氨法回收电厂烟气中二氧化硫二氧化碳的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了减少酸雨、温室效应及臭氧层破坏等造成的危害,有必要对化石燃料燃烧以后产生的气态污染物排放进行控制,实现可持续发展。氨(NH3)在脱除烟气中的气态污染物方面已经显示出了其有效性。
    本论文研究内容分成两大部分:一. 氨法脱除二氧化硫的试验研究;二. 氨法脱除二氧化碳的试验研究。作者设计完成了利用氨法脱除电厂烟气中多种气态污染物的试验装置,在该装置上可以分别实现对SO2以及CO2连续脱除的试验研究。
    在脱硫试验中,我们采用气态氨加水蒸气对人工烟气中的SO2进行脱除,分析影响脱除率的因素,特别是主导制约因素,并对脱硫反应做了初步的反应动力学分析。试验结果显示:在所有的操作温度下,对SO2的脱除率都大于60%;温度越高,达到稳定的脱硫率所需的综合反应时间越长;当温度超过80℃时,氨对SO2仍有很高的脱除率;在40℃ ~85℃温度窗口内,脱硫反应所需的反应时间基本相同。并根据试验结果建议,在实际氨法脱硫工程中,脱硫反应宜控制在60℃或以下的温度下进行。
    第二部分中,为达到充分脱除CO2的目标,我们将已配好设定浓度的稀氨水从吸收塔顶部喷淋,与塔底上升的人工烟气充分混合。试验结果证明:氨法相对于传统的脱碳方法,比如物理吸收法,化学吸收法,膜分离法,低温法具有很大优势,只要反应条件控制在合理的范围内可以实现很高的脱碳效率(95%~99%) 及脱除速度。氨水的吸收能力为0.34mol CO2/mol NH3,相应的质量比为0.87,高于传统的MEA方法的0.36。结果显示,温度对CO2的脱除率具有很大影响,在 33℃左右脱碳效率最高。增大稀氨水的浓度,减小进口气体CO2浓度也有利于提高脱除率。反应产物经X光衍射分析证明为碳酸氢铵,是在国内应用很广泛的化肥,具有商业价值。
The gaseous pollutants emission control in coal combustion process is the essential requirement for the harmfulness mitigation from acid rain, greenhouse effect, and ozone depleting, and also for the sustainable development. Ammonia (NH3) has shown its effectiveness and advantage in pollutants reduction.
    The research work includes two parts: 1.experimental study of sulfur dioxide removal from flue gases by ammonia injection; 2.experimental study of carbon dioxide removal from flues gases by ammonia scrubbing. A set of experimental equipment was designed to remove several gas pollutants in power plant by ammonia. By this experimental equipment, we can have experimental study of CO2 and SO2 removal respectively.
    In the desulfuration experiment, we removed SO2 from the artificial flue gases by ammonia and water vapor injection. The factors, especially the key one which affects the removal efficiency and reaction dynamics were collected and analyzed. The results show: that the method of ammonia injection is effective to control SO2 emission. At all the operating temperature, the SO2 reduction ratio was more than 60%. The more chemical reaction time was needed for reaching a steady ratio at higher temperature. The reduction ratio was still high when the temperature was higher than 80℃. The reaction time for SO2 removal was almost the same in the temperature window of 40℃~85℃. On the basis of experimental results, the suggestion was given in this report that the process temperature should be controlled below 60℃ or even lower in the actual installation for SO2 reduction by NH3 injection.
    In the second part, in order to remove CO2 thoroughly, the diluent ammonia solution was sprayed from the top of the absorption column, fully mixing with the artificial flue gases from the bottom. The results demonstrate: the method of ammonia excels the traditional ones including physical absorption, chemical absorption, membrane separation and cryogenics method for it can reach a high removal efficiency (from 95% to 98%) and a rapid removal rate under a proper reaction condition. The ammonia scrubbing capacity can be calculated to be 0.34mol CO2/1mol NH3 or 0.87kg CO2/1kg NH3, which is higher than that of MEA method. Results also indicate that temperature plays a key role in the CO2 removal and at
    
    about 33℃,the efficiency reaches its highest. The CO2 removal efficiency will improve with decreasing of the CO2 concentration and increasing of ammonia solution concentration. It is proved that ammonium bicarbonate is the main product of the CO2 -NH3 reaction in this study. Ammonium bicarbonate is a cheap, widely used fertilizer in China and has business value.
引文
[1] 肖文德,吴志泉,二氧化硫脱除与回收。北京,环境科学与工程出版中心,2001。
    [2] 郝吉明,燃煤二氧化硫控制技术手册。北京,环境科学与工程出版中心,2001。
    [3] Perman, R; Ma, Y., McGilvray, J., Natural resource and environmental economics, London: Longman, 1996.
    [4] Dincer, I., Rosen M A, Energy, Environment and sustainable development, Applied Energy, 1999, 64, 427-440
    [5] 施亚钧,气体脱硫。上海,上海科学技术出版社,1986。
    [6] 姚强,项光明,中国二氧化硫控制的国际合作。北京,清华大学,2002。
    [7] 邰德荣,韩宾兵。成都电厂电子束烟气脱硫示范工程。中国电力,1998,31(11):42-47
    [8] 邰德荣,韩宾兵。中日合作成都电厂电子束烟气脱硫示范工程。环境保护,1998,12(254):11-14
    [9] 陈亚非,张奇兴,电子束烟气脱硫若干问题探讨。中国电力,2000,33(7):78-80
    [10] 邰德荣,张化一,电子束烟气脱硫技术再评价。中国电力,2001,34(1):68-73
    [11] 赵育祥,合成氨工艺。北京:化学工业出版社,1985。
    [12] 张成芳,合成氨工艺与节能。上海:华东化工学院出版社,1988。
    [13] 刘天齐,三废处理工程技术手册(废气卷)。北京:化学工业出版社,1999
    [14] Bai H., Biswas P., Keener T. C., SO2 removal by NH3 gas injection: effects of temperature and moisture content [J], Ind Eng Chem Res, 33(5), 1231-1236(1994)
    [15] Shale C. C., Simpson D. G., Lewis P. S., Removal of sulfur and nitrogen oxides from stack gasses by ammonia [J], Chem Eng Prog Symp Ser, 67(115), 52-57(1971)
    [16] Shale, C. C., Ammonia injection: a route to clean stack, in pollution control and energy needs; advances in chemistry series 127;American Chemical Society: Washington DC, 1973; pp 195~205
    [17] Bai H., Biswas P., Keener T. C., Particle formation by the NH3-SO2 reactions at trace water conditions [J], Ind Eng Chem Res, 31, 88-94(1992)
    [18] Tock R. W., Hoover K. C., Faust G. J., SO2 removal by transformation to solid crystals of ammonia complexes [J], AIChE Symp Ser, 75(188), 62-82(1979)
    [19] 何伯述, 郑显玉, 常东武, 陈昌和, 温度对氨法脱硫率影响的试验研究, 环境科学学报,2002,22(3), 415-419
    [20] Stromberger, M. J., The removal of sulfur dioxide from coal-fired boiler flue gas by ammonia injection. M.S. Thesis, University of Cincinnati, Cincinnati, 1984.
    [21] Keener, T. C.; Davis, W. T., Demonstration of a Ca(OH)2/NH3 based system for removal of SO2 on high sulfur coals, Final report to the Ohio coal development office, Columbus, OH, August, 1988
    [22] 张阿玲,方栋, 温室气体二氧化碳的控制和回收利用。北京,中国环境科学出版社,1996。
    [23] Chris Hendriks, Carbon Dioxide Removal from Coal-Fired Power Plants. Department of Science,Technology and So ciety ,University of Utrecht, The Netherlands.
    [24] Martin M.Halmann, Chemical Fixation of Carbon Dioxide. Department of Environmental Science and Energy Research, Weizmann Institute of Science Rehovot,Israel.
    
    
    [25] Martin M. Halmann, Meyer Steinberg, Greenhouse gas carbon dioxide mitigation : science and technology.
    [26] Toshinori Kojima, The carbon dioxide problem: integrated energy and environmental policies for the 21st century. Translated from the Japanese edition and edited by Brian Harrison.
    [27] Mann, M. E., Bradley, R. S., Hughes, M. K., Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 1998, 392, 779-787
    [28] 王淑娟,中国二氧化碳排放控制对策。北京,清华大学,2001。
    [29] UNFCCC, 1997. Kyoto Protocol to the United Nations Framework Convention on Climate Change. See www.unfccc.de.
    [30] Zheng-zhong Li, Cheng-zhi Li, Jing-wu Zhang, Qili Huang. A New CO2 Sequestration Technology for Fossil Fuel Power Generation. Preprint Proceedings of The 1st U.S.-China Symposium on CO2 Emission control Science& Technology.
    [31] Wolsky A. M., Daniels E. J., Jody B. J., CO2 capture from the flue gas of conventional fossil-fuel-fired power plants [J], Environ Prog, 13(2), 214-219(1994)
    [32] Sada, E., Kumazawa, H., & Butt, M., Gas absorption with consecutive chemical reaction: Absorption of carbon dioxide into aqueous amine solutions [J], AIChE Journal, 54, 421-424 (1976)
    [33] Hikita, H., Asai, S., Katsu, Y., & Ikuno, S., Absorption of carbon dioxide into aqueous monoethanolamine solutions [J], AIChE Journal, 25(5), 793(1979)
    [34] Glasscock, D. A., Critchfield, J. E., & Rochelle, G. T. (1991). CO2 Absorption/ desorption in mixtures of methyldiethanol-amine with monoethanolamine or diethanolamine [J], Chem Eng Sci, 46, 2829.
    [35] Xu, G. W., Zhang, C. F., Qin, S. J., & Wang, Y. W., Kinetics study on absorption of carbon dioxide into solutions of activated methyldiethanolamine [J], Ind Eng Chem Res, 31(3), 921-927(1992)
    [36] Xu, G. W., Zhang, C. F., Qin, S. J., & Zhu, B. C., Desorption of CO2 from MDEA and activated MDEA solutions [J], Ind Eng Chem Res, 34(3), 874-880(1995).
    [37] Jou, F. Y., Caroll, J. J., Mather, A. E., & Otto, F. D., The solubility of carbon dioxide and hydrogen sulfide in a 35 wt% aqueous solution of methyldiethanolamine [J], Can J Chem Eng, 71, 264-268(1993).
    [38] Pacheco, M. A., Kaganoi, S., & Rochelle, G. T., CO2 absorption into aqueous mixtures of diglycolaminet and methyldiethanolamine [J], Chem Eng Sci, 55(21), 5125-5140(2000).
    [39] Bishnoi S., Rochelle G. T., Physical and chemical solubility of carbon dioxide in aqueous methyldiethanolamine [J], Fluid Phase Equilibria, 168, 241-258 (2000)
    [40] Xu S., Wang Y. W., Otto F. D., Mather A. E., Rate of absorption of CO2 in s mixed solvent [J], Ind Eng Chem Res, 30(6), 1213-1217(1991)
    [41] Glasscock, D. A., Critchfield, J. E., & Rochelle, G. T. (1991). CO2 Absorption/ desorption in mixtures of methyldiethanol-amine with monoethanolamine or diethanolamine [J], Chem Eng Sci, 46, 2829.
    [42] Zheng-zhong Li, Cheng-zhi Li, Jing-wu Zhang, Qili Huang. A New CO2 Sequestration Technology for Fossil Fuel Power Generation. Preprint Proceedings of The 1st U.S.-China Symposium on CO2 Emission control Science& Technology
    
    
    [43] 张志明,冯元琦,新型氮肥-长效碳酸氢铵。北京:化学工业出版社,2000
    [44] Shale, C. C., Ammonia injection: a route to clean stack, in pollution control and energy needs; advances in chemistry series 127;American Chemical Society: Washington DC, 1973; pp 195~205
    [45] Bai H., Biswas P., Keener T. C., Particle formation by the NH3-SO2 reactions at trace water conditions [J], Ind Eng Chem Res, 31, 88-94(1992)
    [46] Tock R. W., Hoover K. C., Faust G. J., SO2 removal by transformation to solid crystals of ammonia complexes [J], AIChE Symp Ser, 75(188), 62-82(1979)
    [47] Wolsky A. M., Daniels E. J., Jody B. J., CO2 capture from the flue gas of conventional fossil-fuel-fired power plants [J], Environ Prog, 13(2), 214-219(1994)
    [48] Kimura N., Omata K., Kiga T., Takano S., Shikisima S., The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery [J], Energy Convers Manage 36, 805-808(1995)
    [49] Sada, E., Kumazawa, H., & Butt, M., Gas absorption with consecutive chemical reaction: Absorption of carbon dioxide into aqueous amine solutions [J], AIChE Journal, 54, 421-424 (1976)
    [50] Yeh A. C., Bai H., Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions [J], Sci Total Environ, 228, 121-133(1999)
    [51] Hatch T. F., Pigford R. L., Simultaneous absorption of carbon dioxide and ammonia in water [J], Ind Eng Chem Fundam, 1, 209 (1962)
    [52] Koubsky P., Hladky V., Equilibrium calculations in the system NH3-CO2-H2O [J], Int Chem Eng, 16, 392(1976)
    [53] Pelkie J. E., Concannon P. J., Manley D. B., Poling B. E., Product distributions in the CO2-NH3-H2O system from liquid conductivity measurements [J], Ind Eng Chem Res, 31, 2209(1992)
    [54] Namba H., Hashimoto S., Tokunaga O., Suzuki R., Electron beam treatment of lignite-burning flue gas with high concentrations of sulfur dioxide and water, Radiation Physics and Chemistry, 53(1998): 673-681.
    [55] 肖文德,李 伟,方云进,周静红,陶力三,吴志泉,涂晋林,火电厂烟气脱硫新方法-NADS氨-肥法,中国电力,2001,34(7),54-58
    [56] 肖文德,中国火电厂烟气脱硫的技术战略,科技日报,2001-03-04.
    [57] 张志明,李继云,冯元琦,毕庶春,伍蔚民,长效碳酸氢铵理化特性及增产机理的研究,中国科学(B辑),1996,26(5),453-459
    [58] 崔洪波,张志明,张成刚,毕庶春,长效碳酸氢铵缓效机理与环境效应研究。应用生态学报,1997,8(3), 279-282
    [59] 何伯述,郑显玉,王淑娟,陈昌和,NH3脱除烟气中气态污染物的应用前景,中国工程热物理学会第十届年会燃烧学论文集(2001.10,青岛),353-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700