神经损伤修复的促进作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     脊神经损伤在脊柱外科非常常见。脊柱退行性疾病、外科手术操作及外伤等都可能对脊神经造成压迫、牵拉、挫伤等,造成不同程度的运动、感觉功能障碍,严重影响患者的生活质量。然而,脊神经损伤修复相关治疗的临床效果尚不理想,脊神经损伤仍然是临床面临的重大难题。
     脊神经损伤属于周围神经损伤的范畴。目前,中药及其提取物的相关研究是周围神经损伤修复领域中的热点之一。研究表明,自人参中提取的人参皂苷Rg1(Ginsenoside Rg1, GRg1)对中枢神经系统损伤具有营养、保护及抑制神经元凋亡等作用。据此推测,GRg1的神经保护作用也有可能适用于周围神经系统。但是,目前GRg1的相关研究主要集中于脑保护方面,GRg1在周围神经损伤中的应用及机制研究很少。我们认为,将GRg1应用于周围神经损伤修复,有望提高周围神经损伤再生修复的治疗效果。
     研究目的:
     在大鼠周围神经损伤模型中研究GRg1对周围神经损伤的治疗效果。同时,在离体条件下针对GRg1对外周神经胶质细胞(雪旺细胞:Schwanncells, SCs)损伤条件下各种生物学行为的调控作用进行深入探索,以进一步揭示GRg1促进周围神经损伤后再生修复的可能机制。
     材料方法:
     1.制备SD大鼠坐骨神经挫裂伤模型,以不同剂量GRg1进行治疗(高/低剂量),同时设立甲钴胺对照组和生理盐水对照组,通过神经形态计量学指标、荧光金逆行标记、神经电生理检测、动物行为学指标(坐骨神经指数)以及靶器官形态学指标等评价大鼠神经再生修复、功能恢复及靶器官情况等。
     2.制备SCs氧化损伤模型,给予GRg1,并设立甲钴胺组、氧化损伤组和正常组作为对照。应用分光光度计测定丙二醛(malondialdehyde, MDA)和超氧化物歧化酶(superoxide dismutase, SOD)等指标以明确SCs脂质氧化损伤的情况,应用DAPI染色和MTT试验明确受损SCs增殖的情况,应用流式细胞仪明确受损SCs凋亡的情况,利用RT-PCR、Western blot及ELISA等技术明确受损SCs合成和分泌NGF、BDNF等神经营养因子的情况。结果:
     1.高剂量GRg1组的神经再生修复和功能恢复情况(神经形态计量学指标、荧光金逆行标记、神经电生理检测)明显优于其它组,坐骨神经指数和靶肌肉的形态等恢复良好,最为接近正常。
     2. GRg1组SCs的氧化损伤水平、细胞凋亡数量明显低于其他组,而其细胞增殖、细胞活力以及NGF、BDNF等神经营养因子的合成和分泌显著高于其他组。
     结论:
     GRg1可以有效促进周围神经损伤再生修复并加快神经功能的恢复。同时,GRg1可以显著降低受损SCs的氧化损伤水平,提高其增殖和细胞活力,抑制细胞凋亡,并促进NGF、BDNF等神经营养因子的合成和分泌。上述GRg1对损伤条件下SCs的调控作用可能是GRg1促进外周神经再生和神经功能恢复的机制之一。
Backgrounds:
     Spinal nerve injury is very common in the field of spinal surgery. There aremany reasons that might cause the spinal nerve being compressed, stretched orcrushed, resulting in different levels of motor dysfunction and sensorydysfunction. The life quality of patients is severely lowered. However, thetherapeutic effect of spinal nerve injury is not good. Spinal nerve injury is still aclinical challenge for surgeons.
     Spinal nerve injury belongs to the category of peripheral nerves injury. Atpresent, the research of Chinese herbal medicine and its extracts is one of hotresearch topics. The present research shows that, Ginsenoside Rg1(one ofginseng extracts) might have trophism and protective effects on the centralnervous system, and can inhibit apoptosis of neurons. Presumably, this kind ofneuro-protective effects of GRg1may also apply to the peripheral nervoussystem. But the current research about GRg1is focused mainly on brainprotection. The research about application of GRg1in peripheral nerve injuryand the mechanism has been rare. We presume that, the application of GRg1inperipheral nerve injury may promote the nerve regeneration.
     Objective:
     To determine whether GRg1can promote the nerve regeneration inperipheral nerve injury. In addition, to reveal the mechanism underlying thebeneficial effect of GRg1on peripheral nerve repair, further studies wereperformed to identify the effect of GRg1on the biological behaviors ofneuroglia cell of peripheral nerve system (Schwann cells, SCs) after injury.
     Materials and Methods:
     1. A model of sciatic nerve crush injury in rats was established. Differentdoses of GRg1were administrated (high/low dose). Mecobalamin or saline wasadministrated to the control groups. The nerve regeneration, functional recoveryand condition of the target organ were investigated by nerve morphometricanalysis, retrograde labeling, electrophysiological studies, behavioral tests ofstepping (The sciatic nerve function index, SFI), and histological appearance ofthe target muscles.
     2. A SCs oxidative damage model was established. GRg1wereadministrated after the oxidative damage. Mecobalamin or saline wasadministrated to the control groups. The oxidative damage level of the injuredSCs was investigated by examining the malondialdehyde (MDA) andsuperoxide dismutase (SOD) using spectrophotometer. The growth of injuredSCs was characterized using DAPI staining and a MTT assay. The apoptosis ofthe injured SCs was examined by a cell apoptosis assay using flow cytometer.The mRNA and protein levels of NGF and BDNF in injured SCs were assayedby RT-PCR and Western blotting, and the amount of NGF and BDNF secretedwas determined by an ELISA assay.
     Results:
     1. The nerve regeneration and functional recovery (nerve morphometricanalysis, retrograde labeling, electrophysiological studies) in the high-dose GRg1group were better than other groups. The sciatic nerve function index (SFI)and histological appearance of the target muscles recovered well in thehigh-dose GRg1group, which were the most close to the normal group.
     2. The level of oxidative damage and apoptosis in the GRg1group wassignificantly lower than control groups. The proliferation and vitality in theGRg1group were significantly better than control groups. In addition, theexpression and secretion of NGF and BDNF by the injured SCs in GRg1groupis significantly more than control groups and normal group.
     Conclusion:
     GRg1can effectively promote the nerve regeneration and functionalrecovery in peripheral nerve injury. At the same time, GRg1can reduce theoxidative damage on the injured SCs, promote the proliferation and vitality, andinhibit the apoptosis. The expression and secretion of NGF and BDNF by theinjured SCs were also significantly enhanced. The regulatory effect of GRg1oninjured SCs mentioned above might partially contribute to the beneficial effectof GRg1on nerve regeneration and functional recovery in peripheral nerveinjury.
引文
1顾立强,裴国献,主编.周围神经损伤基础与临床[M].第1版.北京:人民军医出版社.2001,70-l00.
    2Seckel BR. Enhancement of peripheral nerve regeneration[J]. MucseleNerve.1990,13:785-791.
    3Mendell LM. Neurotrophins and sensory: role in development,maintenance and injury[J]. Philos Trans R Soc Lond B Biol Sci.1996,351(1338):463-7.
    4Jefrey L, Goldberg, Ben A. The relationship between neuronal survival andregeneration[J]. Annu. Rev. Neurasei,2000,23:579-612.
    5Einheber S, Hannock MJ, Metz CN, et a1. Transforming growthfactor-betaI regulates axon/Schwann cell interactions[J]. Cell Bi01.1995,129(2):443-58.
    6Jacobs WB, Fehlings MQ. The molecular basis of neural regeneration[J].Neurosurgery.2003,53(4):943-48.
    7George A, Buehl A, Sommer C. Wallerian degeneration after crash injuryof rat sciatic nerve increases endo-and epineufial tumor necrosisfactor-alpha rotein[J]. Nearosei Lett.2004,372(3):215-9.
    8Chao MV. Neurotrophin and their receptors: a convergence point for manysignaling pathways[J]. Nature Rev Neurosci.2003,4:299-309.
    9Lambert WS, Clark AF, Wordinger RG, et a1. Efect of exogenousneurotrophins on Trk receptor phosphorylation, cell proliferation, andneurotrophin secretion by cells isolated from the human lamina cribrosa[J].Mol Vis.2004,10:289-96.
    10Hari A, Djohar B, Skutella T, et a1. Neurotmphins and extraeellular matrixmolecules modulate sensory axoll outgrowth[J].Int J Dev Neumsci.200,22(2):113-7.
    11Lee Sk, Wolfe SW. Peripheral nerve injury and repair[J]. J Am AcadOrthop sarg.2000,4:243-25.
    12顾立强,裴国庆.周围神经损伤基础与临床[M].北京:人民军医出版社.2001:70-100,105-112.
    13张泽华,阮怀珍.基因治疗在周围神经损伤修复中的应用[J].创伤外科杂志.2002,4(6):377-380.
    14赵立国,端康德.神经导管修复周围神经损伤的研究进展[J].生物医学工程与临床.2003,7(2):120-123.
    15王同光,壬栓科,洪光祥,等.细胞外ATP对外周神经再生作用的实验研究[J].中华显微外科杂志.2001,24:198-200.
    16王栓科,洪光祥,王同光.细胞外ATP对周围神经导管中再生轴突诱导作用的实验研究[J].中华手外科杂志.2002,18(3):138-140.
    17李树学,段淑香,曹艳.生物粘接端端缝合法对周围神经损伤后神经传导速度的影响[J].牡丹江医学院学报.2006,27(2):28-29.
    18胡孔和,吴强,刘建平,等.神经端侧吻合重建股前外侧游离皮瓣感觉功能[J].中华显微外科杂志.2009,32(2):146-148.
    19Galla TJ, Vedecnik SV, Halbgewachs J, et a1. Fibrin/Schwann cell matrixin poly-epsilon-caprolactone conduits enhances guided nerveregeneration[J]. Int J Artif Organs.2004,27(2):127-136.
    20牛晓锋,刘小林,胡军,等.大鼠化学去细胞异体神经再血管化的实验研究[J].中国修复重建外科杂志.2009,23(2):235-238.
    21孙晓红,窦文波,佟晓杰,等.许旺细胞与脱细胞神经移植物共培养在周围神经损伤修复中的作用[J].中国临床康复.2006,10(29):19-21.
    22阚瑛,赵焱.大剂量甲钴胺对糖尿病周围神经损害的影响[J].中国实用医药.2009,4(19):25-26.
    23赖晓霏,骆文龙.神经营养因子在周围神经损伤后的作用[J].现代医药卫生.2008,24(12):1838-1839.
    24Ann Logan, Zubair Ahmed, Andrew Baird, et a1.Neurotrophic factorsynergy is required for neuronal survival and disinhibited axonregeneration after CNS injury[J]. Brain,2006,129:490-502.
    25张培训,李剑,韩娜,等.剪碎的神经片断和神经生长因子在生物套管小间隙桥接修复周围神经损伤中的作用[J].中国组织工程研究与临床康复.2008,12(23):4465-4468.
    26王介毅,黄继锋,彭朝安,等.神经生长因子对超低温冷冻异体神经移植的效果评价[J].华南国防医学杂志,2009,23(1):1-3.
    27史福东,刘东,李长江.神经生长因子在周围神经损伤中的应用[J].现代中西医结合杂志.2008,17(27):4281-4282.
    28Kleim JA, Chan S, Pringle E, et a1. BDNF val66met polymorphism isassociated with modified experience-dependent plasticity in human motorcortex[J]. Nat Neurosci.2006,9(6):735-737.
    29Eberhardt KA, Irintchev A, Al-Majed AA, et a1. BDNF/TrkB signalingregulates HNK-1carbohydrate expression in regenerating motor nerves andpromotes functional recovery after peripheral nerve repair[J]. Exp Neurol,2006,198(2):500-510.
    30Egan MF, Kojima M, Callicott JH, et a1. The BDNF Va166Metpolymorphism affects activity-dependent secretion of BDNF and humanmemory and hippoeampal function[J]. Cell,2003,112:257-269.
    31黄海霞,高建新,刘克敬,等.BDNF和NT-3对体外培养胎鼠脊髓神经元生长发育的影响[J].山东大学学报(医学版),2002,40(12):492-49.
    32Obata K, Noguchi K. BDNF in sensory neurons and chronic pain[J].Neurosci Res,2006,55(1):1-10.
    33Ikeda O, Murakami M, Ino H, et a1. Effects of brain-derived neurotrophicfactor (BDNF) on compression-induced spinal cord injury: BDNFattenuates down-regulation of superoxide dismutase expression andpromotes up-regulation of myelin basic protein expression[J]. NeuropatholExp Neurol,2002,61:142-150.
    34Wang JM, ZengYS, Liu RY, et al. Recombinant adenovirusvector-mediated functional expression of neurotropin-3receptor(TrkC)inneural stem cells[J]. Exp Neurol,2007,203(1):123-127.
    35Takeda M, Suzuki Y, Obara N, et al. Immunohistochemical detection ofneurotrophin-3and-4, and their receptors in mouse taste bud cells[J]. ArchHistol Cytol,2005,68(5):393-403.
    36Royo NC, ConteV, SaatmanKE, et al. Hippocampal vulnerabilityfol-lowingtraumatic brain injury: a potential role for neurotrophin-4/5in pyramidalcell[J]. Eur J Neurosci,2006,23(5):1089-1092.
    37Ducray A, Kipfer S, Huber AW, et al. Creatine and neurotrophin-4/5promote survival of nitric oxide synthase-expressing intemeuions in striatalcultures[J]. Neurosci Lett,2006,395(1):57-62.
    38Li X, Franz J, Lottspeich F, et al. Recombinant fish neurotrophin-6is aheparin-binding glycoprotein: implications for a role in axonal guidance[J].Bioehem J.1997,324(Pt2):461-466.
    39Zhang C, Cai Q, Li Z, et al. Construction of fusion expression vector ofhuman-derived neurotrophin-6gene encoding mature peptide andpurification of its expressed product[J]. Sheng Wu Yi Xue Gong ChengXue Za Zhi.2005,22(6):1241-1244.
    40Lai KO, Fu WY, Ip FC, et al. Cloning and expression of a novelneurotrophin, NT-7, from carp[J]. Mol Cell Neurosci,1998,11(1-2):64-76.
    41Curtis R, Adryan KM, Zhu Y, et a1. Retrograde axonal transport ofciliaryneurotrophic factor is increased by peripheral nerve injury[J]. Nature,1993,365(6443):253-255.
    42Barati S, Hurtado PR, Zhang SH, et al. GDNF gene delivery via thep75(NTR) receptor rescues injured motor neurons[J]. Exp Neuro1.2006,202(1):179-188.
    43Araki K, Shiotani A, Watabe K, et al. Adenoviral GDNF gene transferenhances neurofunctional recovery after recurrent laryngeal nerve injury[J].Gene Ther,2006,13(4):296-30.
    44宁娜,陈乃宏.神经节苷脂的生物学活性[J].生理科学进展.2009,40(1):24-29.
    45赵劲民,苏伟,丁晓飞,等.神经节苷脂促进周围神经再生的实验[J].中国临床康复.2005,9(37):75-77.
    46张卿,左萍萍.神经节苷脂GM1神经保护机制的研究进展[J].中国药理学通报.2004,20(12):1329-1333.
    47王秀丽,盂庆云.糖皮质激素对神经损伤后各种介质因子影响的研究进展[J].国外医学·麻醉学与复苏分册.2000,21(4):238.
    48刘志丽,高志强,冯国栋等.局部应用糖皮质激素对大鼠面神经损伤后修复的影响[J].中华耳科学杂志.2008,6(3):278.
    49Kato N, Nemoto K, Arino H, et al. Treatment of the chronic inflammationin peripheral target tissue improves the crushed nerve recovery in the rat:histopathological assessment of the nerve recovery[J]. J Neurol Sci.2002,202(1-2):69-74.
    50Boivin A, Pineau I, Barrette B, et al. Toll-Like receptor signaling is criticalfor wallerian eegeneration and functional recovery after peripheral nerveinjury[J]. J Neurosci.2007,27(46):12565-76.
    51Ohlsson M, Westerlund U, Langmoen IA, et al. Methylprednisolonetreatment does not influence axonal regeneration or degeneration followingoptic nerve injury in the adult rat[J]. J Neuroophthalmol.2004,24(1):11-8.
    52党育,姜保国,张殿英等.甲基泼尼松龙局部应用对周围神经损伤修复后的形态学研究[J].中华手外科杂志.2005,21(5):314.
    53于亚东,邵新中.白细胞介素-2在周围神经损伤后神经再生中的作用[J].河北医药.2007,29(12):1202-1203.
    54Mligiliche N, Endo K, Okamoto K, et al. Extracellular matrix of humanamnion manufactured into tubes as conduits for peripheral nerveregeneration[J]. J Biomed Mater Res.2002,63(5):591-600.
    55朱庆棠,朱家恺,程钢,等.可降解材料对外周神经的毒性作用研究[J].中华显微外科杂志.2003,26:127-129.
    56Holmes TC, de Lacalle S, Su X, et al. Extensive neurite outgrowth andactive synapse formation on self-assembling peptide scaffolds[J]. Proc NatlAcad Sci U S A.2000,97(12):6728-33.
    57Fansa H, Keilhoff G. Comparison of different biogenic matrices seededwith cultured Schwann cells for bridging peripheral nerve defects[J].Neurol Res.2004Mar;26(2):167-73.
    58Pearson RG, Molino Y, Williams PM, et al. Spatial confinement of neuriteregrowth from dorsal root ganglia within nonporous microconduits[J].Tissue Eng.2003Apr;9(2):201-8.
    59Yang F, Xu CY, Kotaki M, et al. Characterization of neural stem cells onelectrospun poly(L-lactic acid) nanofibrous scaffold[J]. J Biomater SciPolym Ed.2004,15(12):1483-97.
    60Kiyotani T, Teramachi M, Takimoto Y, et al. Nerve regeneration across a25-mm gap bridged by a polyglycolic acid-collagen tube: a histological andelectrophysiological evaluation of regenerated nerves[J]. Brain Res.1996,740(1-2):66-74.
    61Bryan DJ, Holway AH, Wang KK, et al. Influence of glial growth factorand Schwann cells in a bioresorbable guidance channel on peripheral nerveregeneration[J]. Tissue Eng.2000,6(2):129-38.
    62Lee SJ. Cytokine delivery and tissue engineering[J]. Yonsei Med J.2000,41(6):704-19.
    63den Dunnen WF, van der Lei B, Schakenraad JM, et al. Poly(DL-lactide-epsilon-caprolactone) nerve guides perform better than autologous nervegrafts[J]. Microsurgery.1996,17(7):348-57.
    64Evans GR. Challenges to nerve regeneration[J]. Semin Surg Oncol.2000,19(3):312-8.
    65Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissueengineering. Pharm Res.2000,17(5):497-504.)(Dorsky RI, Moon RT,Raible DW. Environmental signals and cell fate specification inpremigratory neural crest[J]. Bioessays.2000,22(8):708-16.
    66McConnell MP, Dhar S, Naran S, et al. In vivo induction and delivery ofnerve growth factor, using HEK-293cells[J]. Tissue Eng.2004,10(9-10):1492-501.
    67Lee AC, Yu VM, Lowe JB3rd, et al. Controlled release of nerve growthfactor enhances sciatic nerve regeneration[J]. Exp Neurol.2003,184(1):295-303.
    68Xu X, Yee WC, Hwang PY, et al. Peripheral nerve regeneration withsustained release of poly(phosphoester) microencapsulated nerve growthfactor within nerve guide conduits[J]. Biomaterials.2003,24(13):2405-12.
    69Patrick CW Jr, Zheng B, Wu X, et al. Muristerone A-induced nerve growthfactor release from genetically engineered human dermal fibroblasts forperipheral nerve tissue engineering[J]. Tissue Eng.2001,7(3):303-11.
    70Evans GR, Brandt K, Katz S, et al. Bioactive poly(L-lactic acid) conduitsseeded with Schwann cells for peripheral nerve regeneration[J].Biomaterials.2002,23(3):841-8.
    71安沂华,万虹,王红云,等.大鼠雪旺氏细胞支持人胚胎神经干细胞的生长并诱导其分化[J].中华神经外科杂志.2002,18:279-281.
    72Heath CA. Trends Biotechnol[J]. Cells for tissue engineering.2000,18(1):17-9.
    73Gage FH. Mammalian neural stem cells[J]. Science.2000,287(5457):1433-8.
    74万虹,安沂华,王红云,等.体内外不同环境对大鼠胚胎神经干细胞分化的影响[J].中华实验外科杂志.2002,18:275-277.
    75安沂华,王红云,张相彤,等.大鼠胚胎神经干细胞移植治疗脑出血的实验研究[J].中华实验外科杂志.2002.18:50-52.
    76Toda H, Takahashi J, Iwakami N, et al. Grafting neural stem cellsimproved the impaired spatial recognition in ischemic rats[J]. Neurosci Lett.2001,316(1):9-12.
    77Fansa H, Keilhoff G, Wolf G, et al. Cultivating human Schwann cells fortissue engineering of peripheral nerves[J]. Handchir Mikrochir Plast Chir.2000,32(3):181-6.
    78Friedenstein AJ. Precursor cells of mechanocytes[J]. Int Rev Cytol.1976,47:327-59.
    79Stock UA, Vacanti JP. Tissue engineering: current state and prospects[J].Annu Rev Med.2001,52:443-51.
    80Cuevas P, Carceller F, Garcia-Gómez I, et al. Bone marrow stromal cellimplantation for peripheral nerve repair[J]. Neurol Res.2004,26(2):230-2.
    81Cuevas P, Carceller F, Dujovny M, et al. Peripheral nerve regeneration bybone marrow stromal cells[J]. Neurol Res.2002,24(7):634-8.
    82张培训,姜保国,何湘君,等.骨髓问充质干细胞向雪旺细胞分化的体内外实验研究[J].中华手外科杂志,2004,20(4):200-202.
    83Asakura A, Komaki M, Rudnicki M. Muscle satellite cells aremultipotential stem cells that exhibit myogenic, osteogenic, and adipogenicdifferentiation[J]. Differentiation.2001,68(4-5):245-53.
    84王伟,刘品端,梅晰凡,等.大鼠坐骨神经缺损修复中应用新型可降解材料的可行性研究[J].中国临床康复.2004,8(2O):4036-4039.
    85王伟,范明,智小东,等.神经支架复合体修复周围神经缺损[J].中国医学科学院学报.2005,27(6):688-691.
    86刘儒森,郝桂兰,张德光.黄芪对兔周围神经再灌注损伤的保护作用[J].中华实验外科杂志.2003,20(6):505.
    87何小华,李承晏,余绍祖.黄芪的抗神经细胞缺氧损伤作用[J].中华神经科杂志.1998,31(4):204.
    88尹宗生,顾玉东,顾映红,等.中药治疗对大鼠坐骨神经损伤后神经生长因子蛋白表达的影响[J].中华手外科杂志.2003,19(1):55.
    89朱太咏.淫羊藿注射液促进鸡胚背根神经节纤维生长的初步研究[J].中医正骨,1993(2):3.
    90朱太咏.淫羊藿水煎提取液促进鸡胚背根神经节神经突起生长和DNA,RNA合成的实验研究[J].中医正骨.1999,11(9):26.
    91孟凡迅.神经细胞培养法观察单味中药促神经生长的研究[J].南通医学院学报.1999,19(1):14.
    92夏泉,张乎,李绍平,等.当归的药理作用研究进展[J].时珍国医国药.2004,15(3):282.
    93杨万同.中药当归对坐骨神经损伤后髓鞘再生形态研究[J].湖北医科大学学报.1998,19(4):343.
    94杨万同.中药当归对神经组织氧自由基浓度及脂质过氧化影响的实验研究[J].中国创伤杂志.2000,23(4):279.
    95Sartini S, Cuppini R, Ambrogini P, et al. Progression of multipleinnervation of reinnervated rat muscle treated with bilobalide[J]. Boll SocItal Biol Sper.1991,67(7):691-7.
    96Hsu SH, Chang CJ, Tang CM, et al. In vitro and in vivo effects of Ginkgobiloba extract EGb761on seeded Schwann cells within poly(DL-lacticacid-co-glycolic acid) conduits for peripheral nerve regeneration[J]. JBiomater Appl.2004,19(2):163-82.
    97林浩东,王欢,陈德松,等.银杏叶提取物(EGb50)对大鼠坐骨神经再生的影响及其量效关系[J].中华显微外科杂志.2006,29(4):264.
    98张烽,顾玉东,徐建光,等.银杏叶提取物促进大鼠坐骨神经再生的实验研究[J].中华外科杂志.2000,38(1):78.
    99薛锋,顾玉东,陈德松,等.银杏叶提取物对周围神经损伤后运动神经元的保护作用[J].中华手外科杂志,2002,18(1):46.
    100Suttie JM, Gluckman PD, Butler JH, et al. Insulin-like growth factor1(IGF-1) antler-stimulating hormone?[J]. Endocrinology.1985,116(2):846-8.
    101李军,路来金.鹿茸多肽促进大鼠坐骨神经再生的实验研究[J].辽宁中医杂志.2004,31(4):343.
    102王克利,路来金,宫旭,等.鹿茸多肽-PLGA复合膜促进大鼠周围神经再生[J].吉林大学学报:医学版.2006,32(2):19.
    103Zhou S, Chen X, Gu X, et al. Achyranthes bidentata Blume extract protectscultured hippocampal neurons against glutamate-induced neurotoxicity[J].J Ethnopharmacol.2009,122(3):547-54.
    104Yuan Y, Shen H, Yao J, et al. The protective effects of Achyranthesbidentata polypeptides in an experimental model of mouse sciatic nervecrush injury[J]. Brain Res Bull.2010,81(1):25-32.
    105Shen H, Yuan Y, Ding F, et al. The protective effects of Achyranthesbidentata polypeptides against NMDA-induced cell apoptosis in culturedhippocampal neurons through differential modulation of NR2A-andNR2B-containing NMDA receptors[J]. Brain Res Bull.2008,77(5):274-81.
    106赵翠萍.加味补阳还五汤对周围神经再生的形态学实验研究[J].中医正骨.1993,5(2):6.
    107宋宗明,崔守信,张德秀,等.川芎嗪对兔眼高压下视网膜神经节细胞和双极细胞损伤的保护作用[J].第四军医大学学报.2001,22(6):514.
    108Wen TC, Yoshimura H, Matsuda S, et al. Ginseng root prevents learningdisability and neuronal loss in gerbils with5-minute forebrain ischemia[J].Acta Neuropathol.1996,91(1):15-22.
    109Lim JH, Wen TC, Matsuda S, et al. Protection of ischemic hippocampalneurons by ginsenoside Rb1, a main ingredient of ginseng root[J]. NeurosciRes.1997,28(3):191-200.
    110Shen L, Zhang J. Ginsenoside Rg1increases ischemia-induced cellproliferation and survival in the dentate gyrus of adult gerbils[J]. NeurosciLett.2003,344(1):1-4.
    111李爱红,柯开富,包仕尧,等.人参皂甙Rb1、Rb3、Rg1对培养小鼠皮层细胞缺血损伤的保护作用及浓度一效应关系[J].脑与神经疾病杂志,2003,11(2):72-76.
    112Radad K, Gille G, Moldzio R, et al. Ginsenosides Rb1and Rg1effects onsurvival and neurite growth of MPP+-affected mesencephalic dopaminergiccells. J Neural Transm[J].2004Jan;111(1):37-45.
    113Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng totalsaponin and ginsenosides Rb1and Rg1on spinal cord neurons in vitro[J].Exp Neurol.2002,173(2):224-34.
    114Kim YH, Park KH, Rho HM. Transcriptional activation of theCu,Zn-superoxide dismutase gene through the AP2site by ginsenoside Rb2extracted from a medicinal plant, Panax ginseng[J]. J Biol Chem.1996Oct4;271(40):24539-43.
    115Han Y, Son SJ, Akhalaia M, Platonov A, et al. Modulation ofradiation-induced disturbances of antioxidant defense systems by ginsan[J].Evid Based Complement Alternat Med.2005,2(4):529-36.
    116Chang MS, Lee SG, Rho HM. Transcriptional activation of Cu/Znsuperoxide dismutase and catalase genes by panaxadiol ginsenosidesextracted from Panax ginseng[J]. Phytother Res.1999,13(8):641-4.
    117Yokozawa T, Satoh A, Cho EJ. Ginsenoside-Rd attenuates oxidativedamage related to aging in senescence-accelerated mice[J]. J PharmPharmacol.2004,56(1):107-13.
    118徐菲菲,曹颖林,张万琴.人参皂苷Re对帕金森病小鼠保护作用一人参皂甙Re抗黑质神经元凋亡的机制初探[J].中国天然药物.2004,2(3):171-175.
    119陈晓春,朱元贵,王小众.人参皂苷Rgi对PC12细胞凋亡保护作用的可能机制[J].药学学报2001.36(6):41l-414.
    120Radad K, Gille G, Moldzio R, et al. Ginsenosides Rb1and Rg1effects onmesencephalic dopaminergic cells stressed with glutamate[J]. Brain Res.2004,1021(1):41-53.
    121Kim HS, Lee JH, Goo YS, et al. Effects of ginsenosides on Ca2+channelsand membrane capacitance in rat adrenal chromaffin cells[J]. Brain ResBull.1998,46(3):245-51.
    122Kim YC, Kim SR, Markelonis GJ. Ginsenosides Rb1and Rg3protectcultured rat cortical cells from glutamate-induced neurodegeneration[J]. JNeurosci Res.1998,53(4):426-32.
    123张云峰,姜正林,曹茂虹,等.人参皂甙Rbl对模拟缺血环境中的大鼠神经元胞内游离钙的影响[J].临床神经病学杂志,2005.18(6):440-42.
    124Choi S, Jung S, Kim C, et al. Effect of ginsenosides on voltage-dependentCa(2+) channel subtypes in bovine chromaffin cells[J]. J Ethnopharmacol.2001,74(1):75-81.
    125Rudakewich M, Ba F, Benishin CG. Neurotrophic and neuroprotectiveactions of ginsenosides Rb(1) and Rg(1)[J]. Planta Med.2001,67(6):533-7.
    126Salim KN, McEwen BS, Chao HM. Ginsenoside Rb1regulates ChAT, NGFand trkA mRNA expression in the rat brain[J]. Brain Res Mol Brain Res.
    1997Jul;47(1-2):177-82.
    127Mook-Jung I, Hong HS, Boo JH, et al. Ginsenoside Rb1and Rg1improvespatial learning and increase hippocampal synaptophysin level in mice[J]. JNeurosci Res.2001,63(6):509-15.
    128Zhang JT, Liu Y, Qu ZW, et al. Influence of ginsenoside Rb1and Rg1onsome central neurotransmitter receptors and protein biosynthesis in themouse brain[J]. Yao Xue Xue Bao.1988Jan;23(1):12-6.
    129Wang XY, Zhang JT. Effect of ginsenoside Rb1on long-term potentiationin the dentate gyrus of anaesthetized rats[J]. J Asian Nat Prod Res.2003,5(1):1-4.
    130Chen XC, Zhu YG, Wang XZ, et al. Protective effect of ginsenoside Rg1ondopamine-induced apoptosis in PC12cells[J]. Acta Pharmacol Sin.2001Aug;22(8):673-8.
    131Chen XC, Zhu YG, Zhu LA, et al. Ginsenoside Rg1attenuatesdopamine-induced apoptosis in PC12cells by suppressing oxidativestress[J]. Eur J Pharmacol.2003Jul18;473(1):1-7.
    132Leung KW, Yung KK, Mak NK, et al. Neuroprotective effects ofginsenoside-Rg1in primary nigral neurons against rotenone toxicity[J].Neuropharmacology.2007Mar;52(3):827-35.
    133Chen XC, Chen Y, Zhu YG, et al. Protective effect of ginsenoside Rg1against MPTP-induced apoptosis in mouse substantia nigra neurons[J].Acta Pharmacol Sin.2002Sep;23(9):829-34.
    134Chen XC, Zhou YC, Chen Y, et al. Ginsenoside Rg1reduces MPTP-inducedsubstantia nigra neuron loss by suppressing oxidative stress[J]. ActaPharmacol Sin.2005Jan;26(1):56-62.
    135Lu MC, Lai TY, Hwang JM, et al. Proliferation-and migration-enhancingeffects of ginseng and ginsenoside Rg1through IGF-I-and FGF-2-signaling pathways on RSC96Schwann cells[J]. Cell Biochem Funct.2009Jun;27(4):186-92.
    136Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of completesciatic, peroneal, and posterior tibial nerve lesions in the rat[J]. PlastReconstr Surg.1989Jan;83(1):129-38.
    137Huang J, Hu X, Lu L, et al. Electrical stimulation accelerates motorfunctional recovery in autograft-repaired10mm femoral nerve gap inrats[J]. J Neurotrauma.2009,26(10):1805-13.
    138Abercrombie M. Estimation of nuclear population from microtomesections[J]. Anat Rec.1946Feb;94:239-47.
    139Radtke C, Aizer AA, Agulian SK, et al. Transplantation of olfactoryensheathing cells enhances peripheral nerve regeneration aftermicrosurgical nerve repair[J]. Brain Res.2009,1254:10-7.
    140Werdin F, Grüssinger H, Jaminet P, et al. An improved electrophysiologicalmethod to study peripheral nerve regeneration in rats[J]. J NeurosciMethods.2009,182(1):71-7.
    141Delgado-Garcia JM, Del Pozo F, Spencer RF, et al. Behavior of neurons inthe abducens nucleus of the alert cat--III. Axotomized motoneurons[J].Neuroscience.1988Jan;24(1):143-60.
    142Shi YQ, Huang TW, Chen LM, et al. Ginsenoside Rg1attenuatesamyloid-beta content, regulates PKA/CREB activity, and improvescognitive performance in SAMP8mice[J]. J Alzheimers Dis.2010;19(3):977-89.
    143Fu SY, Gordon T. The cellular and molecular basis of peripheral nerveregeneration[J]. Mol Neurobiol.1997Feb-Apr;14(1-2):67-116.
    144Nicholson DW, Thornberry NA. Caspases: killer proteases[J]. TrendsBiochem Sci.1997Aug;22(8):299-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700