基于非对称噁二唑或三氮唑衍生物配体的配位聚合物构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕当前配位聚合物化学的研究热点,设计并合成了含有功能化噁二唑或三氮唑基团的非对称有机配体,并将其用于定向组装具有预期结构和功能的配位聚合物,在晶体结构表征和性能研究的基础上,初步探讨了部分配聚物的结构-性能关系。全文共分为六章:
     第一章首先介绍了此项工作的研究背景,重点介绍了多孔金属-有机配位聚合物(MOFs)的研究进展及其在磁学、光学、催化、吸附与存储方面的应用;并在此基础上提出了本论文选题的依据、目的及所取得的进展。
     第二章首次利用5-(4-吡啶基)-1,3,4-噁二唑-2-硫醇(4-Hpyt)与ZnII和CdII反应得到四个具有不同维度的MOFs。配体呈现硫代酰胺和硫醇盐两种异构体以及四种不同的配位模式。晶体结构研究表明在室温和溶剂热条件下可得到不同的结晶产物;常温下得到的锌和镉配聚物含有较大的溶剂通道,进一步研究了它们的溶剂以及氮气吸附性质。第三章利用4-Hpyt或3-Hpyt与典型的八面体CoII(或NiII)离子反应,得到一系列具有不同孔穴尺寸的多孔配聚物,通式为{[M(pyt)2(H2O)2]·(solvents)}n(5?10),呈现出相似的二维主体框架,包结的客体分子依反应媒质而异,其中8中含有少见的四元水簇。第四章合成了两个羧酸类衍生物配体5-(4-吡啶基)-1,3,4-噁二唑-2-硫代乙酸(4-Hpyoa)和其3位吡啶基异构体,将之与金属离子反应得到11?15。它们分别呈现一维双链、二维同手性层、三维锐钛矿或金红石拓扑网络,拓扑结构的多样性取决于金属-配体间的协同作用。
     第五章设计了具有三脚架结构的双(1,2,4-三氮唑-1-基)乙酸(Hbtza)配体,将之与八面体金属及d10银离子反应,分别得到(3,6)-连接网络结构的配位聚合物16?18及4-连接三维化合物19。对此系列2D或3D金属-有机框架研究表明构建可靠的分子模块能够形成预定拓扑节点的超分子网络。第六章设计了多齿酰胺类配体N-(3,5-双(3-吡啶基)-1,2,4-三氮唑-4-烟酰胺(3-Hbptza),在草酸根共配体存在下与八面体金属反应,得到两类未见文献报道的(4,5)-连接二维氢键(20?22)或配位(23)拓扑网络。金属离子半径的大小对配体配位模式以及超分子拓扑结构具有重要影响。
On the focus of current hot research topic of coordination polymer, several un-symmetric ligands with functionalized oxadiazole or triazole groups were choosen and applied as predesigned molecular building blocks to achieve the controlled as-semblies of functional coordination polymers through modular synthetic methodology. A series of polymeric complexes were synthesized and structurally characterized, and their properties have also been investigated for the sake of exploiting the potential re-lationship between structures and properties. This thesis consists of six chapters.
     In chapter 1, the recent research progress of porous metal-organic frameworks (MOFs) was represented and their useful properties, such as magnetic ordering, opti-cal activity, catalysis ability, and microporosity, were also introduced. Then the re-search significance and main conclusion of this thesis were summarized.
     In chapter 2, four novel ZnII and CdII metal-organic coordination polymers based on a versatile building block 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol (4-Hpyt) have been successfully prepared under different conditions. The anionic ligand 4-pyt takes thioamide form in 1, 2 and 4; but the thiolate form in 3. Four types of coordination modes have been detected. Complexes 2 and 4 display large 1-D channels in which the solvents are accommodated. Their adsorption properties of solvent and nitrogen have been also investigated. In chapter 3, reactions of 4-Hpyt or 3-Hpyt with typical octahedral metal ions (CoII or NiII) generate a series of porous coordination polymers with the general formula of {[M(pyt)2(H2O)2]·(solvents)}n (5-10). These crystalline materials behave uniform 2-D grid-like host coordination frameworks with the inclu-sion of varied guest solvents, in one of which unusual water clusters are observed. Chapter 4 presents the structural assemblies of coordination polymers 11-15 by utiliz-ing the familiar metal ions with two flexible and versatile pyridinecarboxylate deriva-tive ligands as the anionic building blocks, namely, 5-(4-pyridyl)-1,3,4-oxadiazole-2- thioacetate (4-Hpyoa) and its 3-N-pyridyl isomer. These complexes display multifari-ous polymeric coordination frameworks, such as 1-D double-strand chain, 2-D ho-mochiral layer, as well as 3-D (3,6)-connected networks with anatase or rutile topol-ogy. Apparently, the metal centers and ligand spacers play a synergistic role in facili-tating the structural diversity.
     In chapter 5, a series of two-dimensional (2D) and three-dimensional (3D) MOFs 16–19 with unusual (3,6)-connected or 4-connected SrAl2 net topology are presented on the basis of a predesigned three-connected component bis(1,2,4-triazol-1-yl)acetate (btza). When properly treated with the familiar divalent metal ions, btza may perfectly furnish the coordination spheres for effective connectivity to produce diverse (3,6)-connected nets. In chapter 6, N-(3,5-bis(3-pyridyl)-1,2,4-triazole-4-yl)nicoti-namide (3-Hbptza) was employed to react with octahedral metal ions in virtue of ox-alate co-ligand, and two unprecedented architectures with (4,5)-connected net topol-ogy were afforded in virture of hydrogen-bonding (20?22) or coordination (23) inter-actions. The radii of different metal ions have significant influence on the coordina-tion modes of 3-bptza and the overall supramolecular networks.
引文
[1] Werner, A. Beitrag zur Konstitution anorganischer Verbindungen, Zeitschr. Anorg. Chem., 1893, 3: 267~330.
    [2] Wiliam, A. F.; Floriani, C.; Merbach, A. E. Perspectives in Coordination Chemistry, Helv. Chim. Acta, 1992, 156~159.
    [3] Patani, G. A.; Lavoie, E. J. Bioisosterism: a rational approach in drug design, Chem Rev., 1996, 96: 3147~3176.
    [4] Drexler, K. E. Engines of Creation, Anchor Books, Doubleday, New York: 1986; electronic version: http://www.foresight.org/EOC/.
    [5] Lehn. J. M. Supramolecular Chemistry-Scope and Perspectives Molecules, Su-permolecules, and Molecular Devices, Angew. Chem. Int. Ed. Engl., 1988, 27: 89~112.
    [6] Gokel. G. W. Advances in Supramolecular Chemistry, Greenwich CT, JAI, Press: 1992; Lehn. J. M. Comprehensive Supramolecular Chemidtry, Pergamon, Press: Oxford, Vol.1-10, 1996.
    [7] Feynman, R. P. Eng. Sci. 1960, 23: 22~26, 30, 34, and 36; electronic version: http://www.zyvex.com/nanotech/feynman.html.
    [8] Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim: 1995.
    [9] For a comprehensive introduction to the“bottom-up”and“top-down”ap-proaches of nanochemistry and nanophysics, see Ozin, G. A. Nanochemistry: Synthesis in diminishing dimensions, Adv. Mater., 1992, 4: 612~649. This re-port also provides a comprehensive review of the early work in the field.
    [10] Purse, B. W.; Rebek, J. Supramolecular Structure and Dynamics Special Fea-ture: Functional cavitands: Chemical reactivity in structured environments, Proc. Natl. Acad. Sci. USA 2005, 102: 10777~10782; Grimsdale, A. C. Mullen, K. The Chemistry of Organic Nanomaterials, Angew. Chem. Int. Ed., 2005, 44: 5592~5629.
    [11] Uppuluri, S.; Piehler, L. T.; Li, J. et al., Core-Shell Tecto(dendrimers): I. Syn-thesis and Characterization of Saturated Shell Models, Adv. Mater., 2000, 12: 796~800.
    [12] Haupt, K. Imprinted polymers-Tailor-made mimics of antibodies and receptors, Chem. Commun., 2003, 171~178.
    [13] Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers, Angew. Chem. Int. Ed., 2004, 43: 2334~2375.
    [14] Ginsburg, D. Solid State Photochemistry. A Collection of Papers by G. M. J. Schmidt and his Collaborators (Monographs in Modern Chemistry, Vol. 8) Verlag Chemie, Weinheim: 1976.
    [15] Kitaigorodskii, A. I. Molecular Crystals and Molecules, AcademicPress, New York: 1973.
    [16] Thomas, J. M. Diffusionless reactions and crystal engineering, Nature, 1981, 289: 633~634.
    [17] Addadi, L.; Lahav, M. Second International Symposium on Organic Synthesis, Pure Appl. Chem., 1979, 51: 1269~1284.
    [18] Desiraju, G. R. Crystal Engineering. The Design of Organic Solids, Elsevier: Amsterdam, 1989.
    [19] Desiraju, G. R. Crystal Engineering: A Holistic View, Angew. Chem. Int. Ed., 2007, 46: 8342~8356.
    [20] Desiraju, G. R. Supramolecular synthons in crystal engineering -- A new or-ganic synthesis, Angew. Chem., Int. Ed. Engl., 1995, 34: 2311~2327.
    [21] Meier, W. M.; Olson, D. H.; Baerlocher, Ch. Atlas of zeolite structure types, International Zeolite Association, 4th edn, 1996 [see also http://www-iza- ethz.ch/IZA-SC/Atlas/AtlasHome.html].
    [22] Hoskins, B. F.; Robson. R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments, J. Am. Chem. Soc., 1989, 111: 5962~5964.
    [23] Wells, A. F. Three-Dimensional Nets and Polyhedra; Wiley: New York, 1977.
    [24] Han, S.; Smith, J. V. Enumeration of four-connected three-dimensional nets. I. Conversion of all edges of simple three-connected two-dimensional nets into crankshaft chains, Acta Crystallogr., 1999, A55: 332~341, and references therein.
    [25] Li, H.; Eddaoudi, M.; O'Keeffe, M. et al., Design and synthesis of an excep-tionally stable and highly porous metal-organic framework, Nature, 1999, 402: 276~279.
    [26] Férey, G. Microporous Solids: From Organically Templated Inorganic Skele-tons to Hybrid Frameworks...Ecumenism in Chemistry, Chem. Mater., 2001, 13: 3084~3098.
    [27] Prins, L. J.; Reinhoudt, D. Timmerman, N.; P Noncovalent Synthesis Using Hydrogen Bonding, Angew Chem. Int. Ed., 2001, 40: 2382~2436.
    [28] Steiner, T. The Hydrogen Bond in the Solid State, Angew. Chem. Int. Ed., 2002, 41: 48~76.
    [13] Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers, Angew. Chem. Int. Ed., 2004, 43: 2334~2375.
    [14] Ginsburg, D. Solid State Photochemistry. A Collection of Papers by G. M. J. Schmidt and his Collaborators (Monographs in Modern Chemistry, Vol. 8) Verlag Chemie, Weinheim: 1976.
    [15] Kitaigorodskii, A. I. Molecular Crystals and Molecules, AcademicPress, New York: 1973.
    [16] Thomas, J. M. Diffusionless reactions and crystal engineering, Nature, 1981, 289: 633~634.
    [17] Addadi, L.; Lahav, M. Second International Symposium on Organic Synthesis, Pure Appl. Chem., 1979, 51: 1269~1284.
    [18] Desiraju, G. R. Crystal Engineering. The Design of Organic Solids, Elsevier: Amsterdam, 1989.
    [19] Desiraju, G. R. Crystal Engineering: A Holistic View, Angew. Chem. Int. Ed., 2007, 46: 8342~8356.
    [20] Desiraju, G. R. Supramolecular synthons in crystal engineering -- A new or-ganic synthesis, Angew. Chem., Int. Ed. Engl., 1995, 34: 2311~2327.
    [21] Meier, W. M.; Olson, D. H.; Baerlocher, Ch. Atlas of zeolite structure types, International Zeolite Association, 4th edn, 1996 [see also http://www-iza- ethz.ch/IZA-SC/Atlas/AtlasHome.html].
    [22] Hoskins, B. F.; Robson. R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments, J. Am. Chem. Soc., 1989, 111: 5962~5964.
    [23] Wells, A. F. Three-Dimensional Nets and Polyhedra; Wiley: New York, 1977.
    [24] Han, S.; Smith, J. V. Enumeration of four-connected three-dimensional nets. I. Conversion of all edges of simple three-connected two-dimensional nets into crankshaft chains, Acta Crystallogr., 1999, A55: 332~341, and references therein.
    [25] Li, H.; Eddaoudi, M.; O'Keeffe, M. et al., Design and synthesis of an excep-tionally stable and highly porous metal-organic framework, Nature, 1999, 402: 276~279.
    [26] Férey, G. Microporous Solids: From Organically Templated Inorganic Skele-tons to Hybrid Frameworks...Ecumenism in Chemistry, Chem. Mater., 2001, 13: 3084~3098.
    [27] Prins, L. J.; Reinhoudt, D. Timmerman, N.; P Noncovalent Synthesis Using Hydrogen Bonding, Angew Chem. Int. Ed., 2001, 40: 2382~2436.
    [28] Steiner, T. The Hydrogen Bond in the Solid State, Angew. Chem. Int. Ed., 2002, 41: 48~76.
    [43] Scudder, M.; Dance, I. Dimorphic intra- and intermolecular aryl motifs in symmetrical hexafaceted molecules (ArnX)3Y-Z-Y(XArn)3, Chem. Eur. J. 2002, 8: 5456~5468.
    [44] Li, M.-X.; Xie, G.-Y.; Gu, Y.-D. et al., Oxygen transfer from iron nitrates in the presence of 2-(diphenylphosphine oxide)pyridine (OPPh2py). Molecular structure of Fe(NO3)2Cl(OPPh2py)·CH2Cl2, Polyhedron, 1995, 14: 1235~1239.
    [45] Moliner, N.; Mu?oz, M. C.; Real, J. A. Two-dimensional assembling of 4,4′-bipyridine and 4,4′-azopyridine bridged iron (II) linear coordination poly-mers via hydrogen bond, Inorg. Chem. Commun., 1999, 2: 25~27.
    [46] Noro, S.; Kondo, M.; Ishii, T. et al., Syntheses and crystal structures of iron co-ordination polymers with 4,4’-bipyridine (4,4’-bpy) and 4,4’-azopyridine (azpy). Two-dimensional networks supported by hydrogen bonding, {[Fe(azpy)(NCS)2(MeOH)2]·azpy}n and {[Fe(4,4’-bpy)(NCS)2 (H2O)2]·4,4’-bpy}n, J. Chem. Soc. Dalton Trans., 1999, 1569~1574.
    [47] Du, M.; Li, C.-P.; Zhao, X.-J. et al., Interplay of coordinative and su-pramolecular interactions in engineering unusual crystalline architectures of low-dimensional metal–pamoate complexes under co-ligand intervention, CrystEngComm, 2007, 9: 1011~1028.
    [48] Qiu, L.-G.; Xie, A.-J.; Zhan, L.-D. Encapsulation of Catalysts in Supramolecu-lar Porous Frameworks: Size- and Shape-Selective Catalytic Oxidation of Phe-nols, Adv. Mater., 2005, 17: 689~692.
    [49] Steel, P. J. Ligand Design in Multimetallic Architectures: Six Lessons Learned, Acc. Chem. Res., 2005, 38: 243~250.
    [50] Constable, E. C. Metallosupramolecular chemistry, Chem. Ind., 1994, 56~59.
    [51] Férey G. Hybrid porous solids: past, present, future Chem. Soc. Rev., 2008, 37: 191~214, and references therein.
    [52] Hoskins, B. F.; Robson, R., Design and Construction of a New Class of Scaf-folding-like Materials Comprising Infinite Polymeric Frameworks of 3D-Linked Molecular Rods. A Reappraisal of the Zn(CN)2 and Cd(CN)2 Structures and the Synthesis and Structure of the Diamond-Related Frame-works [N(CH3)4][Cu[I]Zn[II](CN)4] and Cu[I] [4, 4', 4'', 4'''-tetracyanotetraphenylmethane]BF4 C6H5NO2, J. Am. Chem. Soc., 1990, 112: 1546~1554.
    [53] Fujita, M.; Kwon, Y. J.; Washizu, S. et al., Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cad-mium(II) and 4,4'-Bipyridine, J. Am. Chem. Soc., 1994, 116: 1151~1152.
    [54] Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a mi-croporous metal-organic framework, Nature 1995, 378: 703~706.
    [55] Venkataraman, D.; Gardner, G. B.; Lee, S. et al., Zeolite-like Behavior of a Coordination Network, J. Am. Chem. Soc., 1995, 117: 11600~11601.
    [56] Kondo, M.; Yoshitomi, T.; Seki, K. et al., Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4 -bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn), Angew. Chem. Int. Ed. Engl. 1997, 36: 1725~1727.
    [57] Férey, G.; Cheetham, A. K. POROUS MATERIALS: Prospects for Giant Pores, Science, 1999, 283: 1125~1126.
    [58] O'Keeffe, M.; Eddaoudi, M.; Li, H. et al., Frameworks for Extended Solids: Geometrical Design Principles, J. Solid State Chem., 2000, 152: 3~20.
    [59] Férey, G. Building units design and scale chemistry, J. Solid State Chem., 2000, 152: 37~53.
    [60] Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W. et al., Reticular synthesis and the design of new materials, Nature, 2003, 423: 705~714.
    [61] Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M. et al., Reticular Chemis-try: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks, Acc. Chem. Res., 2005, 38: 176~182.
    [62] Delgado-Friedrichs, O., Foster, M. D., O'Keeffe, M., et al., What do we know about three-periodic nets? J. Solid State Chem., 2005, 178: 2533~2554.
    [63] El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L. et al., Designed Synthesis of 3D Covalent Organic Frameworks, Science, 2007, 316: 268~272.
    [64] Férey, G.; Serre, C.; Mellot-Draznieks, C. et al., A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction, Angew. Chem., Int. Ed., 2004, 43: 6296~6301.
    [65] Férey, G.; Mellot-Draznieks, C.; Serre, C. et al., Crystallized Frameworks with Giant Pores: Are There Limits to the Possible? Acc. Chem. Res., 2005, 38: 217~225.
    [66] Férey, G.; Mellot-Draznieks, C.; Serre, C. et al., A Chromium Terephtha-late-Based Solid with Unusually Large Pore Volumes and Surface Area, Sci-ence, 2005, 309: 2040~2042.
    [67] Serre, C.; Mellot-Draznieks, C. Surblé, S. et al., Role of Solvent-Host Interac-tions That Lead to Very Large Swelling of Hybrid Frameworks, Science, 2007, 315: 1828~1831.
    [68] Beitone, L.; Huguenard, C.; Gansmuller, A. et al., Order-Disorder in the Su-per-Sodalite Zn3Al6(PO4)12, 4tren, 17H2O (MIL-74): A Combined XRD-NMR Assessment, J. Am. Chem. Soc., 2003, 125: 9102~9110.
    [69] Horcajada, P.; Serre, C.; V-Regi, M. et al., Metal-Organic Frameworks as Effi-cient Materials for Drug Delivery, Angew. Chem. Int. Ed., 2006, 45: 5974~5978.
    [70] Li, H.; Eddaoudi, M.; O'Keeffe, M. et al., A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 1999, 402: 276~279.
    [71] Férey, G.; Latroche, M.; Serre, C. et al., Hydrogen adsorption in the nanopor-ous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M = Al3+, Cr3+), MIL-53, Chem. Commun., 2003, 2976~2977.
    [72] Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J. et al., Nature, 2004, 427: 523~527.
    [73] Krawiec, P.; Kramer, M.; Sabo, M. et al., Improved Hydrogen Storage in the Metal-Organic Framework Cu3(BTC)2, Adv. Eng. Mater., 2006, 8: 293~296.
    [74] Férey, G. Microporous Solids: From Organically Templated Inorganic Skele-tons to Hybrid Frameworks...Ecumenism in Chemistry, Chem. Mater., 2001, 13: 3084~3098.
    [75] Yaghi, O. M.; Li, H. L.; Davis, C. et al., Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids, Acc. Chem. Res., 1998, 31: 474~484.
    [76] Cavellec, M.; Riou, D.; Férey, G. Magnetic iron phosphates with an open framework, Inorg. Chim. Acta, 1999, 291: 317~325 and refs therein.
    [77] Drillon, M.; Miller, J. S. Magnetism: Molecules to Materials, Wiley-VCH: Weinheim, 2001–2005, vol. I–V.
    [78] Shrikanth, H.; Hajndl, R.; Moulton, B. et al., Magnetic studies of crys-tal-engineered molecular nanostructures, J. Appl. Phys., 2003, 93: 7089~7091.
    [79] Barthelet, K., Riou, D.; Férey, G. [VIII(H2O)]3O(O2CC6H4CO2)3·(Cl,9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework, Chem. Commun., 2002, 1492~1493.
    [80] Wang, X.-Y.; Wang, Z.-M.; Gao, S. Constructing magnetic molecular solids by employing three-atom ligands as bridges, Chem. Commun., 2008, 281~294.
    [81] Maspoch, D.; Domingo, N.; Ruiz-Molina, D. et al., A Robust Purely Organic Nanoporous Magnet, Angew. Chem., Int. Ed., 2004, 43: 1828~1832.
    [82] Maspoch, D.; Ruiz-Molina, D.; Wurtz, K. et al., Synthesis, structural and mag-netic properties of a series of copper(II) complexes containing a monocarboxy-lated perchlorotriphenylmethyl radical as a coordinating open-shell ligand, Dalton Trans., 2004, 43: 1073~1082.
    [83] Halder, G. J.; Kepert, C. J.; Moubarki, B. et al., Guest-Dependent Spin Cross-over in a Nanoporous Molecular Framework Material, Science, 2002, 298: 1762~1765.
    [84] Wang, S., Hou, Y., Wang, E., et al., A novel organic-inorganic hybrid material with fluorescent emission: [Cd(PT)(H2O)]n (PT=phthalate), New J. Chem., 2003, 27: 1144~1147.
    [85] Lu, J., Li, Y., Zhao, K., et al., Novel oxalate coordination mode and roles: syn-thesis, structure and fluorescence property of [Cd2(μ5-ox)(μ3-OH)2] with 3-D structure, Inorg. Chem. Commun., 2004, 7: 1154~1156.
    [86] Huang Y-Q, Ding B, Song H-B, et al., A novel 3D porous metal–organic framework based on trinuclear cadmium clusters as a promising luminescent material exhibiting tunable emissions between UV and visible wavelengths, Chem. Commun., 2006, 4906~4908.
    [87] Serpaggi, F., Luxbacher, T., Cheetham A. K. et al., Dehydration and Rehydra-tion Processes in Microporous Rare-Earth Dicarboxylates: A Study by Ther-mogravimetry, Thermodiffractometry and Optical Spectroscopy, J. Solid State Chem., 1999, 145: 580~586.
    [88] Huang, Y.-G., Wu, B.-L., Yuan, D.-Q. et al., New Lanthanide Hybrid as Clus-tered Infinite Nanotunnel with 3D Ln-O-Ln Framework and (3,4)-Connected Net, Inorg. Chem. 2007, 46: 1171~1176.
    [89] Wang, S. Luminescence and electroluminescence of Al(III), B(III), Be(II) and Zn(II) complexes with nitrogen donors, Coord. Chem. Rev., 2001, 215: 79~98.
    [90] Huang G S, Wu X L, Xie Y, et al., Photoluminescence from 8-hydroxy quino-line aluminum embedded in porous anodic alumina membrane, Appl. Phys. Lett., 2005, 87: 151910.
    [91] Xamena F X L; Corma, A.; Garcia, H. Applications for Metal-Organic Frame-works (MOFs) as Quantum Dot Semiconductors, J. Phys. Chem. C, 2007, 111: 80~85.
    [92] Tang, Y.-Z., Huang, X.-F., Song, Y.-M., et al., Homochiral 1D Zinc-Quitenine Coordination Polymer with a High Dielectric Constant, Inorg. Chem., 2006, 45: 4868~4870.
    [93] Vaidhyanathan, R., Natarajan, S.; Rao, C. N. R. A chiral mixed carboxylate, [Nd4(H2O)2(OOC(CH2)3COO)4(C2O4)2], exhibiting NLO properties, J. Solid State Chem., 2004, 177: 1444~1448.
    [94] Zhou, G.-W., Lan, Y.-Z., Zheng, F.-K., et al., [Zn(C7H3O5N)]n·nH2O: A third-order NLO Zn coordination polymer with spiroconjugated structure, Chem. Phys. Lett., 2006, 426: 341~344.
    [95] Holman, K. T., Ward, M. D. Engineering crystal symmetry and polar order in molecular host frameworks, Science, 2001, 294: 1907~1911.
    [96] Evans, O. R.; Lin, W. B. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks, Acc. Chem. Res., 2002, 35: 511~522.
    [97] Mori, W.; Takamizawa, S.; Kato, C. N. et al., Molecular-level design of effi-cient microporous materials containing metal carboxylates: inclusion complex formation with organic polymer, gas-occlusion properties, and catalytic activi-ties for hydrogenation of olefins, Microporous Mesoporous Mater., 2004, 73: 31~46.
    [98] Forster, P. M.; Cheetham, A. K. Hybrid Inorganic–Organic Solids: An Emerg-ing Class of Nanoporous Catalysts, Top. Catal., 2003, 24: 79~86.
    [99] Lin, W. Homochiral porous metal-organic frameworks: Why and how? J. Solid State Chem., 2005, 178: 2486~2490.
    [100] Seo, J. S.; Whang, D.; Lee, H. et al., A homochiral metal–organic porous material for enantioselective separation and catalysis, Nature, 2000, 404: 982~986.
    [101] Wu, D.-D.; Hu, A.; Zhang, L. et al., A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis, J. Am. Chem. Soc., 2005, 127: 8940~8941.
    [102] Dybtsev, D. N.; Nuzhdin, A. L.; Chun, H. et al., A Homochiral Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity, Angew. Chem., Int. Ed., 2006, 45: 916~920.
    [103] Kesanli, B.; Lin, W. Chiral porous coordination networks: rational design and applications in enantioselective processes, Coord. Chem. Rev., 2003, 246: 305~326.
    [104] Yang, Y.; Clearfield, A. The preparation and ion-exchange properties of zirco-nium sulfophosphonates, React. Polymer, 1987, 5: 13~21.
    [105] Clearfield, A.; Wang Z. K. Organically pillared microporous zirconium phos-phonates, J. Chem. Soc., Dalton Trans., 2002, 2937~2947.
    [106] Clearfield, A.; Wang Z. K.; Bellinghausen, P. Highly Porous Zirconium Aryldiphosphonates and Their Conversion to Strong Bronsted Acids J. Solid State Chem., 2002, 167: 376~385.
    [107] Evans, O. R.; Ngo, H. L.; Lin, W. Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates, J. Am. Chem. Soc., 2001, 123: 10395~10396.
    [108] Sawaki, T.; Aoyama, Y. Immobilization of a Soluble Metal Complex in an Or-ganic Network. Remarkable Catalytic Performance of a Porous Dialkoxyzir-conium Polyphenoxide as a Functional Organic Zeolite Analogue, J. Am. Chem. Soc., 1999, 121: 4793~4798.
    [109] Gomez-Lor, B.; Gutierrez-Puebla, E.; Iglesias, M. et al., In2(OH)3(BDC)1.5 (BDC = 1,4-Benzendicarboxylate): An In(III) Supramolecular 3D Framework with Catalytic Activity, Inorg. Chem., 2002, 41: 2429~2432.
    [110] Forster, P. M.; Stock, N.; Cheetham, A. K. A High-Throughput Investigation of the Role of pH, Temperature, Concentration, and Time on the Synthesis of Hy-brid Inorganic-Organic Materials, Angew. Chem., Int. Ed., 2005, 44: 7608~7611.
    [111] Zou, R.-Q.; Sakurai, H.; Xu, Q. Preparation, Adsorption Properties, and Cata-lytic Activity of 3D Porous Metal-Organic Frameworks Composed of Cubic Building Blocks and Alkali-Metal Ions, Angew. Chem., Int. Ed., 2006, 45: 2542~2546.
    [112] Kitagawa, S.; Kondo, M. Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds, Bull. Chem. Soc. Jpn., 1998, 71: 1739~1753.
    [113] Kitagawa, S.; Uemura, K. Flexible microporous coordination polymers, J. Solid State Chem., 2005, 178: 2420~2429.
    [114] http://www.eere.energy.gov/hydrogenandfuelcell/
    [115] Rowsell, J. L. C. Yaghi, O. M. Metal–organic frameworks: a new class of po-rous materials, Microporous Mesoporous Mater., 2004, 73: 3~14.
    [116] Mueller, U.; Schubert, M.; Teich, F. et al., Metal–organic frameworks—pro-spective industrial applications, J. Mater. Chem., 2006, 16: 626~636.
    [117] Férey, G.; Millange, F.; Morcrette, O. et al., Mixed-Valence Li/Fe-Based Metal-Organic Frameworks with Both Reversible Redox and Sorption Proper-ties, Angew. Chem., Int. Ed., 2007, 46: 3259~3263.
    [118] Barthelet, K.; Marrot, J.; Riou, D. et al., A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Magnetic Characteristics Angew. Chem., Int. Ed., 2002, 41: 281~284.
    [119] Serre, C.; Millange, F.; Thouvenot, C. et a1., Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C-C6H4 -CO2}·{HO2C-C6H4-CO2H}x·H2Oy, J. Am. Chem. Soc., 2002, 124: 13519~13526.
    [120]杜淼,二氮中环配体及其功能衍生物的配位化学研究;基于新型联吡啶配体的超分子聚集体构筑:[博士学位论文],天津;南开大学,2003.
    [121]黄春辉,李富友,黄维著,有机电致发光材料与器件导论,上海,复旦大学出版社:2005,154~155.
    [122] Song, J.; Cheng, Y.; Chen, L. et a1., Synthesis and characterization of poly-binaphthalene incorporating chiral (R) or (S)-1,1'-binaphthalene and oxadiazole units by Heck reaction, Eur. Polym. J., 2006, 42: 663~669.
    [123] Mochizuki, H.; Hasui, T.; Ikeda, T. Morphology Control of Oxadiazole Compounds by Introduction of Amine Moieties, Appl. Phys. Express, 2005, 44: 485~490.
    [124] Tang, C. W.; Vanslyke, S. A. Organic electroluminescent diodes, Appl. Phys. Lett., 1987, 51(12): 913~915.
    [125] Shoustikov, A.; You, Y. J. Orange and red organic light-emitting devices using aluminum tris(5-hydroxyquinoxaline), Synth. Metal., 1997, 91: 217~221.
    [126] Li, Y. Q.; Liu, Y.; Bu, W. M. Hydroxyphenyl-pyridine Beryllium Complex (Bepp2) as a Blue Electroluminescent Material, Chem. Mater., 2000, 12: 2672~2675.
    [127]王广,王立祥,景遐,含萘嗯二唑铍配合物的合成及光致发光和电致发光性能研究,高等学校化学学报,2003, 24(7): 1158~1160.
    [128] Tanaka, H.; Tokito, S.; Taga, Y. et a1., Novel metal-chem emitting materials based on polycyclic anomic ligands for electroluminescent device, J. Mater. Chem., 1998, 8(9): 1999~2001.
    [129] Dong, Y.-B.; Ma, J. P.; Huang, R.-Q. et al., Synthesis and Characterization of New Coordination Polymers Generated from Oxadiazole-Containing Organic Ligands and Inorganic Silver(I) Salts, Inorg. Chem., 2003, 42: 294~300.
    [130] Du, M.; Bu, X.-H.; Guo, Y.-M. et al., First CuII Diamondoid Net with 2-Fold Interpenetrating Frameworks. The Role of Anions in the Construction of the Supramolecular Arrays, Inorg. Chem., 2002, 41: 4904~4908.
    [131] Du, M.; Guo, Y.-M.; Chen, S.-T. et al., Preparation of Acentric Porous Coor-dination Frameworks from an Interpenetrated Diamondoid Array through An-ion-Exchange Procedures: Crystal Structures and Properties, Inorg. Chem., 2004, 43: 1287~1293.
    [132] Du, M.; Zhao, X.-J.; Guo, J.-H. et al., Direction of topological isomers of sil-ver(I) coordination polymers induced by solvent, and selective anion-exchange of a class of PtS-type host frameworks, Chem. Commun., 2005, 4836~4838.
    [133] Dong, Y.-B.; Cheng, J.-Y.; Huang, R.-Q. et al., Self-Assembly of Coordination Polymers from AgX (X = SbF6-, PF6-, and CF3SO3-) and Oxadia-zole-Containing Ligands, Inorg. Chem., 2003, 42: 5699~5706.
    [134] Klingele, M. H.; Brooker, S. The coordination chemistry of 4-substituted 3,5-di(2-pyridyl)-4H-1,2,4-triazoles and related ligands, Coord. Chem. Rev., 2003, 241: 119~132.
    [135] Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising, Acta Crystallogr., 2002, B58: 380~388.
    [136] Rao, C. N. R.; Natarajan, S.; Vaidhyanathan R. Metal Carboxylates with Open Architectures, Angew. Chem. Int. Ed., 2004, 43: 1466~1496.
    [137] Akrivos, P. D. Recent studies in the coordination chemistry of heterocyclic thiones and thionates, Coord. Chem. Rev., 2001, 213: 181~210.
    [138] Fleischer, H. Structural chemistry of complexes of (n ? 1)d10 nsm metal ions withβ-N-donor substituted thiolate ligands (m=0, 2), Coord. Chem. Rev., 2005, 249: 799~827.
    [139] Nofal, Z. M.; Fahmy, H. H.; Mohamed, H. S. Synthesis and antimicrobial ac-tivity of new substituted anilinobenzimidazoles, Arch. Pharm. Res., 2002, 25: 250~257.
    [140] Abou-Elenien, G. M.; Ismail, N. A.; El-Maghraby, A. A. et al., Electrochemical Studies on Some Pyrazole, Oxadiazole, and Thiadiazole Derivatives, Electro-analysis, 2001, 13: 1022~1029.
    [141] Nuriev, V. N.; Zyk, N. V.; Vatsadze, S. Z. Synthetic pathways to a family of pyridine-containing azoles-promising ligands for coordination chemistry, ARKIVOC, 2005, 208~224.
    [142] Du, M.; Zhao, X.-J.; Guo, J.-H. 5-(4-Pyridyl)-1,3,4-oxadiazole-2(3H)-thione, Acta Crystallogr., 2004, E60: o327~o328.
    [143] Feng, S.; Xu, R. New Materials in Hydrothermal Synthesis, Acc. Chem. Res., 2001, 34: 239~247.
    [144] SAINT Software Reference Manual; Bruker AXS: Madison, WI, 1998.
    [145] Sheldrick, G. M. SHELXTL NT, Program for Solution and Refinement of Crystal Structures, version 5.1; University of G?ttingen: G?ttingen, Germany, 1997.
    [146] Xiong, R.-G.; Xue, X.; Zhao, H. et al., Novel, Acentric Metal-Organic Coordi-nation Polymers from Hydrothermal Reactions Involving In Situ Ligand Syn-thesis, Angew. Chem., Int. Ed., 2002, 41: 3800~3803.
    [147] Tong, M.-L.; Li, L.-J.; Mochizuki, K. et al., A novel three-dimensional coordi-nation polymer constructed with mixed-valence dimeric copper(I,II) units, Chem. Commun., 2003, 428~429.
    [148] Zhang, J.-P.; Zheng, S.-L.; Huang, X.-C. et al., Two Unprecedented 3-Connected Three-Dimensional Networks of Copper(I) Triazolates: In Situ Formation of Ligands by Cycloaddition of Nitriles and Ammonia, Angew. Chem., Int. Ed., 2004, 43: 206~209.
    [149] Chen, W.; Wang, J. Y.; Chen, C. et al., Photoluminescent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates, Inorg. Chem., 2003, 42: 944~946.
    [150] Rosi, N. L.; Kim, J.; Eddaoudi, M. et al., Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units, J. Am. Chem. Soc., 2005, 127: 1504~1518.
    [151] Burrows, A. D.; Cassar, K.; Friend, R. M. W. et al., Solvent hydrolysis and templating effects in the synthesis of metal-organic frameworks, CrystEng-Comm, 2005, 7: 548~550.
    [152] Xie, L.; Liu, S.; Gao, B. et al., A three-dimensional porous metal-organic framework with the rutile topology constructed from triangular and distorted octahedral building blocks, Chem. Commun., 2005, 2402~2404.
    [153] Bruno, I. J.; Cole, J. C.; Edgington, P. R. et al., New software for searching the Cambridge Structural Database and visualizing crystal structures, Acta Crys-tallogr., 2002, B58: 389~397.
    [154] Spek, A. L. Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr., 2003, 36: 7~13.
    [155] Delgado-Friedrichs, O.; O'Keeffe, M. Crystal nets as graphs: Terminology and definitions, J. Solid State Chem., 2005, 178: 2499~2504.
    [156] Choi, E. Y.; Kwon, Y.-U. Diversification of hydrothermal reaction products induced by naphthalene molecules, Inorg. Chem., 2005, 44: 538~545.
    [157] Beck, D. W. Zeolite Molecular Sieves; Wiley & Sons: New York, 1974.
    [158] Ye, B. H.; Tong, M. L. Chen, X. M. Metal-organic molecular architectures with 2,2′-bipyridyl-like and carboxylate ligands, Coord. Chem. Rev., 2005, 249: 545~565.
    [159] Oae, S. Organic Sulfur Chemistry: Structure and Mechanism, CRC Press: Boca Raton, FL 1992.
    [160] Omar, R. H.; El-Fattah, B. A. Synthesis of certain pyridyl 1,3,4-oxadiazoles of biological interest and study of the cleavage of certain substituted oxadiazole rings with primary amines, Egypt. J. Pharm. Sci., 1985, 24: 49~56.
    [161] Ludwig, R. Water: From Clusters to the Bulk, Angew. Chem., Int. Ed., 2001, 40: 1808~1827.
    [162] Etter, M. C. Encoding and decoding hydrogen-bond patterns of organic com-pounds, Acc. Chem. Res., 1990, 23: 120~126.
    [163] Hong, M.-C. Inorganic-Organic Hybrid Coordination Polymers: A New Fron-tier for Materials Research, Cryst. Growth Des., 2007, 7: 10~14.
    [164] Du, M.; Zhao, X.-J.; Wang, Y. Crystal engineering of a versatile building block toward the design of novel inorganic–organic coordination architectures, Dal-ton Trans., 2004, 2065~2072.
    [165] Du, M.; Li, C.-P.; Zhao, X.-J. Metal-Controlled Assembly of Coordination Polymers with the Flexible Building Block 4-Pyridylacetic Acid (Hpya), Cryst. Growth Des., 2006, 6: 335~341.
    [166] Chen, X.-D.; Wu, H.-F.; Zhao, X.-H. et al., Metal-Organic Coordination Ar-chitectures with Thiazole-Spaced Pyridinecarboxylates: Conformational Poly-morphism, Structural Adjustment, and Ligand Flexibility, Cryst. Growth Des., 2007, 7: 124~131.
    [167] Addison, A. W.; Rao, T. N.; Reedijk, J. et al., Synthesis, structure, and spec-troscopic properties of copper(II) compounds containing nitrogen–sulphur do-nor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2-yl)-2,6-dithiaheptane]copper(II) per-chlorate, J. Chem. Soc., Dalton Trans., 1984, 1349~1356.
    [168] Esteban-Gómez, D.; Platas-Iglesias, C.; Avecilla, F. et al., Effect of Protonation and Interaction with Anions on a Lead(II) Complex with a Lateral Macrobicy-cle Containing a Phenol Schiff-Base Spacer, Eur. J. Inorg. Chem., 2007, 1635~1643.
    [169] Shimoni-Livny, L.; Glusker, J. P.; Bock, C. W. Lone Pair Functionality in Di-valent Lead Compounds, Inorg. Chem., 1998, 37: 1853~1867.
    [170] Xiang, S.-C.; Wu, X.-T.; Zhang, J.-J. et al., A 3D Canted Antiferromagnetic Porous Metal-Organic Framework with Anatase Topology through Assembly of an Analogue of Polyoxometalate, J. Am. Chem. Soc., 2005, 127: 16352~16353.
    [171] Hill, R. J.; Long, D.-L.; Champness, N. R. et al., New Approaches to the Analysis of High Connectivity Materials: Design Frameworks Based upon 44- and 63-Subnet Tectons, Acc. Chem. Res., 2005, 38: 335~348.
    [172] Chun, H.; Kim, D.; Dybtsev, D. N., et al., Metal-Organic Replica of Fluorite Built with an Eight-Connecting Tetranuclear Cadmium Cluster and a Tetrahe-dral Four-Connecting Ligand, Angew. Chem. Int. Ed., 2004, 43: 971~974.
    [173] Natarajan, R.; Savitha, G.; Dominiak, P., et al., Corundum, Diamond, and PtS Metal-Organic Frameworks with a Difference: Self-Assembly of a Unique Pair of 3-Connecting D2d-Symmetric 3,3’,5,5’-Tetrakis(4-pyridyl)bimesityl, Angew. Chem. Int. Ed., 2005, 44: 2115~2119.
    [174] Du, M.; Zhang, Z.-H.; Zhao, X.-J., et al., Modulated Preparation and Structural Diversification of ZnII and CdII Metal-Organic Frameworks with a Versatile Building Block 5-(4-Pyridyl)-1,3,4-oxadiazole-2-thiol, Inorg. Chem., 2006, 45: 5785~5792.
    [175] Palmer, D. C. CrystalMaker 7.1.5, CrystalMaker Software, Yarnton, UK, 2006.
    [176] Yan, B.; Day, C. S.; Lachgar, A., Octahedral metal clusters as building units in a neutral layered honeycomb network, [Zn(en)]2[Nb6Cl12(CN)6], Chem. Com-mun., 2004, 2390~2391, and references therein.
    [166] Chen, X.-D.; Wu, H.-F.; Zhao, X.-H. et al., Metal-Organic Coordination Ar-chitectures with Thiazole-Spaced Pyridinecarboxylates: Conformational Poly-morphism, Structural Adjustment, and Ligand Flexibility, Cryst. Growth Des., 2007, 7: 124~131.
    [167] Addison, A. W.; Rao, T. N.; Reedijk, J. et al., Synthesis, structure, and spec-troscopic properties of copper(II) compounds containing nitrogen–sulphur do-nor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2-yl)-2,6-dithiaheptane]copper(II) per-chlorate, J. Chem. Soc., Dalton Trans., 1984, 1349~1356.
    [168] Esteban-Gómez, D.; Platas-Iglesias, C.; Avecilla, F. et al., Effect of Protonation and Interaction with Anions on a Lead(II) Complex with a Lateral Macrobicy-cle Containing a Phenol Schiff-Base Spacer, Eur. J. Inorg. Chem., 2007, 1635~1643.
    [169] Shimoni-Livny, L.; Glusker, J. P.; Bock, C. W. Lone Pair Functionality in Di-valent Lead Compounds, Inorg. Chem., 1998, 37: 1853~1867.
    [170] Xiang, S.-C.; Wu, X.-T.; Zhang, J.-J. et al., A 3D Canted Antiferromagnetic Porous Metal-Organic Framework with Anatase Topology through Assembly of an Analogue of Polyoxometalate, J. Am. Chem. Soc., 2005, 127: 16352~16353.
    [171] Hill, R. J.; Long, D.-L.; Champness, N. R. et al., New Approaches to the Analysis of High Connectivity Materials: Design Frameworks Based upon 44- and 63-Subnet Tectons, Acc. Chem. Res., 2005, 38: 335~348.
    [172] Chun, H.; Kim, D.; Dybtsev, D. N., et al., Metal-Organic Replica of Fluorite Built with an Eight-Connecting Tetranuclear Cadmium Cluster and a Tetrahe-dral Four-Connecting Ligand, Angew. Chem. Int. Ed., 2004, 43: 971~974.
    [173] Natarajan, R.; Savitha, G.; Dominiak, P., et al., Corundum, Diamond, and PtS Metal-Organic Frameworks with a Difference: Self-Assembly of a Unique Pair of 3-Connecting D2d-Symmetric 3,3’,5,5’-Tetrakis(4-pyridyl)bimesityl, Angew. Chem. Int. Ed., 2005, 44: 2115~2119.
    [174] Du, M.; Zhang, Z.-H.; Zhao, X.-J., et al., Modulated Preparation and Structural Diversification of ZnII and CdII Metal-Organic Frameworks with a Versatile Building Block 5-(4-Pyridyl)-1,3,4-oxadiazole-2-thiol, Inorg. Chem., 2006, 45: 5785~5792.
    [175] Palmer, D. C. CrystalMaker 7.1.5, CrystalMaker Software, Yarnton, UK, 2006.
    [176] Yan, B.; Day, C. S.; Lachgar, A., Octahedral metal clusters as building units in a neutral layered honeycomb network, [Zn(en)]2[Nb6Cl12(CN)6], Chem. Com-mun., 2004, 2390~2391, and references therein.
    [190] Raposo, C.; Perez, N.; Almaraz, M. et al., A cyclohexane spacer for phosphate receptor, Tetrahedron Lett., 1995, 36: 3255~3258.
    [191] Kitagawa, S.; Noro S.; Nakamura, T. Pore surface engineering of microporous coordination polymers, Chem. Commun., 2006, 701~707.
    [192] Uemura, K., Kitagawa, S., Kondo, M. et al., Novel Flexible Frameworks of Porous Cobalt(II) Coordination Polymers That Show Selective Guest Adsorp-tion Based on the Switching of Hydrogen-Bond Pairs of Amide Groups, Chem.–Eur. J., 2002, 8: 3586~3600.
    [193] Bentiss, F.; Lagrenee, M. A. New Synthesis of Symmetrical 2,5-Disubstituted 1,3,4-Oxadiazoles, J. Heterocycl. Chem., 1999, 36: 1029~1032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700