秸秆覆盖免耕对土壤有机质转化积累及玉米生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,东北地区种植玉米形成了垄作的习惯,为实现耕整土地、起垄作业,地表的秸秆被全部移走或就地焚烧,以达到农机作业的要求,加之,人们对土地最大利益化的追求,大量使用化肥而很少使用厩肥。长期的掠夺式经营,造成了东北黑土地的严重退化。提高有机物质的输入,是实现东北黑土地力的重建的关键,因此,我们研究保护性耕作技术在东北黑土区的应用,期望能从保护珍贵黑土资源的角度来探寻耕作制度的改变对农业生产的影响及实现土壤有机质重建的机制。
     本研究始于2007年4月,依托中国科学院保护性耕作研发基地(吉林省梨树县,43°19'N,124°14'E),开展玉米秸秆覆盖免耕技术研究。实验区土壤类型为中层黑土壤质粘土。以常规垄作(RT)为对照,连续5年实施不同秸秆覆盖量(NT-0、NT-33、 NT-67、NT-100)免耕。针对耕层土壤含水量、土壤温度、土壤容重、田间蚯蚓数量、土壤有机质及产量方面进行分析,并对耕层不同层次(0.2cm、2-5cm、5-10cm、10-20cm)的全土及颗粒分级土壤有机碳、氨基糖的变化特征进行了分析,结果表明:
     1.秸秆覆盖免耕增加了耕层土壤的含水量,相较于常规垄作,春播前秸秆覆盖免耕可增加30%以上耕层水分,但是,秸秆覆盖处理降低了土壤温度,在5cm土壤深度,NT-100较RT温度低2-8.5℃,在10cm处低1.7-9.0℃,20cm处低1.4-6.0℃。NT-0处理在保证土壤水分的同时,土壤温度在各层次较RT无明显差异。
     2.常规垄作改为免耕种植,容重是增加的,但其耕层容重均在1.40g cm-3以下,其中NT-100的容重仅为1.24g cm-3,说明连续实施免耕5年虽然增加了土壤的容重,但其仍在适合玉米生长的范围之内,并不影响春天播种。另外,耕作方式的变化对蚯蚓数量的影响并不显著,RT和NT-0每平方米蚯蚓的数量分别为15条和18条,而重量方面的差异也不显著。秸秆覆盖免耕无论是对蚯蚓的数量还是重量均有显著(p<0.05)的影响,蚯蚓密度在免耕条件下有随秸秆覆盖量增加而增加的特征。尤其是在全量秸秆覆盖(NT-100)下达到每平方米143条,重16.27g。
     3.实施秸秆覆盖免耕(NT-100/67/33),对玉米的生育进程产生了一定的影响,开花期以前,秸秆覆盖免耕明显降低了玉米的株高、叶面积指数及干物质的积累,这种影响随秸秆覆盖量的增加而增大。NT-0无论是对玉米株高、叶面积指数还是干物质的积累均无影响,在不同生育期还可起到促进作用,尤其是叶面积指数,NT-0的下降速率明显慢于RT。秸秆覆盖量免耕造成的减产主要与收获时公顷有效穗数的下降有关。免耕的实施对春玉米的理论产量影响并不大,NT-0和NT-33在玉米的百粒重这一指标较RT却分别增长了0.41-1.13g(100.weight)-1和0.37-0.91g(100-weight)-1因此,通过加强田间管理,提高农机具的质量及病害的防治效果,有利于免耕在东北黑土区的推广。
     4.秸秆覆盖免耕的实施,增加了土壤有机碳的含量,有机碳的积累具有明显的表层富集作用,且其增加量随秸秆覆盖量的增加而增加,在表层0-2cm秸秆覆盖免耕(NT-100/67/33)较常规垄作(RT)5年间土壤有机碳含量分别增加了:29.7%、17.9%和11.5%,在2-5cm这一层次上分别增加了:4.0%、5.1%和2.8%。NT-0的土壤有机碳含量在5年间与RT相比,变化不显著,说明仅是耕作方式改变而不实施秸秆还田对土壤有机质的提高效果短期内不显著。
     5.不同量秸秆覆盖增加了表层(0-2cm)土壤氨基糖含量;不同微生物来源氨基糖对秸秆覆盖量的响应不同,其中氨基葡萄糖和氨基半乳糖表现出随秸秆覆盖量增加而增加的趋势,而胞壁酸仅在全秸秆覆盖下显著增加;秸秆覆盖还田免耕下真菌来源的氨基葡萄糖与细菌来源的胞壁酸的比值高于无秸秆还田免耕,表明连续秸秆覆盖还田土壤中真菌己逐渐转为优势群体,而真菌占优势的农田生态系统更利于土壤固碳。。
     6.免耕的实施虽然对土壤各粒级的组成没有明显的影响,但却改了各粒级中有机碳的含量。在表层0-5cm,秸秆覆盖免耕增强了黏粒吸附有机碳的能力,其吸附能力表现出了秸秆覆盖量的增加而增强的特征,秸秆覆盖免耕还增加了黏粒的库容。另外,黏粒的有机碳富集系数虽然均大于1,在层0-2cm其数值表现为:秸秆覆盖免耕<常规垄作,而在2-5cm却得到相反的结果,从黏粒有机碳对全土有机碳的贡献率发现,在表层0-5cm表现为:秸秆覆盖免耕>常规垄作,秸秆覆盖免耕的富集系数小,但其有机碳的库容及对全土有机碳的贡献率高,说明在连续秸秆覆盖免耕的条件下黏粒的有机碳积累正达到一个新的平衡,提高了土壤有机质的含量。耕作方式的改变也影响了粉粒和砂粒有机碳含量,在0-2cm这一层次有机碳的分布强度、库容、富集系数等方面,粉粒中表现为:免耕<常规垄作,而砂粒中却现为:免耕>常规垄作,在免耕措施中,粉粒和砂粒中有机碳的分布强度、库容、富集系数等指标均有随秸秆覆盖量的增加而增加的特征,说明秸秆覆盖免耕的实施也有利于提升大颗粒中有机碳的含量。
     7.秸秆覆盖免耕的实施对各粒级中氨基糖的影响,主要体现在砂粒中,土壤氨基糖的总量及各氨基单糖(GluN、GlaN和Mur)在砂粒中的分布强度、库容及富集系数均表现出随秸秆覆盖量的增加而显著增加的特征,且免耕处理均高于常规垄作处理,说明耕作次数的减少及新鲜有机物料的补充共同为土壤微生物营造了良好的生境,从而加速了对微生物对有机碳的积累与转化。连续5年的免耕,并未对黏粒中土壤氨基糖的量造成显著影响,但是,在氨基糖的分布强度及库容方面,表现出了随秸秆覆盖量的增加而增加的趋势,而在富集系数及有对贡献率方面却表现为随秸秆覆盖量的增加而下降的趋势。
     综上所述,秸秆覆盖免耕的实施有利于土壤理化性状的改善,提高了土壤表层有机质的含量。但东北黑土区的积温较低,大量的秸秆覆盖不利于春天地温的提升,建议不同的区域依据实际情况选择合适的秸秆覆盖量。本研究为两年的实验结果,且为全程机械化的实际效果对玉米生长发育及产量影响的数据,不等同于相同农艺条件下的结果,因此,免耕对农业生产的影响,随着农机具的质量提高,还有待于进一步研究。另外,短期的秸秆覆盖免耕虽然增加了土壤有机质的含量,但这种显著的增加仅在表层2cm以内,在保持现有土壤环境的前提下,如何快速提高整个耕层土壤有机质的含量将会是研究东北黑土的一重要方向。
In northeast of China farmers have formed the habit of ridge tillage for corn. In order to achieve the requirements for agricultural machinery operation, straw were all removed from the field or burt in situ. In addition, people used the abundant chemical fertilizer instead of farmyard manure. Long-term predatory operation caused serious soil degradation. In order to reconstruction of the black soil fertility, it is a key method to add the input of organic matter in soil. Therefore, it is considerable important to study the application of conservation tillage technology, which help us realize the reconstruction mechanism of soil organic matter.
     We conducted the experiments in Conservation Tillage Research and Development Base (43°19'N,124°14'E) of Chinese Academy of Sciences in Jilin province from2007to2012. The treatments were set as no-tillage (NT-0), no-tillage with stalk cover (NTS,NT-33/67/100) and ridge tillage (RT). The soil moisture, soil temperature, bulk density, field earthworm population, soil organic matter in different sampling depths and plant biomass were all measured. We also determined the content of soil organic carbon and amino sugars in soil particle size fractions (0-2cm,2-5cm,5-10cm,10-20cm). The results were as follows:
     1. The soil water content increased in the treatment of NTS(NT-33/67/100) compared with in the treatment of RT. However, the soil temperature, at5cm depth of soil, the NT-100was lower in the treatment of NTS than that in the treatment of RT.
     2. The soil bulk density increased in the treatment of NT, ranged from1.24to1.40g cm-3. There was no significant change for the number of earthworms in treatment of RT and NT-0. However, the treatment of NT-100increased the number and quality of earthworms (p<0.05).
     3. The results showed that NTSinhibitedthe corn growth. Before the flowering period, NTS significantly reduced maize plant height, leaf area index and dry matter accumulation, this kind of influence increased with the amount of straw mulching. It is no affect of NT-0for maize plant height, leaf area index and dry matter accumulation. In different growth period, the leaf area index in NT-0is significantly slower than RT. NTSyeild is mainly caused by the decrease in the number of effective ears at harvest time. No-till had smalleffect on the theoryyield,The100-weight of the corn is more than that of RT. So, the field management should be strengthened, the quality of agricultural machinery should be improved. It is helpful for the popularize no-till in the Northeast.
     4. The results showed that NTS improved the soil organic carbon content. The accumulation of organic carbon has obvious enrichment. The amount changed with the increased amount of straw mulching. In the surface layer0-2cm, NTS(NT-100/67/33)increased soil organic carbon content:29.7%,17.9%and11.5%,4.0%,5.1%and2.8%at2-5cm in the past five years. The NT-0has little change in soil organic carbon content compared with RT. It has little effect that only changecultivation method without straw mulching in the short term.
     5. NTS promoted the accumulation of soil amino sugars in the top soil (0-2cm) compared with NT-0. The amounts of amino sugars derived from different fungi and bacteria changes significantly under the stover mulching, the amounts of glucosamine and galactosamine increased with stover mulching quantity increased, while muramic acid was significantly increased only under100%stover mulching. Furthermore, the ratios of glucosamine to muramic acid in stover mulching treatments were higher than that of in no stover mulching treatment. It suggests that the fungi play a dominant role in stover mulching agroecosystems as the enrichment of fungal-derived glucosamine, thus leading to higher soil organic C storage in the soils.
     6. Although the implementation of the no-till has no obvious impacts on fraction of soil, impacts the organic carbon content. In the surface layer (0-5cm), NTS enhances the clay adsorption ability of organic carbon. The adsorption capacity showed increased with stover mulching quantity increased. NTS also increases the storage capacity of clay. In addition, the Enrichment of clay were>1, in the layer of0-2cm the Enrichment showed that NTSRT.The enrichment of NTS is small, but its organic carbon storage and the contribution of soil organic carbon is high,means under the condition of continuous NTSthe clay organic carbon accumulation are reaching a new equilibrium, and improving the content of soil organic matter.Tilling also affects the organic carbon content of the silt and sand. In the0-2cm, the concentration, stock and enrichment of silt organic carbon showed:NTS     7. The effect of the NTS influence on amino sugars mainly reflected in the sand. The amount of soil amino sugars and the amino monosaccharides (GluN, GlaN and Mur) in the concentration, stock and enrichmen of sand increased with stover mulching quantity increased, and the no-tillage treatment was higher than RT. The reduction of tilling and fresh organic material created a good habitat for soil microorganisms, thus speeding up the accumulation and transformation of microorganisms of organic carbon. The effect of five consecutive years of no-till was not obvious for the amount of clay soil amino sugar. However, the amino sugar in the concentration, stockshowed increased with stover mulching quantity increased, while in the enrichment and coefficients has the opposite result.
     To sum up, the implementation of NTS helpful for the improvement of the soil physical and chemical properties and add the content of soil organic matter. But the accumulated temperature of soil is low in the northeast, a large number of stover mulching is bad to improve the soil temperature before sowing. It is suggested that different regions to choose the appropriate amount of stover mulching according to the actual situation. This study showed that the results of the whole mechanization of the actual effect on corn growth and yield, is not the same as the agronomic conditions. Therefore, no-tillage effects on agricultural production, with agricultural machinery and implement quality improvement, it is need to be further research. In addition, the short-term stover mulching increases the soil organic matter content. However, the increased only exist in the surface layer within2cm. In the premise of keeping the existing soil environment, how to improve the content of soil organic matter will be an important research direction of black soil in Northeast china.
引文
Aita C, Recous S, Angers DA.1997. Short-term kinetics of residual wheat straw C and N under field conditions:Characterization by 13C 15N tracing and soil particle size fractionation. European Journal of Soil Science,48:283-294.
    Amato M, Ladd JN.1980. Studies of nitrogen immobilization and mineralization in calcareous soils.V. Formation and distribution of isotope-labelled biomass during decomposition of 14C-and 15N-labelled plant material. Soil Biology & Biochemistry, 12:405-411.
    Amelung W, Flach K W, Zech W.1997.Climatic effects on soil organic matter composition of the Great Plains. Soil Science Society of America Journal,61:115-123.
    Amelung W, Lobe I, Du Preez C C.2002. Fate of microbial residues in sandy soils of the south African Highveld as influenced by prolonged arable cropping. European Jouranl of Soil Science,53:29-35.
    Amelung W, Milterna A, Zhang X.2001.Fate of microbial residues during litter decomposition as affected by minerals. Soil Science,166:598-606.
    Amelung W, Zech W, Zhang X. et al,..1998. Carbon, nitrogen, and sulfur pools in particle-size fractions as influenced by climate. Soil Science Society of America Journal, 62:172-181.
    Amelung W.2001.Methods using amino sugars as markers for microbial residues in soil. In:Lal R, Kimble J M, Follett R F, Stewart B A (Eds). Assessment Methods for Soil Carbon. Boca Raton:Lewis Publishers,233-272.
    Anderson DW, Paul EA,1984. Organo-mineral complexes and their study by radiocarbon dating. Soil Science Society of America Journal,48:298-301.
    Anderson DW, Saggar S, Bettany JR, Stewart JWB.1981. Particle size fractions and their use in studies of soil organic matter.I.The nature and distribution of forms of carbon, nitrogen, and sulfur. Soil Science Society of America Journal,45:767-772.
    Angers D A, Bolinder M A, Carter M R, ea al,.1997. Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil & Tillage Research,41:191-201.
    Austin R B, Playan E, Gimeno J.1998. Water storage in soils during the fallow: Prediction of the effects of rainfall pattern and soil conditions in the Ebro valley of Spain. Agri. Water Magament,36:213-231.
    Balabane M, Balesdent J,1992. Input of fertilizer-derived labeled N to soil organic matter during a growing season of maize in the field. Soil Biology & Biochemistry,24:89-96.
    Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wilson MA.1992.Aspects of the chemical structure of soil organic matter as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry,16:1-42.
    Balesdent J, Wagner GH, Mariotti A.1988. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. Soil Science Society of America Journal,52:118-124.
    Beare M H, Hendrix P F, Coleman D C..1994. Water-Stable Aggregates and Organic Matter Fractions in Conventional and No-Tillage Soils. Soil Science Society of America Journal,58(3):777-786.
    Calderon FJ, Vigil MF, Nielsen DC, et al.,2012. Water use and yields of no-till managed dryland grasspea and yellow pea under different planting configurations. Field Crops Research,125:179-185.
    Chan K Y, Heenan D P, Oates A.2002. Soil carbon fractions and relationship to soil quality under different tillage and stubble management. Soil & Tillage Research,63:133-139.
    Chan K Y.2001. An overviewof some tillage impacts on earthworm population abundance and diversity-implications for functioning in soils. Soil & Tillage Research,57: 179-191.
    Chantigny M H, Angers D A, Prevost D, et al.1997. Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Science of Society of America Journal,61:262-267.
    Cheshire MV.1985. Carbohydrates in relation to soil fertility. In:Vaughan, D., et al. (Eds.), Soil organic matter and biological activity,263-288.
    Christensen BT.2001.Physically fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52:345-350.
    Christian P. Giardin, Michael G Ryan, Robert M.Hubbard, Dan Binkley.2001. Tree species and soil Textural controls on carbon andnitrogen mineralization rates. Soil Science Society of America Journal,65(4):1272-1279.
    Curtin D, Wang H, Selles F, McConkey B G, Campbell C A.2000.Tillage Effects on Carbon Fluxes in Continuous Wheat and Fallow-Wheat Rotations. Soil Science Society of America Journal,64:2080-2086.
    Dai X Y, Ping C L, Zhang X, Zech W.2002. Amino sugars in arctic soils. Communications in Soil Science and Plant Analysis,33:789-805.
    Dam R F, Mehdi B B, Burgess M S E, et al,.2005. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil & Tillage Research,84:41-53.
    Doran J W, Elliott E T, Paustian K.1998.Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management. Soil & Tillage Research,49:3-18.
    Engelking B, Flessa H, Joergensen R G.2007. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biology and Biochemistry, 399:2111-2118.
    Fausey NR, Lal R, Mahboubi A A.1994. Long-term tillage and rotation effects on properties of a central Ohio soil. Soil Science Society of America Journal,58:517-522.
    Freixo A A, Machado P L, Santos H P.2002. Soil organic carbon and fractions of a rhodic ferralsol under the influence of tillage and crop rotation systems in southern Brazil. Soil & Tillage Research,64:221-230.
    Galantini J A, Rosell R A.1997. Organic fractions, N, P and S changes in an Argentine semiarid Haplustoll under different crop sequences. Soil & Tillage Research,42:221-228.
    Glaser B, Turrion M B, Alef K.2004.Amino sugars and muramic acid-biomarkers for soil microbial community structure analysis. Soil Biology and Biochemistry,36:399-407.
    Grace P R, Oades J M, Keith H, Hancock TW.1995. Trends in wheat yields and soil organic carbon in the permanent rotation trial at the Waite Agricultural Research Institute, South Australia. Australia Journal of Experimental Agriculture,35:857-864.
    Greb W.1967.Effects of straw mulch rates on soil water storage during summer fallow in the great plains. Soil Sci. Soc. Am. Pro.31:556-559.
    Guggenberger G, Frey S D, Six J, Paustian K, Elliot E T.1999.Bacterial and fungal cell-wall residues in conventional and notillage agroecosystems. Soil Science Society of American Journal,63:1188-1198.
    Guihua Chen, Ray R. Weil.2011. Root growth and yield of maize as affected by soil compaction and cover crops. Soil & Tillage Research,117:17-27.
    He H, Xie H, Zhang X.2006.A novel GC/MS technique to assess 15N and 13C incorporation into soil amino sugars. Soil Biology and Biochemistry,38:1083-1091.
    Hendrix P F, Franzluebbers A J, McCracken D V.1998. Management effects on C accumulation and loss in soils of the southern Appalachian Piedmont of Georgia. Soil & Tillage Research,47:245-251.
    Hieks R E, Newell S Y.1984.Comparison of glucosamine and biovolume conversion factors for estimating fungal biomass. Oikos,42:355-360.
    Hook P B, Burke I C.2000. Biogeochemistry in a short grass landscape:Control by topography, soil texture,and microclimate. Ecology,81(10):2686-2703.
    Johnson-Maynard JL, Umiker KJ, Guy SO.2007. Earthworm dynamics and soil physical properties in the first three years of no-till management. Soil& Tillage Research,94: 338-345.
    Jolivet C, Angers D A, Chantigny M H, Andreux F, Arrouays D.2006. Carbohydrate dynamics in particle-size fractions of sandy spodosols following forest conversion to maize cropping. Soil Biology and Biochemistry,38:2834-2842.
    Jones DL, Edwards AC,1998. Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biology & Biochemistry,30:1895-1902.
    Jordan D, Stecker JA, Cacnio-Hubbard VN et al,.1997. Earthworm activity in no-tillage and conventional tillage systems in Missouri soils:A preliminary study. Soil Biology and Biochemistry,29(3-4):489-491.
    Kaiser M, Wirth S, Ellerbrock RH, Sommer M.2010. Microbial respiration activities related to sequentially separated, particulate and water-soluble organic matter fractions from arable and forest topsoils. Soil Biology & Biochemistry,42:418-428.
    Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs, PJ, Bardgett RD, Amelung W. 2000. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biology and Fertility of Soils,32:390-400.
    Keil RG, Montlucon DB., Prahl FR, Hedges JI.1994. Sorptive preservation of labile organic matter in marine sediments. Nature,370:549-552.
    Ketterings O M, Blair J M, Marinissen J C Y.1997. Effects of earthworms on soil aggregate stability and carbon and nitrogen storage in a legume cover crop agroecosystem. Soil Biology and Biochemistry,29(3):401-408.
    Kiem R, Knicker H, Knabner IK.2002. Refractory organic carbon in particle-size fractions of arable soils Ⅰ:distribution of refractory carbon between the size fractions. Organic Geochemistry,33(12):1683-1697.
    Kogel I, Bochter R.1985.Amino sugar determination in organic soils by capillary gas chromatography using a nitrogen-selective detector. Z. Pflanzenernahr. Bodenkd,148: 260-267.
    Ladd JN, VanGestel M, Monrozier LJ, Amato M.1996. Distribution of organic 14C and 15N in particle size fractions of soils incubated with 14C,15N-labelled glucose/NH4, and legume and wheat straw residues. Soil Biology & Biochemistry,28:893-905.
    Lobe I, Amelung W, Du Preez C C.2000. Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld. European Journal of Soil Science,52:93-101.
    Logsdon S D, Jordahl J L, Karlen D L.1993.Tillage and crop effects on ponder and tension infiltration rates. Soil & Tillage Research,28:179-189.
    Martin Diaz-Zorita, Gustavo A Duarte, John H Grove.2002. A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil & Tillage Research,65:1-18.
    McCarty GW, Lyssenko N N, Starr J L.1998.Short-term changes in soil carbon and nitrogen pools during tillage management transition. Soil Science Society of America Journal, 62(6):1564-1571.
    Mertz C, Kleber M, Jahn R.2005. Soil organic matter stabilization pathways in clay sub-fractions from a time series of fertilizer deprivation. Organic Geochemistry, 36:1311-1322.
    Mikhailova E A, Bryant R B, Vassenev I I, Schwagerc S J, Post C J.2000.Cultivation Effects on Soil Carbonand Nitrogen Contents at Depth in the Russian Chernozem. Soil Science Society of America Journal,64:738-745.
    Miltner A, Zech W.1998. Carbohydrate decomposition in beech litter as influenced by aluminum, iron and manganese oxides. Soil Biology & Biochemistry,30:1-7.
    Nakamura Y, Shiraishi H, Nakai M.2003. Earthworm and Enchytraeid Numbers in Soybean-Barley Fields under Till and No-Till Cropping Systems in Japan during Nine Years. Memoirs of the College of Agriculture, Ehime University,48:19-29.
    Nuutinen V.1992. Earthworm community response to tillage and residue management on different soil types in southern Finland. Soil & Tillage Research.32:353-361.
    Oades JM.1988.The retention of organic matter in soils. Biogeochemistry,5:35-70.
    Ogle S M, Swana A, Paustian K.2012.No-till management impacts on crop productivity, carbon input and soil carbon sequestration.Agriculture, Ecosystems and Environment. (149):37-49.
    Osunbitana JA, Oyedeleb DJ, Adekalu KO.2005. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil & Tillage Research,82:57-67.
    Parfitt RL, Theng BKG, Whitton JS, Shepherd TG.1997. Effects of clay minerals and land use on organic matter pools. Geoderma,75:1-12.
    Parmelee RW, Beare MH,Cheng W. et al,.1990. Earthworms and enchytraeids in conventional and no-tillage agroecosystems:A biocide approach to assess their role in organic matter breakdown. Biol Fertil Soils,10:1-10.
    Parsons J W.1981.Chemistry and distribution of amino sugars in soils and soil organisms. In:Paul E A, Ladd J N (Eds). Soil biochemistry, vol 5. New York:Marcel Dekker,197-227.
    Paustian K, Collins H P, Paul E A.1997. Management controls on soil carbon. In:Paul E A, Paustian K, Elliott E T, Cole C V (Eds). Soil organic matter in temperate agroecosystems: Long-term Experiments in North America. Boca Raton, FL, USA:CRC Press,15-49.
    Puget P, Lal R, Izaurralde C, Post M, Owens L.2005. Stock and distribution of total and corn-derived soil organic carbon in aggregate and primary particle fractions for different land use and soil management practices. Soil Science,170:256-279.
    Reeder J D, Schuman G E, Bowman R A.1998. Soil C and N changes on conservation reserve programlands in the Central Great Plains. Soil & Tillage Research,47:339-349.
    Robert J, Lascano R, Louis baumhardt, et al.1994.Soil and plant water evaporation from strip-tilled cotton:measurement and simulations.Agron. J.86:987-994.
    Roberts P, Bol R, Jones D L.2007. Free amino sugar reactions in soil in relation to soil carbon and nitrogen cycling. Soil Biology and Biochemistry,39:3081-3092.
    Rovira P, Vallejo VR.2003. Physical protection and biochemical quality of organic matter in mediterranean calcareous forest soils:a density fractionation approach. Soil Biology & Biochemistry,35:245-261.
    Sally D. Logsdon, Douglas L.2004. Bulk density as a soil quality indicator during conversion to no-tillage. Soil & Tillage Research,78:143-149.
    Schulten H R, Hempfling R, Haider K, Groblinghoff F F, Ludemann H D, Frund R.1990. Characterization of cultivation effects on soil organic matter. Z. Pflanzenernahr. Bodenk, 153:97-105.
    Schulten H.R., Leinweber P.1991. Influence of long-term fertilization with farmyard manure on soil organic matter-Characteristics of particle-size fractions. Biology and Fertility of Soils,12:81-88.
    Six J, Carpentier A, Kessel C, Merckx R, Harris D, Horwarth WR, Luscher A.2001. Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant and Soil,234:27-32.
    Skjemstad J O, Dalal R C, Barron P F.1986. Spectroscopic investigations of cultivation effects on organic matter of vertisols. Soil Science Society of American Journal,50:354-359.
    Skjemstad JO, Janik LJ, Taylor JA.1998. Non-living soil organic matter:what do we know about it?. Australian Journal of Experimental Agriculture,38;667-680.
    So HB, Grabski A, Desborough P.2009. The impact of 14 years of conventional and no-till cultivation on the physical properties and crop yields of a loam soil at Grafton NSW, Australia. Soil & Tillage Research,104:180-184.
    Soane BD, Ball BC, Arvidsson J.2012. No-till in northern, western and south-western Europe:A review of problems and opportunities for crop production and the environment. Soil & Tillage Research,118:66-87.
    Solomon D, Lehmann J, Zech W.2001. Land use effects on amino sugar signature of chromic Luvisol in the semi-arid part of northern Tanzania. Biology and Fertility of Soils, 33:33-40.
    Stavi I, Lal R, Owens L B.2011. On-farm effects of no-till versus occasional tillage on soil quality and crop yields in eastern Ohio. Agronomy for Sustainable Development, 31:475-482.
    Stephen M. Ogle, Amy Swan, Keith Paustian.2012. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agriculture, Ecosystems and Environment,149:37-49.
    Stephen M. Ogle, F. JayB,Keith P.2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry,72:87-121.
    Stevenson F J.1982.Nitrogen in Agricultural Soils. Madison, WI:Soil Science Society of America Inc., Crop Science Society of America Inc., American Society of Agronomy Inc.
    Thnh H Dao.1993.Tillage and winter wheat residue management effects on water infiltration and storage. Soil Sci. Soc. Am. J.57:1586-1595.
    Tolk J A, Howell TA, Evett S R.1999. Effect of mulch, irrigation and soil type on water use and yield of maize. Soil & Tillage Research,50:137-147.
    Turrion M B, Glaser B, Zech W.2002. Effects of deforestation on contents and distribution of amino sugars within particle-size fractions of mountain soils. Biology and Biochemistry,35:49-53.
    West T O, Post W M.2002. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation:A Global Data Analysis. Soil Science Society of America Journal,66:1930-1946.
    Willoughby G L, Kladivko E J.2002. Water infiltration rates following reintroduction of Lumbricus terrestris into no-till fields. Journal of Soil and Water Conservation,57(2):82-88
    Wills WD, Bond J J.1971.Soil water evaporation reduction by simulated tillage. Soil Sci. Soc. Am. Proc.35:526-529.
    Wilts AR, Reicosky DC, Allmaras RR. et al.,.2004. Long-Term Corn Residue Effects: Harvest Alternatives, Soil Carbon Turnover, and Root-Derived Carbon. Soil Science Society of America,68:1342-1351.
    Zeller B., Dambrine E.2011. Coarse particulate organic matter is the primary source of mineral N in the topsoil of three beech forests. Soil Biology & Biochemistry 43,542-550.
    Zhang X, Amelung W, Yuan Y, Samson-Liebig S, Brown L, Zech W.1999. Land-use effects on amino sugars in particle-size fractions of an Argiudoll. Applied Soil and Ecology, 11:271-275.
    Zhang X, Amelung W, Yuan Y, Zech W.1998.Amino sugar signature of particle-size fractions in soils of the native prairie as affected by climate. Soil Science,163:220-229.
    Zhang X, Amelung W.1996. Gas chromatographic determination of muramic acid, glucosamine, galactosamine, and mannosamine in soils. Soil Biology and Biochemistry, 28:1201-1206.
    卜玉山,苗果园,邵海林,王建程.2006.对地膜和秸秆覆盖玉米生长发育与产量的分析.作物学报,32(7):1090-1093.
    陈素英,张喜英,刘孟雨.2002.玉米秸秆覆盖麦田下的土壤温度和土壤温度动态规律.中国农业气象,4:34-37.
    陈学文,张晓平,梁爱珍,贾淑霞,时秀焕,范如芹,魏守才.2012.耕作方式对黑土硬度和容重的影响.应用生态学报,23(2):439-444.
    陈学文,张晓平,梁爱珍,贾淑霞,时秀焕,范如芹,魏守才.2011.不同耕作方式对黑土农田土壤温湿效应的影响.大豆科学,30(5):764-768.
    程叶青,张平宇.2005.中国粮食生产的区域格局变化及东北商品粮基地的响应.地理科学,25(5):513-520.
    丁玉川,王树楼,王茄.1994.免耕整秸秆半覆盖对旱地玉米生长发育及产量的影响.玉米科学,2(1):28-31,63.
    高焕文,李洪文,李问盈.2008.保护性耕作的发展.农业机械学报,39(9):43-47
    高焕文.2008.保护性耕作的发展.农业技术与装备,11:13-16.
    高建华,张承中.2010.不同保护性耕作措施对黄土高原旱作农田土壤物理结构的影响.干旱地区农业研究,28(4):192-196.
    郭景恒,朴河春,刘启明.2000.碳水化合物在土壤中的分布特征及其环境意义.地质地球化学,28:59-64.
    郭晓霞,刘景辉,张星杰,张向前,李立军,苏顺和.2010.不同耕作方式对土壤水热变化的影响.中国土壤与肥料,5:11-15.
    韩思明.1988.旱地残茬覆盖耕作法的研究.干旱地区农业研究,8:1-12.
    韩永俊,尹大庆,赵艳忠.2003.秸秆还田的研究现状.农机化研究,2:39-40.
    何红波,李晓波,张威,丁雪丽,解宏图,刘宁,张旭东,李丽君.2010.葡萄糖和不同数量氮素供给对黑土氨基糖动态的影响.土壤学报,47(4):760-766.
    黑龙江省土地管理局,黑龙江省土地勘测规划院.1998.黑龙江土地资源.北京:中国农业科技出版社,314-315.
    侯玉虹,陈传永,郭志强,侯立白,张宾,赵明.2009.春玉米不同产量群体叶面积指数动态特征与生态因子资源量的分配特点.应用生态学报,20(1):135-142.
    胡小平,薛永祥.1993.玉米单株叶面积的快速测定.玉米科学,1(3):77-78.
    黄福珍.1979.论蚯蚓对土壤结构形成及性态的影响.土壤学报,16(3):211-216.
    黄细喜.1988.土壤紧实度及层次对小麦生长的影响.土壤学报,25(1):59-65.
    劳家柽.1988.土壤农化分析手册.北京:农业出版社.
    雷金银,吴发启,王健,郭建华.2008.保护性耕作对土壤物理特性及玉米产量的影响.农业工程学报,24(10):40-45.
    李洪文,高焕文,周兴祥,毛宁.2000.旱地玉米保护性耕作经济效益分析.干旱地区农业研究,18(3):44-49.
    李恋卿,潘根兴,张旭辉.2000.退化红壤植被恢复中表层土壤微团聚体及其有机碳的分布变化.土壤通报,31(5):193-196.
    李文凤,张晓平,梁爱珍,申艳,方华军,杨学明.2007.免耕对黑土蚯蚓数量和土壤密度的影响.农业系统科学与综合研究,23(4):489-494.
    李笑吟,毕华兴,刁锐民,刘利峰,李孝广,李俊.2005.TRIME-TDR土壤水分测定系统的原理及其在黄土高原土壤水分监测中的应用.中国水土保持科学,3(1):112-115.
    李玉鹏,贾志宽,杨保平,王听.2010.秸秆覆盖量对半干旱区早作春玉米生长及水分利用效率的影响.玉米科学,29(1):117-119.
    梁爱珍,张晓平,杨学明,Neil McLaughlin,申艳,李文凤.2009.耕作对东北黑土团聚体粒级分布及其稳定性的短期影响.土壤学报,46(1):155-158.
    刘爽,张兴义.2010.保护性耕作下黑土水热动态研究.干旱地区农业研究, 28(6):15-22.
    刘武仁,陈砚,郑金玉,罗洋,郑洪兵,李伟堂.2009.不同耕作方式对玉米产量及叶片某些生理机制的影响.玉米科学,17(2):112-115.
    刘武仁,郑金玉,罗洋,郑洪兵,李伟堂.2008.玉米留茬少、免耕对土壤环境的影响.玉米科学,16(4):123-126.
    罗永藩.1992.我国少耕与免耕技术推广应用情况与发展前景.耕作与栽培,2:1-6.
    吕慧捷,何红波,张旭东.2012.土壤颗粒分级过程中超声破碎和离心分离的条件选择.土壤通报,43(5):1126-1130.
    潘遵谱,许学前,吴敬民.1983.灭茬免耕发在太湖地区多熟制水稻土上的应用.江苏农业科学,10:37-40.
    齐雁冰,黄标,顾志权,赵永存,孙维侠,王志刚,杨玉峰.2008.长江三角洲典型区农田土壤碳氮比值的演变趋势及其环境意义.矿物岩石地球化学通报,27(1):50-56.
    宋银丽.1997.黄土区地面覆盖的主要类型及其保水效应.水土保持通报,17(1):133-134.
    孙建,刘苗,李立军,刘景辉,KENNETH Dean Sayre.2010.不同耕作方式对内蒙古旱作农田土壤侵蚀的影响.生态学杂志,29(3):485-490.
    王敬亚,齐华,梁熠,王晓波,吴亚男,白向历,刘明,孟显华,许晶.2009.种植方式对春玉米光合特性、干物质积累及产量的影响.玉米科学,17(5):113-115.
    王燕,王小彬,刘爽,梁二,蔡典雄.2008.保护性耕作及其对土壤有机碳的影响.中国生态农业学报,16(3):766-771.
    肖继兵.2006.辽西地区秸秆覆盖试验研究.杂粮作物,26(2):139-141.
    许迪.1999.耕作方式对土壤水动态变化及夏玉米产量的影响.农业工程学报,15(3):101-106.
    闫颖,陈盈,何红波,解宏图,白震,李晓波,田秋香,张旭东.2012.化肥对黑土不同粒级碳水化合物的影响.土壤通报,43(1):37-41.
    杨学明,张晓平,方华军,梁爱珍,齐晓宁,王洋.2004.北美保护性耕作及对中国的意义.应用生态学报,15(2):335-340.
    于磊,张柏.2004.中国黑土退化现状与防治对策.干旱区资源与环境,18(1):99-103.
    员学锋,吴普特,汪有科,徐福利.2006.免耕条件下秸秆覆盖保墒灌溉的土壤水、热及作物效应研究.农业工程学报,22(7):22-25.
    袁家富.1996.麦田秸秆覆盖效应及增产作用.生态农业研究,4(3):61-65.
    张国盛,黄高宝,YIN Chan.2005.农田土壤有机碳固定潜力研究进展.生态学报,2:351-357.
    张少良,张兴义,于同艳,刘晓冰,隋跃宇.2009.黑土区耕作措施对春季耕层温度的影 响.农业现代化研究,30(1):113-117.
    张少良,张兴义,于同艳,隋跃宇,刘晓冰.2010.秸秆覆盖对农田黑土春季地温的影响.干旱区资源与环境,24(6):169-173.
    张晓平,方华军,杨学明,梁爱珍,吴尚华.2005.免耕对黑土春夏季节温度和水分的影响.土壤通报,36(3):313-316.
    张志国,徐琪.1998.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响.土壤学报,35(3):384-391.
    周虎,李保国,吕贻忠,郑金玉,刘武仁.2010.不同耕作措施下土壤孔隙的多重分形特征.土壤学报,47(6):1094-1099.
    周莉,李保国,周广胜.2005.土壤有机碳的主导影响因子及其研究进展.地球科学进展,20(1):99-105.
    周凌云.1996.农田秸秆覆盖节水效应研究.生态农业研究,4(3):49-52.
    朱文珊.1998.秸秆覆盖免耕法的节水培肥增产效益及应用前景.干旱地区农业研究,4:12-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700