配置高强钢筋混凝土框架柱抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在混凝土结构中推广应用高强钢筋有利于促进我国建筑用钢筋技术水平的提高,对可持续发展具有重要意义。但目前对配置高强钢筋混凝土结构构件的抗震性能和设计方法研究尚不够充分。本文采用试验与分析相结合的研究方法,研究配置高强纵筋和高强箍筋混凝土框架柱的抗震性能及设计问题。主要工作及成果如下:
     (1)对20个配置高强钢筋(纵筋采用HRB500钢筋,箍筋采用HRB500、970MPa级PC钢棒)的混凝土柱,进行各种轴压比下的低周反复加载试验,研究了试件的破坏形态、荷载-位移(变形)滞回曲线、抗震耗能性能、位移延性系数、极限位移角以及正截面受压承载力等,分析了轴压比、混凝土强度、纵筋强度、箍筋强度、配箍形式以及箍筋体积配筋率等对混凝土柱抗震性能的影响。
     (2)在本文试验及所收集共计300余个混凝土柱低周反复加载试验数据基础上,提出了与试验配箍特征值λtv及试验轴压比nt,相关的位移延性系数及极限位移角计算公式。
     (3)根据现行相关规范设计了位于地震烈度8度(0.30g)地区的3个混凝土框架结构,其分别配置HRB335、HRB400、HRB500纵向受力钢筋。选择5条罕遇水准地震地面运动,对这3个框架进行弹塑性时程分析。结果表明,配置500MPa纵筋的框架柱位移延性系数需求低于配置低强钢筋框架柱;并认为采用弹塑性层问位移角评判框架结构(框架柱)延性较为合理。此项工作同时验证了高强钢筋应用的经济性。
     (4)试验结果表明,当试验柱柱顶位移比达到2%时,500MPa级箍筋的应变均已超过其屈服应变;对970MPa级箍筋,多数试件的箍筋应力已达到700MPa以上。当承载力下降到85%时,内部和外部的970MPa级箍筋均能达到实测抗拉屈服强度1012MPa。此外,试验研究还验证了抗震设计时混凝土框架柱采用连续复合箍筋形式的必要性,且拉筋两端均应采用135°弯钩。
     (5)由本文提出的混凝土框架柱位移延性系数计算公式,经分析提出了纵筋配置高强钢筋框架柱箍筋加密区最小配箍特征值要求。与《混凝土结构设计规范》GB50010-2010相比,本文建议的最小配箍特征值对一级、二级和三级抗震等级分别平均增加46%、45%和32%。
     (6)提出了混凝土框架柱配置高强箍筋设计建议,主要内容包括高强箍筋的应用范围,箍筋抗拉强度设计值fyv取值,最小配箍特征值λy要求,箍筋构造要求等,可为混凝土框架柱中应用高强箍筋提供参考。
     (7)本文试验柱承载力计算表明,采用约束混凝土本构关系计算配置约束箍筋混凝土柱正截面受压承载力是必要的,并论述了钢筋抗压强度设计值f'y取值原理和建议。
The application of high-yield-strength rebar in concrete structures is favorable to enhancing the development level of reinforcement and has great significance for the sustainable development of China. However, the current researches on seismic behavior and design method of reinforced concrete structural members with high-yield-strength rebars are not sufficient. In this paper, the seismic behavior and designing issues of concrete frame columns employing high-yield-strength longitudinal rebars and stirrups are experimentally investigated and synthetically analyzed. The main research contents and results are as follows.
     (1)20concrete columns reinforced with500MPa grade longitudinal rebars and500MPa grade or970MPa grade confinement stirrups were tested under the low frequency cyclic loading with various axial compression ratios. The failure mode, force-displacement(deformation) hysteretic curve, seismic energy dissipation, displacement ductility factor, limiting drift ratio, flexural and axial capacity of normal section for the columns are experimentally studied. The effects of the axial compression ratio, strength of concrete, strength of longitudinal rebars, strength of stirrups, forms of stirrup reinforcement and volumetric ratio pv of stirrups on the seismic behavior of the columns are analyzed as well.
     (2) Based on the experimental data collected from more than300concrete columns, which are tested under the low frequency cyclic loading, the equations to determine the displacement ductility factor and the limiting drift ratio are proposed, which are related to the trail characteristic value of stirrup reinforcement λvt and the trail axial compression ratio nt.
     (3) Reinforced with HRB335, HRB400, HRB500grade longitudinal rebars respectively, three concrete frames located in the zone of seismic intensity8(0.30g) were designed according to the current relevant codes. Elasto-plastic time-history analysis of these frames was conducted under the condition of5rarely occurred earthquake ground motions. The analysis results indicate that the frame columns reinforced with high-yield-strength rebars make lower demand on the displacement ductility factor than the frame columns with low-yield-strength rebars. As a result, it is more reasonable to estimate the ductility of frame structure (frame column) by employing the elasto-plastic story drift ratio. Furthermore, the application of high-yield-strength rebars proves to be economical.
     (4) The test results show that the strain of500MPa grade stirrups has exceeded the yield strain when the drift ratio at top of the column approaching2%, and at the same time, the stirrups stress for most of the columns with970MPa grade stirrups has surpassed700MPa. When load-bearing capacity is reduced by15%, the stress of970MPa grade stirrups, both internal and external, could reach1012MPa, which is the actual measured tensile yield strength. Furthermore, the necessity of using continuous overlapping hoops in the concrete frame columns for the seismic design is experimentally verified and135degrees hooks at both ends of the ties should be arranged.
     (5) For the frame columns reinforced with high-yield-strength longitudinal rebars, new requirements for the minimum characteristic value of stirrup reinforcement are presented in the closely-spaced region at the column ends, by analyzing the equation of displacement ductility factor proposed in this research. When compared with the"Code for Design of Concrete Structures(GB50010-2010)", the average of presented minimum characteristic value of stirrup reinforcement for earthquake-resistant grade I, II and III increases by46%,45%and32%respectively.
     (6) The design recommendation of high-yield-strength confinement stirrups for the concrete frame columns is proposed, including the scope of applications of high-yield-strength stirrups, assignment of the design value of tensile strength of stirrups fyv, demands of minimum characteristic value of stirrup reinforcement λv, details of stirrup reinforcement, and so on. The recommendation may provide a reference for the application of high-yield-strength stirrups in the concrete frame columns.
     (7) The checking calculation can prove necessary to take account of the constitutive relationship of confined concrete when calculating the flexural and axial capacity of normal section of concrete columns reinforced with confinement stirrups. The principle and suggestion for assignment of the design value of compressive strength of longitudinal rebars are also discussed.
引文
[1]蒋旭峰,张艺.中国年增建筑面积约20亿平方米[N].人民日报海外版,2010-3-30(5).
    [2]中国产业信息网.2012年中国钢筋产量分月度统计[EB/OL], [2013-03-1]. http:// data.chyxx.com/201302/194603.html.
    [3]中华人民共和国住房和城乡建设部,中华人民共和国工业和信息化部.住房和城乡建设部工业和信息化部关于加快应用高强钢筋的指导意见[EB/OL]. [2013-03-1]. http:// www.mohurd.gov.cn/zcfg/jsbwj_0/jsbwjbzde/201201/t20120118_208485.html.
    [4]王丽敏.从国内外标准对比看高强钢筋未来发展趋势[N].中国冶金报,2012-06-05(A03).
    [5]王晓锋.为全面推广高强钢筋做好技术准备[N].世界金属导报,2012-05-15(B10).
    [6]中冶集团建筑研究总院.GB1499.2-2007《钢筋混凝土用钢第2部分:热轧带肋钢筋》[S].北京:中国标准出版社,2007.
    [7]中国建筑科学研究院.GB 50010-2010混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [8]天津市第一预应力钢丝有限公司.YB/T 111-1997预应力混凝土用钢棒[S].北京:中国标准出版社,1997.
    [9]天津市第一预应力钢丝有限公司.GB/T 5223.3-2005预应力混凝土用钢棒[S].北京:中国标准出版社,2005.
    [10]中国钢研科技集团有限公司.Q/HD ZGR 001-2010高强度箍筋用钢筋[S].北京:中国钢研科技集团有限公司企业标准,2010.
    [11]中国钢研科技集团有限公司.高强热处理箍筋(行业标准征求意见稿)[S/OL]. [2013-04-15]. http://www.cmsi.org.cn/zqyj/201303/t20130314_207919.htm.
    [12]史庆轩,杨坤,白力更等.高强箍筋约束高强混凝土柱抗震性能试验研究[J].土木工程学报.2011,44(12):9-17.
    [13]于庆荣.约束混凝土柱装配整体式框架结构技术发展与研究[C]//中国混凝土与水泥制品协会预制混凝土构件分会.第三届中国预制混凝土技术论坛会刊.上海,2003:59-66.
    [14]潘树宾.约束混凝土柱装配整体式框架结构工程应用介绍[C]//中国混凝土与水泥制品协会预制混凝土构件分会.第三届中国预制混凝土技术论坛会刊.上海,2003:67-72.
    [15]中国建筑科学研究院.GB 50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [16]冯远,刘兰花,易勇等.多层钢筋混凝土框架柱震害调查分析与启示[J].土木工程学报,2010,43(10):63-72.
    [17]叶列平,马千里,谬志伟.钢筋混凝土框架结构强柱弱梁设计方法的研究[J].工程力学,2010,27(12):102-113.
    [18]中国建筑科学研究院.2008年汶川地震建筑震害图片集[M].北京:中国建筑工业出版社,2008.
    [19]徐有邻.汶川地震震害调查及对建筑结构安全的反思[M].北京:中国建筑工业出版社,2009.
    [20]李英民,刘立平.汶川地震建筑震害与思考[M].重庆:重庆大学出版社,2008.
    [21]霍林生,李宏男,肖诗云,王东升.汶川地震钢筋混凝土框架结构震害调查与启示[J].大连理工大学学报,2009,49(5):718-722.
    [22]薛彦涛,黄世敏,姚秋来等.汶川地震钢筋混凝土框架结构震害及对策[J].工程抗震与加 固改造,2009,31(5):93-100.
    [23]金来建,贾洁,朱丹.汶川地震中单层钢筋混凝土柱厂房典型震害分析[J].建筑结构学报,2008,29(4):34-41.
    [24]叶列平,陆新征,赵世春,李易.框架结构抗地震倒塌能力的研究——汶川地震极震区几个框架结构震害案例分析[J].建筑结构学报,2009,30(6):68-76.
    [25]温增平,徐超,陆鸣,杜修力等.汶川地震重灾区典型钢筋混凝土框架结构震害现象[J].北京工业大学学报,2009,35(6):753-760.
    [26]田志鹏,张新培,赵统.汶川地震中多层钢筋混凝土框架结构房屋震害分析[J].建筑结构,2009,39(11):67-71.
    [27]B. Li, R. Park, H. Tanaka. Stress-strain behaviors of high-strength concrete confined by ultra-high and normal-strength transverse reinforcements[J]. ACI Structural Journal,2001, 98(3):395-406.
    [28]T. Paulay, M. J. N. Priestley. Seismic design of reinforced concrete and masonry buildings[M]. John Willey & Son, Inc, New York,1992.
    [29]Hiroyuki Aoyama. Design of Mordern Highrise Reinforced Concrete Structures[M]. 青山博之[著],张川[译].现代高层钢筋混凝土结构设计[M].重庆:重庆大学出版社,2006.
    [30]徐有邻.采用高强材料提高结构可靠度的建议[J].建筑科学.1999,15(5):56-58.
    [31]徐有邻,王晓锋.发展高性能材料提高结构安全水平[J].建筑结构.2007,37(3):118-120.
    [32]刘立新,谢丽丽,于秋波.500MPa级钢筋混凝土构件受力性能与工程应用[J].建筑结构.2006,36(增刊):566-568+583.
    [33]叶列平,Asad.U.Q,马千里,陆新征.高强钢筋对框架结构抗震破坏机制和性能控制的研究[J].工程抗震与加固.2006,28(1):18-24+30.
    [34]毛达岭,李立新,范丽.HRB500钢筋粘结锚固性能及设计建议[J].郑州大学学报(工学版),2004,25(2):54-58.
    [35]李志华,苏小卒,赵勇.配置500MPa钢筋的混凝土梁受弯性能试验研究[J].南昌大学学报(工学版),2010,32(1):40-44.
    [36]王铁成,李艳艳,戎贤,徐有邻.集中荷载下高强箍筋混凝土梁的抗剪性能[J].自然灾害学报,2006,15(5):172-177.
    [37]赵勇,王晓锋,程志军,周建民.高强钢筋混凝土梁短期裂缝计算方法评析[J].建筑结构学报,2011,32(1):50-57.
    [38]周建民,王眺,赵勇等.高强钢筋混凝土受弯构件裂缝宽度计算方法的研究[J].土木工程学报,2010,43(9):69-76.
    [39]傅剑平,王晓锋,朱爱萍,杨平安.配置500MPa钢筋混凝土梁长期荷载裂缝宽度试验研究[J].建筑结构学报.2011,32(1):43-49.
    [40]王晓锋,朱爱萍,傅剑平等.配置500MPa纵筋带锚固板搭接方案的框架顶层端节点抗震性能试验研究[J].建筑结构.2011,41(8):1-7.
    [41]R. Park, M. J. N. Priestley, W.D.Gill. Ductility of square-confined concrete columns[J]. Journal of the Structural Division, ASCE.1982,108(4):929-950.
    [42]M. J. N. Priestley, R. Park. Strength and ductility of concrete bridge columns under seismic loading[J]. ACI Structural Journal,1987,84(1):61-76.
    [43]S. Watson, F. A. Zahn, R. Park. Confining reinforcement for concrete columns[J]. Journal of Structural Engineering, ASCE,1994,120(6):1780-1824.
    [44]S. Watson, R. Park. Simulated seismic load tests on reinforced concrete columns[J]. Journal of Structural Engineering, ASCE,1994,120(6):1825-1849.
    [45]B. Li. Strength and Ductility of reinforced concrete and frames constructed using high-strength concrete[D]. Christchurch New Zealand:University of Canterbury,1994.
    [46]B. Li, R. Park. Confining reinforcement for high-strength concrete columns[J]. ACI Structural Journal,2004,101(3):314-324.
    [47]D. Kent, R. Park. Flexural members with confined concrete[J]. Journal of Structural Division, ASCE. Jul,1971,97(7)1969-1990.
    [48]R. Park, M. J. Priestley, W. D. Gill. Ductility of square-confined concrete columns[J]. Journal of the Structural Division, ASCE. April,1982,108(4):929-950.
    [49]J. B. Mander, M. J. N. Priestley, R. Park. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, ASCE,1988,114(8):1804-1826.
    [50]S. A. Sheikh, S. M. Uzumeri. Strength and ductility of tied concrete columns, journal of structural division[J]. ASCE,1980,106(5):1079-1102.
    [51]S. A. Sheikh, C. C. Yeh. Flexural behaviors of confined concrete columns[J]. ACI Journal, Proceedings,1986,83(3):389-404.
    [52]K. Sakai, S. A. Sheikh. What do we know about confinement in reinforced concrete columns? (A critical review of previous work and code provisions)[J]. ACI Structural Journal,1989, 86(2):192-207.
    [53]S. A. Sheikh, S. S. Khoury. Confined concrete columns with stubs[J]. ACI Structural Journal, 1993,90(4):414-431.
    [54]S. A. Sheikh, D. V. Shah, and S. S. Khoury. Confinement of high-strength concrete columns[J]. ACI Structural Journal.1994,91(1):100-111.
    [55]S. A. Sheikh, S. S. Khoury. A performance-based approach for the design of confining steel in tied columns[J]. ACI Structural Journal,1997,94(4):421-431.
    [56]O. Bayrak, S. A. Sheikh. High-strength concrete columns under simulated earthquake loading[J]. ACI Structural Journal,1997,94(6):708-722.
    [57]O. Bayrak, S. A. Sheikh. Confinement reinforcement design considerations for ductile HSC columns[J]. Journal of Structural Engineering, ASCE,1998,124(9):999-1010.
    [58]O. Bayrak. Seismic Performance of rectilinearly confined high strength concrete columns[D]. Toronto:University of Toronto,1998.
    [59]陕西省建筑设计院等,钢筋混凝土框架柱抗震性能的试验研究(译文集)[M].北京:地震出版社,1979.
    [60]H. Muguruma and F. Watanabe. Ductility improvement of high-strength concrete columns with lateral confinement[J]. Special Publication, ACI. Nov,1990,121:47-60.
    [61]S. Sugano, T. Nagashima and H. Kimura. Experimental studies on seismic behavior of reinforced concrete members of high-strength concrete[J]. Special Publication, ACI. Nov, 1990,121:61-68.
    [62]S. R. Razvi, M. Saatcioglu. Strength and deformability of confined high-strength concrete columns[J]. ACI Structural Journal.1994,91(6):1-10.
    [63]M. Saatcioglu, S. R. Razvi. Strength and ductility of confined concrete[J].. Journal of Structural Engineering, ASCE. June,1992,118(6):1590-1607.
    [64]S. R. Razvi, M. Saatcioglu. Confinement model for high-strength concrete[J]. Journal of Structural Engineering, ASCE. March,1999,125(3):281-289.
    [65]A. M. Budek, M. J. Priestley and C. O. Lee. Seismic design of column with high-strength wire and strand as spiral reinforcement[J]. ACI Structural Journal.2002,99(5):660-670.
    [66]A. B. Matamoros, M. A. Sozen. Drift limits of high-strength concrete columns subjected to load reversals[J]. Journal of Structural Engineering, ASCE.2003,129(3),297-313.
    [67]J. H. Thomson, J. W. Wallace. Lateral load behavior of reinforced concrete columns constructed using high-strength materials[J]. ACI Structural Journal.1994,91(5):605-615.
    [68]A. Azizinamini, S. S. B.Kuska, P. Brungardt, E.Hatfeild. Seismic behavior of square high-strength concrete columns[J]. ACI Structural Journal.1994, (3):336-345.
    [69]S. K. Hwang, H. D. Yun, W. S. Park, B. C. Han. Seismic performance of high-strength concrete columns[J]. Magazine of concrete research.2005,57(5):247-260.
    [70]周小真,姜维山.高轴压作用下钢筋混凝土短柱抗震性能的试验研究[J].西安冶金建筑学院学报,1985,2:103-109.
    [71]宋金声,周小真.用复合矩形螺旋箍增强柱抗震性能的试验研究[J].西安冶金建筑学院学报.1986,46(2):23-47.
    [72]钱国芳,童岳生,白国良等.配置不同形式箍筋的钢筋混凝土短柱抗震性能试验研究[J].西安冶金建筑学院学报,1991,23(3):248-257.
    [73]姜维山,白国良.配复合箍、螺旋箍、X形筋钢筋混凝土短柱的抗震性能及抗震设计[J].建筑结构学报.1994,15(1):2-16.
    [74]童岳生,钱国芳,史庆轩等.钢筋混凝土短柱受剪承载力分析及箍筋拉条的作用[J].建筑结构学报,2000,21(5):11-20.
    [75]肖建庄,朱伯龙.钢筋混凝土框架柱轴压比限值试验研究[J].建筑结构学报.1998,19(5):2-7.
    [76]郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学学报.2004,37(5):32-38.
    [77]张国军,吕西林,白国良.周期反复荷载作用下高轴压比框架柱抗震性能的试验研究[J].地震工程与工程振动.2005,25(6):70-75.
    [78]吕西林,张国军,陈绍林.高轴压比高强混凝土足尺框架柱抗震性能研究[J].建筑结构学报.2009,30(3):20-26.
    [79]徐伟栋.配置高强钢筋的混凝土柱抗震性能研究[D].上海:同济大学,2007.
    [80]刘金升.配500MPa细晶钢筋混凝土柱的抗震性能试验研究[D].上海:同济大学,2009.
    [81]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[J].土木工程学报.1982,15(2):53-64.
    [82]翁义军,沈聚敏,马宝民.复合箍对钢筋混凝土柱延性的改善[J].建筑结构学报.1985,6(1):41-47.
    [83]王娴明,徐波,沈聚敏.反复荷载作用下钢筋的本构关系.建筑结构学报.1992,13(6):41-47.
    [84]谢涛,陈肇元.高强混凝土柱抗震性能的试验研究[J].建筑结构.1998,12:3-6+1 1.
    [85]王浩,张惠英.LL550冷轧带肋箍筋高强混凝土柱抗震性能的试验研究[J].建筑结构.2002,32(3):13-16.
    [86]王清湘,赵国藩,林立岩.钢筋混凝土柱延性的试验研究[J].建筑结构学报.1995,16(4):22-31.
    [87]关萍.高强约束混凝土应力-应变本构关系及高强混凝土柱抗震性能试验研究[D].大连:大连理工大学,1998.
    [88]司炳君.普通及高强钢筋混凝土桥墩地震抗剪强度研宄[D].大连:大连理工大学,2008.
    [89]孙治国,司炳君,王东升等.高强箍筋高强混凝土柱抗震性能研究[J].工程力学.2010,27(5):128-136.
    [90]贾金青.钢骨高强混凝土短柱及高强混凝土短柱力学性能的研究[D].大连:大连理工大学,2000.
    [91]叶列平,丁大钧,程文瀼.高强砼框架柱抗震性能的试验研究[J].建筑结构学报.1992, 13(4):41-48.
    [92]程文瀼,李爱群,张晓峰,吴亦君.钢筋砼柱的轴压比限值[J].建筑结构学报.1994,15(6):25-30.
    [93]梁书亭,丁大钧,赵建军.钢筋混凝土复合箍筋柱在低周反复荷载下的强度和延性[J].南京建筑工业学院学报.1994,31(4):22-29.
    [94]李立仁,支运芳,陈永庆等.高强约束混凝土框架柱抗震性能的研究[J].重庆建筑大学学报.2002,24(5):38-45.
    [95]傅剑平,邓艳青,王晓锋等.考虑箍筋约束的HRB500级纵筋柱抗震性能试验研究[J].工业建筑.2012,42(1):78-84.
    [96]刘良松.不同箍筋形式及用量下采用500钢筋的RC短柱抗震性能研究[D].重庆:重庆大学,2008.
    [97]赖舒毓.配置500MPa级高强钢筋混凝土短柱抗震性能研究[D].重庆:重庆大学,2008.
    [98]李杨.抗震钢筋混凝土柱非线性变形分解试验理论分析[D].重庆:重庆大学,2010.
    [99]刘承文.箍筋约束对钢筋混凝土柱抗震性能影响的试验研究[D].重庆:重庆大学,2010.
    [100]姚雷.钢筋延性对柱抗震性能影响的试验研究[D].重庆:重庆大学,2011.
    [101]黄扬.钢筋屈曲对柱抗震性能影响的试验研究[D].重庆:重庆大学,2012.
    [102]张和平.钢筋混凝土柱抗震性能试验及优化模拟分析[D].重庆:重庆大学,2012.
    [103]路湛沁,陈家夔,崔锦,赵世春.钢筋混凝土框架柱在低周反复荷载作用下的抗弯强度及延性.西南交通大学学报,1987(1):1-11.
    [104]陈家夔.钢筋混凝土框架柱抗震性能[J].西南交通大学学报,1990(2):23~32.
    [105]蔡健,周靖,方小丹.钢筋混凝土框架抗震位移延性系数研究[J].工程抗震与加固改造.2005,27(3):143-148.
    [106]关柱良.CRB550级钢筋约束混凝土柱抗震性能研究[D].广州:华南理工大学,2011.
    [107]徐贱云,吴健生,铃木计夫.多次循环荷载作用下钢筋混凝土柱的性能[J].土木工程学报.1991,24(8):57-70.
    [108]杨建江,乌兰,陈玉霞.钢筋混凝土框架柱受力全过程分析[J].天津大学学报.2003,36(4):439-442.
    [109]邹银生,刘伯贤.抗震设计中钢筋混凝土柱矩形约束箍筋[J].工程力学.1990,7(2):49-56.
    [110]肖岩,伍云天,尚守平等.高强混凝土柱抗震性能的足尺试验研究及理论分析[J].东南大学学报(自然科学版).2002,32(5):746-749.
    [11 1]阎石,肖潇,张曰果,阚立新.高强钢筋约束混凝土矩形柱的抗震性能试验研究[J].沈阳建筑大学学报(自然科学版).2006,22(1):7-10.
    [112]洪柏年.钢筋混凝土框架柱在反复循环荷截作用下的抗剪强度和延性的试验研究[J].西安建筑科技大学学报.1982,26(3):77-96.
    [113]张志远,蔡绍怀,顾维平.高强混凝土柱抗震性能与配箍率关系的试验研究[J].建筑科学.1993,(1):12-18.
    [114]P. Paultre, F. Legeron, D. Mongeau. Influence of concrete strength and transverse rein-forement yield strength on behavior of high-strength concrete columns[J]. ACI Structural Journal.2001,98(4):490-501.
    [115]Yan Xiao, H. W. Yun. Experimental studies on full-scale high-strength concrete columns[J]. ACI Structural Journal.2002,99(2):199-207.
    [116]框架柱专题组.高强混凝土框架柱抗震性能的试验研究.
    [117]压弯剪构件抗震性能专题研究组.钢筋砼压弯剪构件抗震性能试验研究[J].建筑结构学报.1992,13(2):2-10.
    [118]张国军,吕西林,刘伯权.钢筋混凝土框架柱在轴压比超限时抗震性能的研究[J].土木工程学报.2006,39(3):47-54.
    [119]张国军,吕西林,刘建新.高强约束混凝土框架柱基于位移的抗震设计[J].同济大学学报.2007,35(2):143-148.
    [120]王琳蓉,朱金铨.周期反复荷载下高强混凝土压弯构件抗震性能的试验研究[J].福州大学学报.1996,24(增刊):145-151.
    [121]ACI Committee 318. ACI 318-08. Building code requirements for structural concrete and commentary[S]. American Concrete Institute, Michigan,2008.
    [122]New Zealand Standard. NZS 3101-2006. Concrete structures standard, Part1-The design of concrete structures[S]. Ttandards council,2006.
    [123]Eurocode 8. BS EN 1998-1:2004. Design of Structure for earthquake-part 1:General rules, seismic actions and rules for buildings[S]. British Standards Institution, London,2004.
    [124]K. Sakai, S. A. Sheikh. What do we know about confinement in reinforced concrete columns (A critical review of previous work and code provisions)[J]. ACI Structural Journal.1989, 86(2):192-207.
    [125]李剑.中美抗震规范的地震作用计算与钢筋混凝土结构抗震措施的比较研究[D].北京:中国建筑科学研究院,2005.
    [126]杨媛.对各国规范钢筋混凝土结构抗震设计条文的对比分析[D].重庆:重庆建筑大学,2000.
    [127]邓艳青.HRB500钢筋混凝土柱的抗震性能试验研究[D].重庆:重庆大学,2010.
    [128]中国建筑科学研究院.JGJ 101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1996.
    [129]中国建筑科学研究院.GB 50666-2011混凝土结构工程施工规范[S].北京:中国建筑工业出版社,2011.
    [130]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1989.
    [131]七维高科.lstOpt使用手册[CP/OL]. [2013-03-1]. http://www.7d-soft.com/files/ 1 stOpt%20Manual.pdf
    [132]韦锋.钢筋混凝土框架和框架-剪力墙结构非弹性地震反应形态的识别[D].重庆:重庆大学,2005.
    [133]Fib (CEB-FIP). Bulletin 25. Displacement-Based Seismic Design of Reinforced Concrete Buildings[R]. Sprint-Digital-Druck. Stuttgart.2003.
    [134]周莉莉.单多自由度体系R-μ规律对比分析中的若干问题[D].重庆:重庆大学,2009.
    [135]Shunsuke Otani. Nonlinear Earquqke Response Analysis of Reinfored Concrete Buildings [M]. University of Tokyo, August 2002.
    [136]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报.2000,33(6):33-37.
    [137]Pacific Earthquake Engineering Research Center. PEER Strong Motion Database[DB/OL]. [2012-06-16]. http://peer.berkeley.edu/smcat.
    [138]中国水电顾问集团西北勘测设计研究院.DL/T 5057-2009水工混凝土结构设计规范[S].北京:中国水利水电出版社,2009.
    [139]水利部长江水利委员会长江勘测规划设计研究院.SL191-2008.北京:中国水利水电出版社,2008.
    [140]中铁工程设计咨询集团有限公司.TB 10002.3-2005铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].北京:中国铁道出版社,2007.
    [141]中交公路规划设计院.JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京:人民交通出版社,2004.
    [142]苏联标准《混凝土及钢筋混凝土结构设计标准及技术规范》HиTY123-55[S].莫斯科:1955.
    [143]Eurocode 2. BS EN 1992-1-1:2004. Design of Concrete Structure-part 1:General rules and rules for buildings[S]. British Standards Institution, London,2004.
    [144]CEB-FIP (Euro-International Committee for Concrete & International Federation for Prestressing). Model Code 90[S].1990.
    [145]白生翔,程志军,王晓锋.纵向钢筋可利用的最高强度设计值.RISN-TG007-2009热轧带肋高强钢筋在混凝土结构中应用技术导则[S].北京:中国建筑工业出版社,2009.
    [146]赵东.高强箍筋约束混凝土偏心受压构件试验及非线性分析[D].西安:西安建筑科技大学,2008.
    [147]中国有色工程设计研究总院.混凝土结构构造手册(第三版)[M].北京:中国建筑工业出版社,2003.
    [148]John Green, Stephen Bullen, Rob Bovey, Michael Alexander. Excel 2007 VBA参考大全(修订版)[M].北京:人民邮电出版社,2013.
    [149]河北合创建筑节能科技有限公司.约束混凝土柱组合梁框架结构技术规程(中国工程建设协会标准报批稿)[S].2013.
    [150]卞琳.高强混凝土短柱抗震性能试验及非线性有限元分析[D].西安:西安建筑科技大学,2004.
    [151]肖建庄,李杰.钢筋混凝土框架柱轴压比限值问题研究[J].世界地震工程.1998,14(4):17-22.
    [1 52]姜睿.超高强混凝土组合柱抗震性能的试验研究[D].大连:大连理工大学,2007.
    [153]郭忠贤,刘志鸿.方形螺旋箍筋提高钢筋砼框架柱轴压比限值的研究[J].工程力学.1999(增刊):269-274.
    [154]白绍良.混凝土基本理论(研究生课程讲义)[M].重庆大学土木工程学院,2008.
    [155]中国建筑科学研究院.JGJ 95-2011冷轧带肋钢筋混凝土结构应用技术规程[S].北京:中国建筑工业出版社,2011.
    [156]中国建筑科学研究院.JGJ 3-2002高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2012.
    [157]申祥.混凝土结构中钢筋配筋率的计算参数[J].工程建设标准化.2003,5:16-20.
    [158]陕西省建筑科学研究院.JGJ 18-2012钢筋焊接及验收规程[S].北京:中国建筑工业出版社,2012.
    [159]Joint ACI-ASCE Committee 352. ACI 352R-02. Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures[R]. American Concrete Institute, Michigan,2002.
    [160]邸小坛,叶列平,徐有邻.《混凝土结构设计规范》修订简介(二)——混凝土结构的安全与抗灾性能[J].建筑结构.2011,41(3):118-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700