锦鲤常规自由游动的流动物理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼类在自然选择中形成了丰富多样、各具特色的游动本领,同时仿生机器学蓬勃兴起,迫切要求人们更深入地认识鱼类的机动运动机理。近年来,尽管实验技术进步迅速,但对鱼类机动运动机理的认识仍亟需深入,对鱼类游动运动链的一体化研究成为一大趋势。为此,本论文针对该运动链的末端,即“鱼体-流体”相互作用问题,做了以下新的工作:
     一、率先提出了鱼体作为变形体的动力学控制方程,以此建立鱼体动力学方程与非定常流体力学方程的一体化求解方法。该方法适用于数值模拟“主动变形动作→流体动力响应→鱼体运动结果”的运动链,为研究鱼的自主机动运动机理构建了一个二维的基础平台。
     二、运用该二维平台研究了锦鲤的加速-滑行游动。根据锦鲤的跟踪测量实验结果,研究了其自由游动中最常见的形式:加速-滑行游动。加速-滑行属于常规的自由游动,其特点是鱼体动作由摆尾与伸直交替构成,基本沿直线运动,有加速和减速两个阶段。论文通过数值模拟揭示了该游动方式的力学机理和流动物理特征,探索了该游动方式中锦鲤对其运动和力能学性能的主要控制机制。其中力能学的计算发现在相同平均速度的条件下,加速-滑行游动方式与巡游方式相比效率较低,输出功率较高,从而更正了前人从实验估算得到的加速-滑行游动耗能较少的认识。
     三、研究了锦鲤的常规转弯。实验中发现常规转弯,尤其是单摆尾转弯是锦鲤在自由游动中最常用的转弯方式,也属于常规的自由游动。本文研究了单摆尾转弯和巡游转弯两种转弯模式的非定常流动物理和流体动力学特征;通过比较常规转弯两种方式的机动性能和力能学特性,揭示了常规转弯所共有的动力学和流动控制规律以及两种方式的不同特点。计算结果给出了锦鲤常规转弯中的机动性能和力能学性能的若干重要控制规律,如敏捷性与机动性成正相关的关系,输出功率与转速成良好的线性关系,单摆尾转弯的效率高于巡游转弯。
Natural selection provides fishes remarkable and diversified swimming abilities. At the same time, bioinspiration and biomimetics relevant to living fish develop increasingly in last ten years. The communities of researchers interested in fish biomechanics and AUV/UUV begin to come together to explore the mechanism of fish maneuvering more comprehensively, and the multidisciplinary integrated study on fish locomotion becomes a general trend. Aiming to the "body - fluid" interaction, within the mechanical chain of fish locomotion, the following new work has been done in this dissertation.
     1. We take the lead in putting forward the dynamical equations of a deforming body, as well as a fish body. Based on this, we set up an integrated method solving deforming body dynamics equations and unsteady fluid dynamics equations (Navier-Stokes equations). The coupled method can be used to investigate a part of the mechanical chain of fish locomotion, which consists of active body deforming, fluid dynamical response and fish body movement. This method provides a two-dimensional numerical platform for studying mechanics of freely and self-propelled fish maneuvering.
     2. Burst-and-coast swimming of koi carp is studied on this platform, according to the detailed kinematics data of tracking measurements. Burst-and-coast is the most common locomotion type in freely routine swimming of koi carps, which consists of a burst phase and a coast phase in each cycle and usually leads to an almost straight-line trajectory. This study reveals the hydrodynamics and flow physics in koi carp burst-and-coast, and explores its main control mechanisms of kinematical and energetic performance. We find that at the same average velocity, burst-and-coast swimming of koi carp has lower efficiency and more cost (total output mechanical power) than its equivalent steady swimming, in contrast to the available empirical conclusion that burst-and-coast costs less than steady swimming.
     3. Routine turns of koi carp have been investigated, also according to the kinematics data of tracking measurements. Experiments has found that the routine turn, especially single-beat turn, is the most observed turn gait in freely routine swimming of koi carps. This thesis studies the unsteady flow physics, unsteady hydrodynamic and energetic characteristics of single-beat turns and cruising turns, the basic two turning modes. Through comparative studies of the turning maneuverability performance and energetics of above two kinds of turns, their common flow control laws and different features are discovered, such as (1) agility (defined as turning rate) is correlated positively with maneuverability (defined as the reciprocal of the turning radius), (2) the total power appears good linear relation with the turning rate, and (3) single-beat turns are more efficient than cruising turns.
引文
胡文蓉.2004.鱼类单向机动运动二维流动特征的数值研究[D]:[博士].北京:中国科学院研究生院.
    敬军.2005.鱼类C形起动的运动特性及机理研究[D]:[博士].合肥:中国科学技术大学.
    梁建宏,王田苗,魏宏兴.2003.仿生机器鱼技术研究进展及关键问题探讨[J].机器人技术与应用,(3):14-19.
    梁建宏,王田苗,魏洪兴,等.2002.水下仿生机器鱼的研究进展Ⅱ-小型实验机器鱼的研制[J].机器人,24(3):234-238.
    唐逸.2008.中国机器鱼10年修炼成正果[N].北京青年报.北京:2008-01-07(D4).
    童秉纲,陆夕云.2004.关于飞行和游动的生物力学研究[J].力学进展,34(1):1-8.
    王亮.2007.仿生鱼群自主游动及其控制的研究[D]:[博士].南京:河海大学.
    维基百科.2005.锦鲤-Wikipedia[EB/OL].[2005-04-06].http://zh.wikipedia.org/wiki/锦鲤.
    吴冠豪.2007.鱼自主游动的跟踪测量研究及运动学和动力学分析[D]:[博士].北京:清华大学.
    张来平,常兴华,段旭鹏,等.2007.基于动态混合网格的双鱼串列巡游数值模拟.//张涵信.非定常空气动力学研讨会论文集[M].北京:中国空气动力学会:39-46.
    Ahlbom B,Chapman S,Stafford R,et al.1997.Experimental simulation of the thrust phases of fast-start swimming of fish[J].J Exp Biol,200(17):2301-2312.
    Akhtar I,Mittal R,Lauder G V,et al.2007.Hydrodynamics of a biologically inspired tandem flapping foil configuration[J].Theoretical and Computational Fluid Dynamics,21(3):155-170.
    Alexander R M.2005.Models and the scaling of energy costs for locomotion[J].J Exp Biol,208(9):1645-1652.
    Anderson J M.1996.Vorticity control for efficient propulsion[D]:[PhD].Cambridge,MA:Massachusetts Institute of Technology.
    Azuma A.1992.The Biokinetics of Flying and Swimming[M].Tokyo:Springer-Verlag.
    Bandyopadhyay P R.2005.Trends in biorobotic autonomous undersea vehicles[J].IEEE J Oceanic Eng,30(1):109-139.
    Bandyopadhyay P R,Beal D N,Menozzi A.2008.Biorobotic insights into how animals swim[J].J Exp Biol,211(2):206-214.
    Beal D N, Bandyopadhyay P R. 2007. A harmonic model of hydrodynamic forces produced by a flapping fin[J]. Exp Fluids, 43(5):675-682.
    Beal D N, Hover F S, Triantafyllou M S, et al. 2006. Passive propulsion in vortex wakes[J]. J Fluid Mech, 549:385-402.
    
    Blake RW. 1983. Fish Locomotion[M].Cambridge, UK: Cambridge University Press.
    Blake R W. 2004. Fish functional design and swimming performance[J]. J Fish Biol, 65(5): 1993-1222.
    Blake R W, Chan K H S. 2006. Models of the turning and fast-start swimming dynamics of aquatic vertebrates[J]. J Fish Biol, 69(6): 1824-1836.
    Blickhan R, Krick C, Zehren D, et al. 1992. Generation of a vortex chain in the wake of a Suhundulatory swimmer[J]. Naturwissenschaften, 79(5):220-221.
    Boisclair D, Tang M. 1993. Empirical analysis of the influence of swimming pattern on the net energetic cost of swimming in fishes[J]. J Fish Biol, 42(2):169-183.
    Bowtell G, Williams T L. 1991. Anguilliform body dynamics: modelling the interaction between muscle activation and body curvature[J]. Phil Trans R Soc B, 334(1271):385-390.
    Bozkurttas M, Dong H, Mittal R, et al. 2006. Hydrodynamic performance of deformable fish fins and flapping foils[C]. AIAA 2006-1392, Reno, NV.
    Breder C M. 1926. The locomotion of fishes[J]. Zoologica, 4:159-256.
    Brucker C, Bleckmann H. 2007. Vortex dynamics in the wake of a mechanical fish[J]. Exp Fluids,43(5):799-810.
    Buchholz J, Clark R, Smits A. 2008. Thrust performance of unsteady propulsors using a novel measurement system, and corresponding wake patterns[J/OL]. Exp Fluids,http://dx.doi.org/10.1007/s00348-008-0489-1.
    Budick S A, O'Malley D M. 2000. Locomotor repertoire of the larval zebrafish: swimming,turning and prey capture[J]. J Exp Biol, 203(17):2565-2579.
    Carling J, Williams T L, Bowtell G 1998. Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier-Stokes equations and Newton's laws of motion[J]. J Exp Biol, 201(23):3143-3166.
    Cheng J-Y, Blickhan R. 1994. Bending moment distribution along swimming fish[J]. J theor Biol,168:337-348.
    Cheng J-Y, Chahine G L. 2001. Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure[J].Comparative Biochemistry and Physiology - Part A:Molecular & Integrative Physiology,131(1):51-60.
    Cheng J-Y,Pedley T J,Altringham J D.1998.A continuous dynamic beam model for swimming fish[J].Phil Trans R Soc B,353(1371):981-997.
    Cheng J-Y,Zhuang L-X,Tong B-G.1991.Analysis of swimming three-dimensional waving plates[J].J Fluid Mech,232:341-355.
    Colgate J E,Lynch K M.2004.Mechanics and control of swimming:a review[J].IEEE J Oceanic Eng,29(3):660-673.
    Chew C S,Yeo K S,Shu C.2006.A generalized finite-difference(GFD)ALE scheme for incompressible flows around moving solid bodies on hybrid meshfree-Cartesian grids[J].Journal of Computational Physics,218(2):510-548.
    Danos N,Lauder G V.2007.The ontogeny of fin function during routine turns in zebrafish Danio rerio[J].J Exp Biol,210(19):3374-3386.
    Deng J,Shao X-M,Ren A-L.2006.Numerical study on propulsive performance of fish-like swimming foils[J].Journal of Hydrodynamics,18(6):681-687.
    Deng J,Shao X-M,Yu Z-S.2007.Hydrodynamic studies on two traveling wavy foils in tandem arrangement[J].Physics of Fluids,19(11):113104.
    Domenici P.2001.The scaling of locomotor performance in predator-prey encounters:from fish to killer whales[J].Comparative Biochemistry and Physiology - Part A:Molecular &Integrative Physiology,131(1):169-182.
    Domenici P,Blake R.1997.The kinematics and performance of fish fast-start swimming[J].J Exp Biol,200(8):1165-1178.
    Dong G-J,Lu X-Y.2005.Numerical analysis on the propulsive performance and vortex shedding of fish-like travelling wavy plate[J].International Journal for Numerical Methods in Fluids,48(12):1351-1373.
    Dong G-J,Lu X-Y.2007.Characteristics of flow over traveling wavy foils in a side-by-side arrangement[J].Physics of Fluids,19(5):057107-11.
    Drucker E G,Lauder G V.1999.Locomotor forces on a swimming fish:three-dimensional vortex wake dynamics quantified using digital particle image velocimetry[J].J Exp Biol,202(18):2393-2412.
    Drucker E G,Lander G V.2001.Wake dynamics and fluid forces of turning maneuvers in sunfish[J]. J Exp Biol, 204(3):431-442.
    Eldredge J D. 2006. Numerical simulations of undulatory swimming at moderate Reynolds number[J]. Bioinspiration & Biomimetics, 1(4):S19-S24.
    Epps B, Techet A. 2007. Impulse generated during unsteady maneuvering of swimming fish[J]. Exp Fluids, 43(5):691-700.
    Ferziger J H, Peric M. 2001. Computational Methods for Fluid Dynamics[M]. 3th ed. Berlin: Springer.
    FishBase. 2007. Cyprinus carpio carpio, Common carp fisheries, aquaculture, gamefish,aquarium[EB/OL]. // Froese R, Pauly D. FishBase. version (10/2007). 2007[2007-10-01].http://fishbase.org/Summary/SpeciesSummary. php?id= 1450.
    Fish F E. 1993. Power output and propulsive efficiency of swimming bottlenose dolphins (tursiops truncatus)[J]. J Exp Biol, 185(1): 179-193.
    Fish F E. 2002. Balancing requirements for stability and maneuverability in cetaceans[J]. Integr Comp Biol,42(1):85-93.
    Fish F E. 2006. Limits of nature and advances of technology: What does biomimetics have to offer to aquatic robots?[J]. Applied Bionics and Biomechanics, 3(1):49 - 60.
    Fish F E, Lauder G V. 2006. Passive and active flow control by swimming fishes and mammals[J].Annu Rev Fluid Mech, 38:193-224.
    Fish F E, Lauder G V, Mittal R, et al. 2003. Conceptual design for the construction of a biorobotic AUV based on biological hydrodynamics[C]. Proceedings of 13th International Symposium on Unmanned Untethered Submersible Technology (UUST), Autonomous Undersea Systems Institute, Durham New Hampshire.
    Galls S, Rediniotis O. 2000. Simulation of fish locomotion and control[C]. AIAA 2000-0296, 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.
    Gerstner C L. 1999. Maneuverability of four species of coral-reef fish that differ in body and pectoral-fin morphology [J]. Can J Zool: 1102-1110.
    
    Gray J. 1933. Directional control of fish movement[J]. Proc Roy Soc Lond B, 113(781): 115-125.
    Gray J. 1968. Animal Locomotion[M].London: Weidenfeld & Nicholson.
    Greiner W. 2003. Classical Mechanics: Systems of Particles and Hamiltonian Dynamics[M].New York, Berlin: Springer.
    Hess F, Videler J J. 1984. Fast continuous swimming of saithe (pollachius virens): a dynamic analysis of bending moments and muscle power[J]. J Exp Biol, 109(1):229-251.
    Hirata K. 2000. Fish robot home page[EB/OL]. 2003-07-07.http://www.nmri.go.jp/eng/khirata/fish/index_e.html.
    Hirata K, Takimoto T, Tamura K. 2000. Study on turning performance of a fish robot[C]. First International Symposium on Aqua Bio-Mechanisms, Honolulu, Hawaii, 287-292.
    Hu W, Yu Y, Tong B, et al. 2004. A numerical and analytical study on a tail-flapping model for fish fast C-start[J]. Acta Mechanica Sinica, 20(1):16-23.
    Hultmark M, Leftwich M, Smits A. 2007. Flowfield measurements in the wake of a robotic lamprey[J]. Exp Fluids, 43(5):683-690.
    Jia L-B, Li F, Yin X-Z, et al. 2007. Coupling modes between two flapping filaments[J]. J Fluid Mech, 581:199-220.
    Jing J, Yin X, Lu X. 2004. Hydrodynamic analysis of C-start in Crucian carp[J]. Journal of Bionics Engineering, 1(2): 102-107.
    Kanso E, Marsden J E, Rowley C W, et al. 2005. Locomotion of Articulated Bodies in a Perfect Fluid[J]. Journal of Nonlinear Science, 15(4):255-289.
    Kem S, Koumoutsakos P. 2006. Simulations of optimized anguilliform swimming[J]. J Exp Biol,209(24):4841-4857.
    Krueger P S. 2006. Measurement of propulsive power and evaluation of propulsive performance from the wake of a self-propelled vehicle[J]. Bioinspiration & Biomimetics, (4):S49-S56.
    Lauder G V, Drucker E G 2004. Morphology and experimental hydrodynamics of fish fin control surfaces[J]. IEEE J Oceanic Eng, 29(3):556-571.
    Lauder G V, Madden P G A. 2006. Learning from fish: Kinematics and experimental hydrodynamics for roboticists[J]. International Journal of Automation and Computing,V3(4):325-335.
    Lauder G V, Madden P G A. 2007a. Advances in comparative physiology from high-speed imaging of animal and fluid motion[J]. Annu Rev Physiol, 70:143-163.
    Lauder G V, Madden P G A. 2007b. Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins[J]. Exp Fluids, 43(5):641-653.
    Lauder G V, Madden P G A, Mittal R, et al. 2006. Locomotion with flexible propulsors: I.Experimental analysis of pectoral fin swimming in sunfish[J]. Bioinspiration & Biomimetics,1(4):S25.
    Lauder G V, Tytell E D. 2006. Hydrodynamics of undulatory propulsion.// Shadwick R E, Lauder G V. Fish Biomechanics[M]. 23: 425-462.
    Liao J C. 2007. A review of fish swimming mechanics and behaviour in altered flows[J]. Phil Trans R Soc B, 362(1487): 1973-1993.
    Librizzi N N, Long J H J, Root R G 1999. Modeling a swimming fish with an initial-boundary value problem: unsteady maneuvers of an elastic plate with internal force generation[J].Computational and Math. Modeling, 30(11/12):77-93.
    
    Lighthill M J. 1960. Note on the swimming of slender fish[J]. J Fluid Mech, 9(2):305-317.
    Lighthill M J. 1970. Aquatic animal propulsion of high hydrodynamic efficiency [J]. J Fluid Mech,44:265-301.
    Lighthill M J. 1971. Large-amplitude elongated-body theory of fish locomotion[J]. Proc Roy Soc Lond B, 179:125-138.
    
    Lighthill M J. 1975. Mathematical Biofluiddynamics[M].Philadelphia, PA: SIAM.
    Lindsey C C. 1978. Form, function, and locomotory habits in fish.// Hoar W S, Randall D J. Fish Physiology[M]. New York: Academic Press. 7: 1-100.
    Liu H, Kato N. 2004. Computation of Unsteady Flow Past a Biomimetic Fin[J]. Journal of Bionics Engineering, 1(2): 108-120.
    Liu H, Kawachi K. 1998. A numerical study of insect flight[J]. Journal of Computational Physics,146:124-156.
    Liu H, Kawachi K. 1999. A numerical study of undulatory swimming[J]. Journal of Computational Physics, 155:223-247.
    Liu H, Wassersug R, Kawachi K. 1996. A computational fluid dynamics study of tadpole swimming[J]. J Exp Biol, 199(6): 1245-1260.
    Liu H, Wassersug R, Kawachi K. 1997. The three-dimensional hydrodynamics of tadpole locomotion[J]. J Exp Biol, 200(22):2807-19.
    Liu J, Hu H. 2004. A 3D simulator for autonomous robotic fish[J]. International Journal of Automation and Computing, 1(1):42-50.
    Liu J, Hu H. 2005. Mimicry of sharp turning behaviours in a robotic fish[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, 3329-3334.
    Long J H J. 1998. Muscles, elastic energy, and the dynamics of body stiffness in swimming eels[J].Amer Zool, 38(4):771-792.
    Long J H J. 2007. Biomimetic robotics: self-propelled physical models test hypotheses about the mechanics and evolution of swimming vertebrates[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(10): 1193-1200.
    Long J H J, Koob T J, Irving K, et al. 2006. Biomimetic evolutionary analysis: testing the adaptive value of vertebrate tail stiffness in autonomous swimming robots[J]. J Exp Biol,209(23):4732-4746.
    Mangalam S M. 2004. Real-time extraction of hydrodynamic flow characteristics using surface signatures[J]. IEEE J Oceanic Eng, 29(3):622-630.
    McHenry M J, Lauder G V. 2005. The mechanical scaling of coasting in zebrafish (Danio rerio)[J].J Exp Biol, 208(12):2289-2301.
    McMillen T, Holmes P. 2006. An elastic rod model for anguilliform swimming[J]. Journal of Mathematical Biology, 53(5):843-886.
    Mittal R, Dong H, Bozkurttas M, et al. 2006. Locomotion with flexible propulsors: II.Computational modeling of pectoral fin swimming in sunfish[J]. Bioinspiration & Biomimetics,1(4):S35.
    Muller U K, Smit J, Stamhuis E J, et al. 2001. How the body contributes to the wake in undulatory fish swimming: flow fields of a swimming eel (Anguilla anguilla)[J]. J Exp Biol,204(16):2751-2762.
    Muller U K, Stamhuis E J, Videler J J. 2000. Hydrodynamics of unsteady fish swimming and the effects of body size: comparing the flow fields of fish larvae and adults[J]. J Exp Biol,203(2): 193-206.
    Muller U K, van den Boogaart J G, van Leeuwen J L. 2008. Flow patterns of larval fish:undulatory swimming in the intermediate flow regime[J]. J Exp Biol, 211(2): 196-205.
    Muller U K, van den Heuvel B L E, Stamhuis E J, et al. 1997. Fish foot prints-morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso)[J]. J Exp Biol, 200(22):2893-2906.
    Muller U K, van Leeuwen J L. 2006. Undulatory fish swimming: from muscles to flow[J]. Fish and Fisheries, 7(2):84-103.
    Nagayama K, Tanaka T, Tanaka K, et al. 2008. Visualization of flow and vortex structure around a swimming loach by dynamic stereoscopic PIV[J]. Experiments in Fluids, 44(5):843-850.
    Nauen J C, Lauder G V. 2002. Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus(Scombridae)[J].J Exp Biol,205:1709-1724.
    Noman J R.1978.鱼类史[M].邹源琳,译.北京:科学出版社.
    Palmisano J,Ramamurti R,Lu K J,et al.2007.Design of a biomimetic controlled-curvature robotic pectoral fin[C].IEEE International Conference on Robotics and Automation,Rome,Italy,966-973.
    Pedley T J,Hill S J.1999.Large-amplitude undulatory fish swimming:fluid mechanics coupled to intemal mechanics[J].J Exp Biol,202(23):3431-3438.
    Peng J,Dabiri J O.2007.A potential-flow,deformable-body model for fluid-structure interactions with compact vorticity:application to animal swimming measurements[J].Exp Fluids,43(5):655-664.
    Peng J,Dabiri J O.2008.An overview of a Lagrangian method for analysis of animal wake dynamics[J].J Exp Biol,211(2):280-287.
    Peng J,Dabiri J O,Madden P G,et al.2007.Non-invasive measurement of instantaneous forces during aquatic locomotion:a case study of the bluegill sunfish pectoral fin[J].J Exp Biol,210(4):685-698.
    Ramamurti R,Lohner R,Sandberg W C.1996.Computation of the unsteady-flow past a tuna with caudal fin oscillation.//Rahman M,Brebbia C A.Advances in fluid mechanics[M].169-178.
    Ramamurti R,Sandberg W C.2004.The influence of fin rigidity on the force production in the bird-wrasse:a computational study[R/OL].Washington,DC:U.S.Naval Research Laboratory.http://handle.dtie.mil/100.2/ADA427783.
    Ramamurti R,Sandberg W C,Lohner R,et al.2002.Fluid dynamics of flapping aquatic flight in the bird wrasse:three-dimensional unsteady computations with fin deformation[J].J Exp Biol,205(19):2997-3008.
    Read D A,Hover F S,Triantafyllou M S.2003.Forces on oscillating foils for propulsion and maneuvering[J].Journal of Fluids and Structures,17(1):163-183.
    Root R G,Courtland H-W,Shepherd W,et al.2007.Flapping flexible fish[J].Exp Fluids,43(5):779-797.
    Sakakibara J,Nakagawa M,Yoshida M.2004.Stereo-PIV study of flow around a maneuvering fish[J].Exp Fluids,36(2):282-293.
    Schultz W W,Webb P W.2002.Power requirements of swimming:do new methods resolve old questions?[J].Integr Comp Biol,42(5):1018-1025.
    Sfakiotakis M, Lane D M, Davies J B C. 1999. Review of fish swimming modes for aquatic locomotion[J]. IEEE J Oceanic Eng, 24(2):237-252.
    Singh K, Pedley T J. 2006. Hydrodynamics of fish turns[C]. International Conference Euler's Equations: 250 Years on, Aussois, France.
    Singh S N, Simha A, Mittal R. 2004. Biorobotic AUV maneuvering by pectoral fins: inverse control design based on CFD parameterization[J]. IEEE J Oceanic Eng, 29(3):777-785.
    Standen E M, Lauder G V. 2007. Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis)[J]. J Exp Biol, 210(2):325-339.
    Stocker S, Weihs D. 2001. Optimization of energetic advantages of burst swimming of fish[J].Mathematical Methods in the Applied Sciences, 24(17-18): 1387-1400.
    Streitlien K, Triantafyllou G S, Triantafyllou M S. 1996. Efficient foil propulsion through vortex control[J]. AIAA Journal, 34(11 ):2315-2319.
    Suzuki H, Kato N, Suzumori K. 2008. Load characteristics of mechanical pectoral fin[J]. Exp Fluids, 44(5):759-771.
    Tan G-K, Shen G-X, Huang S-Q, et al. 2007. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement[J].Exp Fluids, 43(5):811-821.
    Tangorra J L, Davidson S N, Hunter I W, et al. 2007. The development of a biologically inspired propulsor for unmanned underwater vehicles[J]. IEEE J Oceanic Eng, 32(3):533-550.
    Tangorra J L, Davidson S N, Madden P G, et al. 2006. A biorobotic pectoral fin for autonomous undersea vehicles[C]. EMBS '06, 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, NY, USA, 2726-2729.
    Triantafyllou M S, Hover F S, Techet A H, et al. 2005. Review of hydrodynamic scaling laws in aquatic locomotion and fishlike swimming[J]. Applied Mechanics Reviews, 58:226-237.
    Triantafyllou M S, Techet A H, Hover F S. 2004. Review of experimental work in biomimetic foils[J]. IEEE J Oceanic Eng, 29(3):585-594.
    Triantafyllou M S, Triantafyllou G S. 1995. An efficient swimming machine[J]. Scientific American, 272(3):64-70.
    Triantafyllou M S, Triantafyllou G S, Gopalkrishnan R. 1991. Wake mechanics for thrust generation in oscillating foils[J]. Phys Fluids A, 3(12):2835-2837.
    Triantafyllou M S, Triantafyllou G S, Yue D K P. 2000. Hydrodynamics of Fishlike Swimming[J]. Annu Rev Fluid Mech, 32:33-53.
    Tytell E D. 2004a. The hydrodynamics of eel swimming II. effect of swimming speed[J]. J Exp Biol, 207(19):3265-3279.
    Tytell E D. 2004b. Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata[J]. Proc. R. Soc. Lond. B, 271:2535-2540.
    Tytell E D. 2007. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies[J]. Exp Fluids, 43(5):701-712.
    Tytell E D, Lauder G V. 2004. The hydrodynamics of eel swimming: I. wake structure[J]. J Exp Biol, 207(11):1825-1841.
    Tytell E D, Standen E M, Lauder G V. 2008. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes[J]. J Exp Biol, 211(2): 187-195.
    Videler J J. 1993. Fish Swimming[M].London: Chapman & Hall.
    Videler J J, Hess F. 1984. Fast continuous swimming of two pelagic predators, saithe (pollachius virens) and mackerel (scomber scombrus): a kinematic analysis[J]. J Exp Biol, 109(1):209-228.
    Videler J J, Muller U K, Stamhuis E J. 1999. Aquatic vertebrate locomotion: wakes from body waves[J]. J Exp Biol, 202(23):3423-3430.
    Videler J J, Weihs D. 1982. Energetic advantages of burst-and-coast swimming of fish at high speeds[J]. J Exp Biol, 97(1): 169-178.
    Wakeling J M. 2001. Biomechanics of fast-start swimming in fish[J]. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 131(1):31-40.
    Walker J A. 2004. Kinematics and performance of maneuvering control surfaces in teleost fishes[J]. IEEE J Oceanic Eng, 29(3):572-584.
    Wardle C S, Videler J J, Altringham J D. 1995. Turning in to fish swimming waves: body form,swimming mode and muscle function[J]. J Exp Biol, 198:1629-1636.
    Webb P W. 1971. The Swimming Energetics of Trout: I. Thrust and Power Output at Cruising Speeds[J]. J Exp Biol, 55(2):489-520.
    Webb P W. 1984. Body form, locomotion and foraging in aquatic vertebrates[J]. Amer Zool,24(1): 107-120.
    Webb P W. 1994. The biology of fish swimming.// Maddock L, Bone Q, Rayner J M V. Mechanics and Physiology of Animal Swimming[M]. Cambridge University Press.
    Webb P W. 2004. Maneuverability - general issues[J]. IEEE J Oceanic Eng, 29(3):547-555.
    Webb P W,Fairchild A G.2001.Performance and maneuverability of three species of teleostean fishes[J].Can J Zool,79(10):1866-1877.
    Webb P W,Kostecki P T,Stevens E D.1984.The effect of size and swimming speed on locomotor kinematics of rainbow trout[J].J Exp Biol,109(1):77-95.
    Webb P W,Weihs D.1983.Optimization of locomotion.//Webb P W,Weihs D.Fish Biomechanics[M].New York:Praeger:339-371.
    Weihs D.1972.A hydrodynamical analysis of fish turning manoeuvres[J].Proc Roy Soc Lond B,182(1066):59-72.
    Weihs D.1973.The mechanism of rapid starting of slender fish[J].Biorheology,10:343-350.
    Williams T L,Bowtell G,Carling J C,et al.1995.Interactions between muscle activation,body curvature and the water in the swimming lamprey.//Ellington C P,Pedley T J.Biological Fluid Dynamics[M].Cambridge,UK:The Company of Biologists Ltd.:49-59.
    Wolfgang M J.1999.Hydrodynamics of flexible-body swimming motions[D]:[PhD].Cambridge,MA:Massachusetts Institute of Technology.
    WoIfgang M J,Anderson J M,Grosenbaugh M A,et al.1999.Near-body flow dynamics in swimming fish[J].J Exp Biol,202:2303-2327.
    Wu C-J,Wang L,Wu J-Z.2007.Suppression of the von Kármán vortex street behind a circular cylinder by a travelling wave generated by a flexible surface[J].J Fluid Mech,574:365-391.
    Wu G,Yang Y,Zeng L.2006.Novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish[J].Review of Scientific Instruments,77(11):114302.
    Wu G,Yang Y,Zeng L.2007a.Kinematics,hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps(Cyprinus carpio koi)[J].J Exp Biol,210(12):2181-2191.
    Wu G,Yang Y,Zeng L.2007b.Routine turning maneuvers of koi carp Cyprinus carpio koi:effects of turning rate on kinematics and hydrodynamics[J].J Exp Biol,210(24):4379-4389.
    Wu G,Yang Y,Zeng L.2007c.Experimental hydrodynamics of turning maneuvers in koi carps (Cyprinus carpio koi)[C].Proceeding of the Fifth International Conference on Fluid Mechanics,Shanghai,630-633.
    Wu J-Z,Lu X-Y,Zhuang L-X.2007.Integral force acting on a body due to local flow structures[J].J Fluid Mech,576:265-286.
    Wu J-Z, Pan Z-L, Lu X-Y. 2005. Unsteady fluid-dynamic force solely in terms of control-surface integral[J]. Physics of Fluids, 17(9):098102.
    
    WuTYT. 1960. Swimming of a waving plate[J].J Fluid Mech, 10(3):321-344.
    Wu T Y T. 2001. On Theoretical Modeling of Aquatic and Aerial Animal Locomotion[J]. Adv Appl Mech, 38:291-353.
    Yang Y, Tong B-G 2006. A numerical study on a simplified tail model for turning fish in C-start[J].Journal of Hydrodynamics, 18(2):135-142.
    Yeo K S, Ang S J, Wang X Y, et al. 2008. Simulation of flapping-wing flows and fish swimming/manoeuvres on hybrid meshfree-Cartesian grids by an SVF-GFD method[C].Biological Approaches for Engineering, University of Southampton, UK, 22-25.
    Yu J, Tan M, Wang S, et al. 2004. Development of a biomimetic robotic fish and its control algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,34(4):1798-1810.
    Yu J, Wang S, Tan M. 2005. A simplified propulsive model of bio-mimetic robot fish and its realization[J]. Robotica, 23:101-107.
    Zhu Q. 2007. Numerical simulation of a flapping foil with chordwise or spanwise flexibility[J].AIAA Journal, 45(10):2448-2457.
    Zhu Q, Wolfgang M J, Yue D K P, et al. 2002. Three-dimensional flow structures and vorticity control in fish-like swimming[J]. J Fluid Mech, 468:1-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700