兔骨质疏松模型的快速建立和硫酸钙复合bBMP在椎体强化中的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     骨质疏松症最常见的并发症是椎体压缩骨折,手术治疗包括脊柱内固定和椎体成形术或球囊扩张椎体成形术。椎体成形术是近年来发展起来一种新的脊柱微创手术,该技术已经在临床上取得了很好的效果,在椎体的骨质疏松性骨折及多种良、恶性椎体病变中得到广泛的应用。可以快速缓解疼痛,纠正脊柱畸形,由于椎体成形术创伤小、效果好且疗效快,已成为脊柱微创介入治疗的又一重要方法。临床上现在最常用的椎体成形术的材料为聚甲基丙烯酸甲酯(PMMA)。但PMMA充填材料具有许多缺点:由于PMMA自身具有过高的硬度,导致术后产生的应力集中增加了邻近椎体发生压缩骨折的风险。PMMA的体外聚合温度可达到100多度,术中的发热反应会引起相应周围组织及神经的损伤和坏死;PMMA不能降解,不能融入周围的骨组织并最终被自身骨组织爬行替代,不能促进周围骨的生成和重建,无直接的骨沉积作用;另外PMMA单体还有潜在的全身系统过敏及毒性反应。而且临床越来越要求成形材料能够携带有特殊治疗作用的药物,而PMMA并不能满足这些临床治疗的需要。如何探索一种具有良好生物相容性的成形材料,其在作为固定材料的同时又能成为携带具有特殊治疗作用的药物的载体,是本研究的目的。
     二、研究目的
     1.探索采用去势法+甲强龙诱导法快速建立兔子骨质疏松模型的方法:通过对去势法+甲强龙诱导后兔骨质疏松模型的皮质骨和松质骨骨结构特性和生物力学特性的改变进行评价,从而探索出一种快速建立兔骨质疏松模型的方法,为骨科领域的相关研究提供新模型。
     2.在已经建立的骨质疏松模型体内,采用“二维平面-三维立体-生物力学”的全方位的评价手段,通过对模型的骨结构参数、椎体骨密度以及生物力学参数的检测,评价硫酸钙以及硫酸钙复合BMP对骨质疏松骨结构的改善和强度提高的作用。
     三研究内容和方法
     第一部分建立兔的骨质疏松模型并进行分析和评价
     将20只新西兰大白兔采用随机对照的方法分为:去势(OVX)A组(n=4)、B组(n=8)和假手术组(Sham,n=8)。A组为单纯OVX组,B组为OVX+甲强龙肌注(4周)组。所有动物术前和术后2月均采用双能X线吸收骨密度仪测定腰椎骨密度。术后2个月:①采用DEXA对所有动物的股骨干皮质骨和股骨髁部松质骨的骨密度进行测量。②采用病理组织学切片的方法对骨的二维结构变化进行观察和评价。③采用micro-CT对骨的三维结构改变进行分析和评价。④采用生物力学强度试验,对试验动物的皮质骨和松质骨骨强度变化进行分析评估。
     第二部分硫酸钙(calcium sulfate CSC)复合bBMP材料在椎体强化中的实验研究
     采用随机对照研究方案,将60只新西兰大白兔随机分为C1组、C2组、C3组、C4组(n=12)和假手术组(Sham,n=12)。C组按照实验一方法建立骨质疏松模型,实验分为假手术对照组(Sham),骨质疏松对照组(C1),注射PMMA组(C2),注射CSC组(C3),注射CSC/bBMP组(C4),通过模拟椎体成形术,分别在每只兔子L2、L4、L6椎体注射材料,每组均于术后24小时,6周、12周各处死4只。①采用病理组织学切片的方法观察和评价松质骨骨小梁的二维结构改变。②采用micro-CT进行分析和评价松质骨骨小梁的三维结构改变。③采用生物力学强度试验分析和评估实验动物松质骨骨小梁的骨强度变化。通过“骨二维平面结构-三维立体结构-生物力学强度”的综合手段,评价硫酸钙和硫酸钙复合bBMP材料对提高骨质疏松椎体强度的作用。
     四研究结果
     第一部分:Sham、OVX-A及OVX-B各组的腰椎BMD测量值在术前分别为:(266.7±38.58)mg/cm~2、(270.1±25.38)mg/cm~2和(272.8±27.08)mg/cm~2手术2个月后,Sham组、OVX-A组和OVX-B组的BMD分别为(281.8±39.22)mg/cm~2、(248.9±26.14)mg/cm~2和(199.9±30.76)mg/cm~2。OVX-B组的BMD较术前平均下降为26.72%。组织学切片观察发现,去势2个月后,OVX-B组椎体及股骨松质骨骨小梁明显稀疏、变细,局部存在骨小梁骨折及骨缺损;而Sham和OVX-A对照组松质骨具有良好的类圆形或椭圆形的完整骨小梁拱形结构。显微CT结果表明:OVX-B组的骨小梁结构改变与Sham组及OVX-A组相比较有显著差异,表现为骨小梁连续性显著下降,骨小梁柱明显变细,而OVX-A组与Sham组相比骨小梁三维结构无显著变化。生物力学实验结果显示,OVX-B组椎体的抗压缩强度(6.8±2.02MPa)较Sham组(14.5±3.74MPa)和OVX-A组(12.8±3.12MPa)均有显著性降低,而OVX-A组与Sham组无显著性差异。
     第二部分:在组织病理学切片二维平面观察中,术后6周和12周,CSC组和CSC/bBMP组骨小梁结构形态的改善明显优于C1对照组。骨小梁的微骨折及缺损处显示新生的骨修复和连接,骨小梁柱体变粗,形态比较规则,连续性显著好于对照组。12周时骨小梁结构已经接近Sham对照组。Micro-CT三维重建显示,6周时, CSC组和CSC/bBMP组骨小梁组的骨小梁三维结构参数明显优于C1对照组(P<0.05),骨密度值也明显优于C1对照组(P<0.05);12周时,已与Sham对照组无显著性差别。生物力学实验结果表明,在6周时,CSC组椎体的最大抗压缩强度有增加,但与C1对照组相比无显著性差异,而CSC/bBMP组椎体抗压缩强度在6周时显著高于C1对照组;在12周时,CSC组和CSC/bBMP组椎体最大抗压缩强度均较C1对照组有显著性差异(P<0.05),与Sham组及PMMA组相比,未见显著性差异(P>0.05)。
     五结论
     1.通过去势+甲强龙肌注的方法,可以在2个月内快速建立兔的骨质疏松模型。
     2.兔骨质疏松模型建成后,二维及三维图像显示椎体松质骨内骨小梁稀疏、变细、断裂,可见明确的骨小梁微骨折及骨缺损,骨的三维结构受到严重损坏,从而伴随相应力学强度的降低。是一种理想实用的骨质疏松动物模型。
     3.CSC以及CSC为载体复合bBMP的椎体内注射材料,均具有强大的成骨诱导能力,通过快速地改善骨质疏松椎体内骨小梁的三维结构来提高椎体的结构强度,是具有良好应用价值的骨质疏松椎体内充填材料。
Background
     The compression fracture in spine is the most complication of osteoporosis.The primary measures are the medical therapies and braces. The surgicalmeasures include internal fixation, vertebroplasty and kyphoplasty.Vertebroplasty is a minimally invasive surgery in spine developed in recent years.It has got good clinical effects in the therapy of benign or malignant lesions andosteoporosis compression fractures in spine. It has become prevalent inminimally invasive surgery of spine for rapidly relieving the back-pain andcorrecting the deformity. Now, the most commonly used cement ispolymethylmethacrylate (PMMA) in vertebroplasty. Unfortunately, PMMA hasseveral potential disadvantages. PMMA is not bioabsorbable and remainspermanently in the body. Its unreacted monomer is toxic, and its highpolymerization temperature has resulted in temperature readings as much as1220C. The high compressive strength and stiffness of PMMA causes a biomechanical mismatch between treated and untreated vertebral levels whichmay increase the risk of adjacent-level fractures. It has been required that theinjecting materials can carry medicine for special treatments in clinic. So PMMAcan not satisfy these demands. How to explore a biological injecting material,which can not only support the vertebrae but also carry medicine for specialtreatments, is the object of this experiment.
     Objective
     1. In order to study a rapid osteoporosis animal model which can be used inthe orthopaedic research, the rabbit model is established by ovariectomy (OVX)and injecting solu-medrol. After OVX, it is evaluated by surveying themicro-architectural and biomechanical changes of cancellous and cortical bone.
     2. To evaluate the effects of calcium sulfate cement (CSC) and CSCcombined with bovine bone morphogenetic protein (bBMP) on osteoporoticrabbit’s vertebral micro-architecture and biomechanical properties in vivo.
     Material and methods
     Part1Establishment and evaluation of an osteoporosis rabbit model.
     20adult rabbits were divided into three groups randomly, includingsham-operated group (n=8), OVX-A group (n=4) and OVX-B (n=8) group.OVX-B group was started to inject solu-medrol for4consecutive weeks after2weeks late of OVX. Sham group and OVX-A group were control groups. Beforeand2months after the operation, the measure of dual energy x-rayabsorptiometry (DEXA) was done on all the rabbits’ lumbar vertebrae twice.2months after the operation, the rabbits were sacrificed and the femoral condyle andshaft and the spines were harvested. The cortical bone (femoral shaft) andtrabecular bone(spine and femoral condyle) were measured by DEXA andreconstructed by micro-CT. The strength of vertebral bodies was determined by compressive mechanical measurment of vertebra cancellous bone. Themechanical properties of cortical bone (femur shaft) were evaluated bythree-point-bending tests.
     Part2the study on the vertebrae augmentaion in osteoporotic rabbitvertebrae with calcium sulfate (CSC)/bBMP composite.
     60adult rabbits were were divided into five groups randomly, includingsham-operated group (n=12), C1group (n=12), C2group (n=12), C3group (n=12)and C4group (n=12). C groups were estabilished osteoporotic rabbit modelsaccording to the methods of part1experiments. Sham group and C1group werecontrol groups.0.1-0.2ml PMMA (Group C2), CSC (Group C3) and CSC/bBMP(Group C4) were injected into L2, L4and L6vertebra of every rabbits.4rabbitswere killed respectively from every group in24hours,6weeks and12weeksafter PVP. The changes of trabecular architecture were reviewedhistomorphologically. Micro-architecture changes of vertebrae were measured bymicro-CT after the rabbits were killed. The vetebral specimens’ strength wasevaluated by axial compression tests.
     Result
     Part1: The lumbar spine BMD of pre-OVX in Sham group, OVX-A andOVX-B group were (266.7±38.58)mg/cm~2、(270.1±25.38)mg/cm~2and(272.8±27.08)mg/cm~2respectively.2months later, the BMD of post-OVX inSham group, OVX-A and OVX-B group were (281.8±39.22) mg/cm~2、(248.9±26.14)mg/cm~2and(199.9±30.76)mg/cm~2respectively. BMD in OVX-Bdecreased by26.72%compared with the pre-OVX BMD. Compared with that insham group and OVX-A group, trabecular bone reduced significantly in OVX-Bgroup, histomorphologically. The microfracture and microdefect of trabecularbone could be seen in OVX-B. The parameters of trabecular bone had significantly difference compared with control groups (p<0.05). In mechanicaltesting, the maximum compression strength of vertebrae decreased significantlyin OVX-B compared with that in the other two groups. In3-point bending test ofcortical bone, no difference was observed between three groups.
     Part2: Histomorphologically, compared with that in C1group, theconnectivity in group C3and C4was better respectively at6th week and12thweek. The shape of trabecular bone was also better.The architecture of trabecularbone was same as that in sham group. Microfractures and microdefects were alsoless than that in the C1group. After the injection of CSC or CSC/bBMP, theMicro-CT reconstruction analysis showed that the BMD in group C3and C4were significantly higher than that in group C1respectively at6th week and12thweek(P<0.05). In group C3and C4, the trabecular connectivity, thickness andbone fraction were significantly higher than that in C1group and were as good asthe sham group in12th week. The results of the vertebrae maximum compressionstrength in C4was higher significantly than that in C1group in6th week(P<0.05). It was also higher significantly in both C3and C4than that in C1andhad no significantly difference compared with that in sham group and C2groupin12th week.
     Conclusion
     1. Osteoporosis rabbit model can be rapidly establisher by ovariectomy andinjecting solu-medrol in2months.
     2. In the induced rabbit model, the trabecular bone becomes sparsely andthinning. Microfractures and microdefects occur in trabecular and lead to thedeterioration of bone mechanical properties. It is an ideal osteoporosis model forexperiments.
     3. CSC and CSC/bBMP injecting in osteoporosis vertebrae can reinforce the
     bone quality significantly by repairing the microfractures and microdefects oftrabecular bone. CSC and CSC/bBMP can be applied in the treatment of vertebralosteoporosis.
引文
1.陈德玉,王良意,骨质疏松症。见:胥少汀主编。实用骨科学,第三版,北京:人民军医出版社,2005,1198。
    2. Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O.Boechat MI. Effect of sex steroids on peak bone density of growing rabbits.Am J Physiol,1988,255:E416-E421.
    3.朱清华,祝庆蕃,主编。实验动物学,广州:广东高等教育出版社,1991,185。
    4. Cotten A, Boutry N, Cortet B, Assaker R, Demondion X, Leblond D, ChastanetP, Duquesnoy B, Deramond H. Percutaneous vertebroplasty: state of the art.Radiographics,1998,18:311–320.
    5. Heini PF, Walchli B, Berlemann U. Percutaneous transpedicularvertebroplasty with PMMA: operative technique and early results. Aprospective study for the treatment of osteoporotic compression fractures.European Spine Journal,2000,9:445–450.
    6. Mathis JM, Barr JD, Barr MS, Jensen ME, Deramond H. Percutaneousvertebroplasty: a developing standard of care for vertebral compressionfractures. American Journal of Neuroradiology,2001,22:373–381.
    7. Garfin SR, Yuan HA, ReiteyM A. New technique in spine: kyphoplasty andvertebroplasty for the treatment of painful osteoporostic compression fracture.Spine,2001,26(14):1511-1515.
    8. Trout AT, Kallues DF, Kaufmann TJ. New fractures after verteroplasty. AmJ Neuroradiol,2006,27(1):217-223.
    9. U Berlemann, SJ Ferguson, L-P Nol. Adjacent vertebral failure aftervertebroplasty: A biomechanical investigation.Journal of Bone and JointSurgery,2002,84(B):748-752.
    10. Teng MH, Cheng H, Hottch DM. Intraspinal leakage of bone cement aftervertebroplasty: a report of cases. AJNR Am J Neuroradiol,2006,27(1):224-229.
    11. Ratliff AH, Clement JA. Pulmonary embollsm and bone cement. Br Med J,1971,2(760):532-540.
    12. Deramond H, Depnester C, Gallbert P, Le Gars D. Percutaneousvertebroplasty with polmpethylmethacrylate: Techniques, Indications andresults. Radilohacal Clinics of NA,1998,36,533-546.
    13. Monticelli F, Meyer HJ, Tutsch-Baner E. Fatal pulmonary cementembolism following percutaneous vertebroplasty (PVP). Forensic Sci Int,2005,149(1):35-38.
    14.陈珑,倪才方,丁乙。椎体成形术的成形材料应用与发展.介入放射学杂志,2004,13(5):472-475.
    15.朱美忠。椎体成形术生物材料的应用与进展.中国微创外科杂志,2006,6(9):714-716
    16. Uebelhart D, Bernard J, Hartmann DJ, Moro L, Roth M, Uebelhart B, RehailiaM, Mauco G, Schmitt DA, Alexandre C, Vico L. Modifications of bone andconnective tissue after orthostatic bed rest. Osteoporos Int,2000,11(1):59-67.
    17. Nishimura Y, Fukuoka H, Kiriyama M, Suzuki Y, Oyama K, Ikawa S,Higurashi M, Gunji A. Bone turnover and calcium metabolism during20daysbed rest in young healthy males and females. Acta Physiol Scand Suppl,1994,616:27-35.
    18. Wet IS, Jansen C. The use of plaster of Paris to fill large defects in bone. Anexperimental study to determine the ultimate fate of a measured amount ofplaster of Paris inserted into the bone of a living animal.S Afr J Surg1973,11:1–8.
    19. Hadjipavlou AG, Simmons JW, Yang J. Plaster of Paris as anosteoconductive material for interbody vertebral fusion in mature sheep.Spine2000,25:10–5. discussion16.
    20. Turner TM, Urban RM, Gitelis S, Kuo KN, Andersson GB. Radiographicand histologic assessment of calcium sulfate in experimental animal modelsand clinical use as a resorbable bone-graft substitute, a bone-graft expander,and a method for local antibiotic delivery. One institution’s experience. JBone Joint Surg Am2001,83(Suppl2):8–18.
    21. Mark L. Wang, MD, Ph Da, Jennifer Massie. A rat osteoporotic spine modelfor the evaluation of bioresorbable bone cements. The Spine Journal,2007,7:466–474
    22. Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: fillermaterials. The Spine Journal,2005,5:305S–316S
    23. Wozney JM. Overview of bone morphogenetic proteins.Spine,2002,27(16Suppl1):S2-8.
    24. Damien CJ, Grob D, Boden SD, Benedict JJ. Purified bovine BMP extractand collagen for spine arthrodesis: preclinical safety and efficacy.Spine,2002,27(suppl):50-58.
    25. Boden SD, Grob D, Damien CJ. Ne-osteo bone growth factor forposterolateral lumbar spine fusion: results from a nonhuman primate studyand a prospective human clinical pilot study.Spine,2004,29:504-514.
    26. TumerTM,Urban RM,Hall DJ, Chye PC, Segreti J, Gitelis S. Local andsystemic levels of tobramycin delivered from calcium sulfate bone graftsubstitute Pellets. Clin OrthoPRelatRes.2005:(437):97一104.
    27. Wilkins R, Kelly C. Use of biodegradable antibiotic beads in orthopaedicinfections. Joumal of Bone&Joint Surgery一British Volume.2005:87B(5111):304.
    28. KimS G,Chung CH,Kim YK. Use of Particulate dentin一Plaster of Pariscombination with/Without Platelet一rich Plasma in the treatment of bonedefects around Implants. Int J Oral Maxillofac ImPlants.2002:17(1):86一94.
    29. Intini G,Andreana S,Margarone JE3rd, Bush PJ, Dziak R.Engineering abioactive matrix by modifications of calcium sulfate. Tissue Eng.2002,8(6):997一1008.
    30. Grisso JA, Capezuti E, Schwartz A. Falls and risk factors for fractures. In:Osteoporosis Marcus R, Feldman D, Kelsey J (eds). Academic Press, SanDiego. pp.1997,599-611.
    31. A. Simon Turner. Animal models of osteoporosis-necessity and limitations.European cells and materials2001,1:66-81
    32. Peng Z-Q, V n nen HK, Zhang HX, Tuukkanen J. Long-term effects ofovariectomy on the mechanical properties and chemical composition of ratbone. Bone,1997,20:207-212.
    33.陈守平,周正炎,陆卫青。去势法兔骨质疏松症模型的建立.口腔颌面外科杂志,2001,11(3):221-224.
    34. Wronski TJ, Yen C-F. The ovariectomized rat as an animal model forpostmenopausal bone loss. Cells and Materials1991, Suppl1:69-74.
    35.李良,吴文起,陈槐卿。去势雌山羊骨组织形态学变化的动态观察。华西医大学报,1997,28(4):398-400。
    36.汪青,孙兰,龚海洋。骨质疏松动物模型建立与评价。中国药理学通报,1999,15(5):391-395.
    37. Takeda, T., Matsushita, T., Kurozumi, M., Takemura, K., Higuchi, K.,Hosokawa, M.,1997. Pathobiology of the senescence-accelerated mouse(SAM). Exp. Gerontol.32,117–127.
    38. Jilka R L, Weinstein R S, Takahashi K. Ling age of decreased bone masswith impaired osteoblastogenesis in a murine model of acceleratedsenescence. J Clin Invest,1996,97:1732-1470.
    39. Silva, M.J., Brodt, M.D., Ettner, S.L.,2002. Longbones from the senescenceaccelerated mouse SAMP6have increased size but reduced whole-bonestrength and resistance to fracture. J. Bone Miner. Res.17,1597–1603.
    40.1999World Health Organizationg-International Society of HypertensionGuidelines for the Management of Hypertension. Guidelines Subcommittee.Hypertens,1999,17(2):151-183
    41.段学忠,孙西庆,蔡新吉。益脉降压流浸膏对老年原发性高血压患者肾上腺髓质素、内皮素及血管紧张素Ⅱ的影响。中国临床康复,2004,8(30):6808-6810。
    42.田牛,李向红,刘育英。临床微循环检查手册。北京:中国医药科技出版社,1992:35-37
    43. Vanderschueren D, Van Herck E, Suiker AM, Visser WJ, Schot LP, BouillonR. Bone and mineral metabolism in aged male rats: short and long termeffects of androgen deficiency. Endocrinology,1992,130:2906-2916.
    44. Yao W, Jee WS, Chen J. Erect bipedal stance exercise partially preventsorchidectomy–induced bone loss in the lumbar vertebrae of rats.Bone,2000,27:6672675.
    45. Yao W, Jee WS, Chen J, Liu H, Tam CS, Cui L, Zhou H, Setterberg RB,Frost HM.Making rats rise to erect bipedal stance for feeding partiallyprevented orchidectomy-induced bone loss and added bone to intact rats. JBone Miner Res,2000,15:1158-1168.
    46. Vanderschueren D, Vandenput L, Boonen S. An aged rat model of partialandrogen deficiency: prevention of both losses of bone and lean body massby low–dose androgen replacement.Endocrinology,2000,141:1642-1647.
    47. Erben RG, Eberle J, Stahr K, Goldberg M. Androgen deficiency induces highturnover osteopenia in aged male rats: a sequential histomorphometric study.J Bone Miner Res,2000,15:1085-1098.
    48.裴育。睾丸切除大鼠骨质疏松动物模型的研究及应用.国外医学-内分泌学分册,2002,22(4):224-226.
    49. Botolin S, Faugere MC, Malluche H. Increased bone adiposity andperoxisomal proliferators-activated receptor-gamma2expression in type Idiabetic mice. Endocrinology,2005,146(8):3622-3631.
    50.张立,赵丽娟,葛焕琦。糖尿病并发去卵巢骨质疏松症大鼠模型的建立。吉林大学学报(医学版),2003,29(4):405-407。
    51.乔伟伟,许兰文。营养性骨质疏松动物模型的实验研究。营养学报,1999,21(2):240-241。
    52. Liao JM, Li QN, Wu T, Hu B, Huang LF, Li ZH, Zhao WD, Zhang MC,Zhong SZ. Effects of prednisone on bone mineral density and biomechanicalcharacteristics of the femora and lumbar vertebras in rats. J First Milit MedUniv,2003,23(2):97-100(in Chinese).
    53. Schorlemmer S, Gohl C, Iwabu S. Glucocorticoid treatment ofovariectomized sheep affects mineral density, structure, and mechanicalproperties of cancellous bone. J Bone Miner Res,2003,18(11):2010-2015.
    54. Goldhahn J, Jenet A, Schneider E, Lill CA. Slow rebound of cancellous boneafter mainly steroid-induced osteoporosis in variectomized sheep. J OrthopTraum,2005,19(1):23-28.
    55. Liu HD, Li XH, Tong XX. Comparison of osteoporosis model of ratsinduced by dexamethasone and retinoic acid. Chin J Pathophysiol,2004,20(4):697-699(in Chinese).
    56. Brighton CT. Treatment of sciatic denervation disuse osteoporosis in the ratwith capacitively coupled electrical stimulation. J Bone Joint Surg (AM),1985,67:1022.
    57. Lewis DB, Liggitt HD, Effmann EL. Osteoporosis induced in mice by overopduction of inter leukin4.Proc Natl Acad Sci USA,1993,90(24):11618-11622.
    58. Kalu D N, Hardin R H and Cockrham R, Yu BP. Aging and dietingmodulation of rat skeleton and parathroid hormone. Endocrinology,1984,115:1239—1247
    59. Kalu D N, Liu C C, Hardin R. The aged rat model of ovarian hormonedeficiency bone loss. Endocrinology,1989,124:7—16.
    60.陈槐卿,李良,郑虎。绝经后骨质疏松的动物模型。中国骨质疏松杂志,1998,4(2):82—85。
    61.吴波。骨质疏松动物模型研究的现状与展望。药学学报,1996,31(4):316—320。
    62.福田俊,饭田治三。加龄に伴ぅ雌雄テツトの骨代谢の变化と卵巢,精巢摘除年龄によゐ影响の差。日骨形态志,1991,1:89—94。
    63. Chen H, Shoumura S, Emura S. Ultrastructural changes in bones of thesenescence accelerated mouse (SAMP6): a murine model for senileosteoporosis. Histol Histopathol,2004,19(6):677—685.
    64. Kalu DN, Chen C. Ovariectomized murine model of postmenopausalcalcium malabsorption. J Bone Miner Res,1999,14(7):593—601.
    65. Shen V, Dempster DW, Birchman R, Mellish RWE, Church E, Kohn D,Lindsay R. Lack of changes in histomorphometric, bone mass, andbiochemical parameters in ovariohysterectomized dogs. Bone1992,13:311-316.
    66. Russell T. Animal models for osteoporosis. Reviews in Endocrine MetabolicDisorders,2001,2:117-127.
    67. Southard TE, Southard KA, Krizam KE, Hillis SL, Haller JW, Keller J,Vannier MW. Mandibular bone density and fractal dimension in rabbits withinduced osteoporosis. Oral Surg Med,2000,89(2):244-249.
    68.杨霞,蔡桂英,魏玲,候静,李炯,郑虎,翁玲玲。去势兔骨质疏松模型建立的初探。生物医学工程学杂志,1997,14(4):353-358.
    69.方忠,杨琴,李峰,段军,敦先礼。去势法兔骨质疏松模型建立的探讨.中国骨质疏松杂志,2005,11:202-205.
    70. Mori H, Manabe M, Kurachi Y. Osseo integration of dental implants inrabbit bone with low mineral density. J Oral Maxillofac Surg,1997,55(4):357-362.
    71. Southard TE, Southard KA, Krizan KE, Hillis SL, Haller JW, Keller J,Vannier MW. Mandibular bone density and fractal dimension in rabbits withinduced osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2000,89(2):244-249.
    72. Akkas N, Yeni YN, Turan B. Effect of medication on biomechanicalproperties of rabbit ones: Heparin induced osteoporisis. Clin-Rheumatol,1997,16(6):585-595.
    73.杨豪,程少丹,郑福增。颈椎动物模型发病过程中颈椎骨密度的动态变化。中国临床康复,2005,9(10):70—71。
    74. Turner AS, Par RD, Aberman HM. Effects of age and ovariectomy ontrabecular bone of the proximal femur and iliac crest in sheep.Orthopedicresearch society,1993,17(3-4):805.
    75. Fini M, Pierini G, Giavaresi G. The ovariectomised sheep as a model fortesting biomaterials and prosthetic devices in osteopenic bone: a preliminarystudy on iliac crest biopsies. Int J Artif Organs,2000,23(3):275—281.
    76.何成明,陈槐卿,李良,陈孟诗,陈云爽,吴文超。雌性山羊去卵巢后不同时间骨生物力学参数变化。生物医学工程杂志,1999,16:295—299。
    77. Kraeling RR, Barb CR, Rampacek GB. Luteinizing hormone response tocontrolled-release deslorelin in estradiol benzoate primed ovariectomizedgilts. Theriogenology,2000,53(9):1681-1689
    78. Reynolds LP, Kirsch JD, Kraft KC, Redmer DA. Time-course of the uterineresponse to estradiol-17beta in ovariectomized ewes: expression ofangiogenic factors. Biol Reprod.1998,59(3):613-620.
    79. Colman RJ, Lane MA, Binkley N. Skeletal effects of aging in male rhesusmonkeys. Bone,1999,24:17-23.
    80. Champ JE, Binkley N, Havighurst T, Colman RJ, Kemnitz JW, Roecker EB.The effect of advancing age on bone mineral content of female rhesusmonkeys.Bone,1996,19:485-492.
    81. Jerome CP, Turner CH, Lees CJ. Decreased bone mass and strength inovariectomized cynomolgus monkeys (Macacafascicularis).CalcifTissueInt,1997,60:265-270.
    82. Stroup GB, Hoffman SJ, Vasko-Moser JA. Changes in bone turn overfollowing gonadotropin-releasinghormone (GnRH) agonist administrationand estrogen treatment in cynomolgus monkeys: a short-term model forevaluation of antiresorp-tivetherapy. Bone,2001,28:532-537.
    83.黄公怡。骨质疏松症骨的组织结构和力学特性。中华骨科杂志,2004,24(11):687-690。
    84. Nuzzo S,Lafage MH,Martin E.Synchrotron radiation miemtomogaphy allowsthe analysis of three-dimensional mieroarchitecture and degree ofmineralization of human iliac crest biopsy specimens effects of etidronatetreatment.J Bone Miner Res,2002,17:1372-1382.
    85. Lang TF, Keya KJH, Heitz MW. Volumetric quantitative computedtomography of the proximal femur: precison and relation to bone strength.Bone,1997,21:101-108.
    86. Mailer R, Van Campenhout H, Van Damme B. Morphometric analysis ofhuman bone biopsies:a quantitative structural comparison of histologicalsections andmicro-computed tomography.Bone,1998,23:59-66.
    87. Searda A, Rho YH, Choi SJ.A new method for the model-independentassessment of thickness in three-dimensional images. J Microsc,1997,185:67-75.
    88. Cavolina JM, Evans GL, Harris SA, Zhang M, Westerlind KC, Turner RT.Effects of orbital spaceflight on bone histomorphometry and messengerribonucleic acid levels for bone matrix proteins and skeletal signalingpeptides in ovariectomized growing rats. Endocrinology,1997,138:1567-1576.
    89.张红,罗湘杭,谢辉。基质金属蛋白酶-1,-2与女性年龄、骨转换指标及骨密度的关系。中华内科杂志,2006,45:306-309。
    90. Lofman O, Magnusson P, Toss G. Common biochemical markers of boneturnover predicts future bone loss: A5-year follow-up study. ClinicachimicaActa,2005,356(1-2):67-75.
    91. Hernandez MV, Guanabens N, Alvarez L, Monegal A, Peris P, Riba J,Ercilla G, Martínez de Osaba MJ, Mu oz-Gómez J. Immunocytochemicalevidence on the effects of glucocorticoids on type I collagen synthesis inhuman osteoblastic cells. Calcif Tissue Int,2004,74:284-293.
    92. Gamero P, Somay–Rendu E, Duboeuf F.Markers of bone turnover predictpostmenopausal fore arm bone loss over4years. J Bone Miner Res,1999,14:1614-1621.
    93. Reginster JY, Sarkar S, zegels B, Henrotin Y, Bruyere O, Agnusdei D,Collette J. Reduction in PINP, a marker of bone metabolism, with raloxifenetreatment and its relationship with vertebral fracture risk.Bone,2004,34:344-351.
    94. Russell RG, Espina B, Hulley P. Bone biology and the pathogenesis ofosteoporosis. Curr–Opin-Rheumatol,2006,18(Suppl1):3-10.
    95. Simonet WS, Lacey DL and Dunstan CR. Ostoprotegerin: an ovel secretedprotein involved in the regulation of bone density. Cell,1997,89:309-319.
    96.薛延,张海文,杨立红。血清骨特异性酸性磷酸酶的临床意义。中华内
    分泌代谢杂志,2003,19:466-467。
    97. Onodera S, Sasaki S, Ohshima S, Amizuka N, Li M, Udagawa N, Irie K,
    Nishihira J.Transgenic mice overexpressing macrophage migration inhibitory
    factor (MIF) exhibit high-turnover osteoporosis. J Bone Miner Res,2006,21:
    876-885.
    98. Garcia-Perez MA, Moreno-Mercer J, Tarin JJ. Similar efficacy of low and
    standard doses of transdermal estradiol in zcontrolling bone turnover in
    postmenopausal women. Gynecol Endocrinol,2006,22(4):179-184.
    99. Iki M, Akiba T, Matsumoto T. Reference data base of biochemical markers
    of bone turnover for the Japanese female population. Osteoporos Int,2004,
    15(12):981-991.
    100.李良,陈槐卿,陈孟诗,谭建三,吴文超,翁玲玲,郑虎。建立骨质疏松山羊
    模型初探.中国骨质疏松杂志,1998,4(2):12。
    101.李良,陈槐卿,陈孟诗,谭建三,吴文超,翁玲玲,郑虎。去卵巢山羊长骨生
    物力学性能的变化.生物医学工程学杂志,1998,15(2):101。
    102.Maurits H J, Paul N, Leo E. Prospective clinical follow-up after
    percutaneousvertebroplasty in patients with painful osteoporotic vertebral
    comp ression fractures. J Vasc Interv Radiol,2006,17(8):1313–1320
    103.Jasper LE, Deramond H, Mathis JM, et al. Material properties of various
    cements for use with vertebroplasty. J Mater Sci Mater Med,2002,13:1–5.
    104.Tohmeh AG, M athis JM, Fenton DC. Biomechanical efficacy of
    unipedicular versus bipedicular vertebroplasty for the management of
    osteoporotic compression fractures. Spine, l999,24(17):l772-l776.
    105.Berlkoff SM, Maroney M, Fenton DC, Mathis JM. An in vitro biomechanical
    evaluation of bone cements used in percutaneous vertebroplasty. Bone,1999,
    25(suppl2):23-26.
    106.Turner TM, Urban RM, Lim TH, et al.Vertebroplasty using injectable
    calcium phosphate cement compared to polymethylmethacrylate in a unique
    canine vertebral body large defect model. Trans49th Annual Meeting of
    Orthopaedic Research Society;2003; New Orleans. Paper#267.
    107.Takikawa S, Bauer TW, Turner AS, et al. Comparison of injectable calcium
    phosphate cement and polymethylmethacrylate for use in vertebroplasty:
    in-vivo evaluation using an osteopenic sheep model. Presented at the28th
    Annual Meeting of the Society of Biomaterials. Tampa, FL, April24–27,
    2002,231(abstr.).
    108.Young SW. Holde M. Gunasekaran S. The correlation of radiographic, MRI
    and histologcal evaluations over two years of a carbonated apatite cement in
    a rabbit model. In: Andersson GBJ Transaction of the44th Annual Meetingof the Orthopedic Research Society, Chicago: Dickerson,2000.
    109.Cunin G, Boissonnet H, Petite H, Blanchat C, Guillemin G. Experimentalvertebrplasty using osteoconductive granular material. Spine,2000,25(9):1070-1076.
    110.Belkoff SM, Mathis JM, Erbe EM, Fenton DC. Biomechanical evaluation ofa new bone cement for use in vertebroplasty. Spine.2000,25(9):1061-4.
    111.Senaha Y, Nakamura T, Tamura J. Intercalary replacement of canine femorausing a new bioactive bone cement. J Bone Joint Surg Br,1996,78(1):26-31.
    112.郭家伟,郑召民。椎体成形术填充物的研究进展。中国脊柱脊髓杂志,2004,14:126-128.
    113.Kim SB, Kim YJ, Yoon TL, The characteristics of a hydroxyapatite-chitosanPMMA bone cement. Biomaterials.2004,25(26):5715-5723.
    114.Hauptli O. Plaster filling in replacing missing bone tissue. Schweiz MedWochenschr,1952,82(7):161-168.
    115.Cho BC, Kim TG, Yang JD, Effect of calcium sulfate-chitosan composite:pellet on bone formation in bone defect. J Craniofac Surg.2005,16(2):213-24, discussion225-227.
    116.Peltier LF. The use of plaster of Paris to fill defects in bone. Clin Orthop.1961,21:1-31.
    117.Simic P, Buljan-Culej J, Orlic I, Grgurevic L, Draca N, Spaventi R,Vukicevic S. Systemically administered bone morphogenetic protein-6restores bone in aged OVX rats by increasing bone formation andsuppressing bone resorption. Biol Chem,2006,281(35):25509-25521.
    118.Phillips FM, Turner AS, Seim HB. In vivo BMP-7(OP-1) enhancement ofosteoporotic vertebral bodies in an ovine model. The Spine Journal,2006,6:500-506.
    119.Retorna z, Paris F. Association between androgen receptor genepolymorphism and bone density in older women using hormone replacementtherapy. Maturitas.2006,55(4):325-33.
    120.Devlin H, Ferguson MW. Compositional changes in the rat femur followingovariectomy. Acta Anat (Basel).1989,136(1):38-41.
    121.Tabuchi C, Simmons DJ, Fausto A. Bone deficit in ovariectomized rats.Functional contribution of the marrow stromal cell population and the effectof oral dihydrotachysterol treatment. J Clin Invest.1986Sep,78(3):637-42.
    122.廖慧娟,廖二元。骨质疏松动物模型。国外医学内分泌分册,2004,24:60-62。
    123.Borah B, Gross GJ, Dufresne TEl. Three-dimensional microimaging (MRmicroI and micro CT), finite element modeling, and rapidprototypingprovide unique insights into bone architecture in osteoporosis.Anat Rec,2001,265:101-110.
    124.Schorlemmer S, Ignatius A, Claes L, Augat P. Inhibition of cortical andcancellous bone formation in glucocorticoid-treated OVX sheep. Bone,2005,37:491–496.
    125.Newman E, Tyrner AS, Wark JD. The potential of sheep for the study ofosteopenia: Current status and comparison with other animal.Bone,1995,16(4):277s-284s.
    126.Bellino FL.Nonprimate animal models of menopause: workshop report.Menopause,2000,7:14-24.
    127.Simon Turner. Animal models of osteoporosis-necessity and limitations.European Cells and Maerials. Sroimpeoann.2001,1:66-81
    128.Turner AS. The sheep as a model for osteoporosis in humans. Vet J,2002,163(3):232-239.
    129.Leuker BP. Glucocorticoid-induced osteoporosis. In: Marcus R, eds.Osteoporosis. SanDiego: Academic Press,1996.801-820.
    130.Canalis E. Mechanism of glucocorticoid-induced osteoporosis. CurrOp inRheumatol,2003,15:454-459.
    131.Waters R V, Bergstrom K, Briones W, Vickery B H, Kimmel,D B.Prednisone causes bone loss in rabbits. The Endocrine Society Program andAbstracts,77th Annual Meeting, June14-17,1995. Washington DC.Abstract P3-510, p596.
    132.Fujimoto T, Niimi A, Sawai T, Sawai T, Ueda M. Effects of steroid-inducedosteoporosis on osteointegration of titanium implants. Int J Oral MaxillofacImp l,1998,13:183.
    133.Grardel B, Sutter B, Flautre B, Viguier E, Lavaste F, Hardouin P. Effects ofglucocorticoids on skeletal growth in rabbits evaluated by dual-photonabsorptiometry, microscopic connectivity and vertebral compressive strength.Osteoporosis Int1994,4:204-210
    134.Ortoft G,Oxlund H.Qualitative alterations of cortical bone in female rats afterlong-term administration of growth hormone and glucocorticoid.Bone1996,18:581–590.
    135.Kimmel DB.(1996) Animal models for in vivo experimentation inosteoporosis research. In: Osteoporosis. Marcus R, Feldman D, Kelsey J(eds). Academic Press, San Diego. pp.671-690.
    136.Laskey MA, Flaxman ME, Barber RW. Comparative performance in vitroand in vivo of Lunar DPX and Hologic QDR-1000dual energy X-rayabsorptiometers.Br J Radiol.1991,64(767):1023-1029.
    137.Bolotin HH,Sievanen H. Inaccuracies inherent in dual energy X-rayabsorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility.J Bone MinerRes,2001,16:799-805.
    138.Hahn M, Vogel M, Pompesivs-Kempa M. Trabecular bone pattern factor: anew parameter for simple quantification of bone micro architecture. Bone,1992,13:327-340.
    139.Iegrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V,Basle MF, Audran M. Trabecular bone microarchitecture, bone mineraldensity and vertebral fractures in male osteoporosis. J Bone Miner Res,2000,15:13-19.
    140.Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity inassociation with microdamage and bone remodeling after fatigue in vivo. JBone Miner Res,2000,15:60-67.
    141.Nuzzo S, Lafage-proast MH, Martin-badosa E. Synchrotron radiationmicrotomography allows the analysis of three-dimensional microarchitectureand degree of mineralization of human iliac crest biopsy specimens effects ofetidronate treatment. J Bone Miner Res,2002,17:1372-1382.
    142.Keaveny TM, Morgan EF, Niebur GL. Biomechanics of trabecularbone.Annu Rev Biomed Eng,2001,3:307–333.
    143.Sato M, Westmore M, Ma YL, Schmidt A, Zeng QQ, Glass EV, Vahle J,Brommage R, Jerome CP, Turner CH. Teriparatide [PTH (1-34)] strengthensthe proximal102femur of ovariectomized nonhuman primates despiteincreasing porosity. J Bone Miner Res,2004,19(4):623-629.
    144.Hasegawa-K, Takabashi-HF, Uchiyama–S. An experimental study of acombination method using a pedicle screw and laminar hook for theosteoporotic spine. Spine,1997,22(9):958-962.
    145.Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability oftranspedicle screwing for the osteoporoticspine, An in vitro study of themechanical stabiligy. Spine,1993,19:2240-2245.
    146.Chbia M, Mclain PE, Yerby SA. Short-segment pedicle screw fixation:Biomechanical analysis of supplemental hook fixation. Spine,1996,21:288-294.
    147.王德琪,赵忠岳,崔京浩。骨骼生物力学的一些概念。中华骨科杂志,1985,5(2):120-122。
    148.Julio Urrutia, MD, Christopher M. Bono, Rojas C. Early Histologic ChangesFollowing Polymethylmethacrylate Injection (Vertebroplasty) in RabbitLumbar Vertebrae. Spine,2008,33(8):877–882.
    149.Mitton D, Rumelhart C, Hans D. The effect of density and test conditions onmeasured compression and shear strength of cancellous bone from thelumbar vertebrae of ewes. Med Eng Phys,1997,19(5):464-474.
    150.陈孟诗,赖胜祥,李良。大鼠的骨生物力学指标选取及测试。生物医学工程学杂志。 J Biomed Eng2001,18(4):547~551.
    151.Belkoff SM, Mathis JM, Jasper LE, Deramond H. The biomechanics ofvertebroplasty--the effect of cement volume on mechanical behavior.Spine,2001,26(14):1537–1541.
    152.Sean Molloy, MRCS, John M Mathis. The effect of vertebral bodypercentage fills on mechanical behavior during percutaneous vertebroplasty.Spine,28(14):1549–1554.
    153.Krebs J, Ferguson SJ, Hoerstrup SP, Goss BG, Haeberli A, Aebli N.Influence of bone marrow fat embolism on coagulation activation in an ovinemodel of vertebroplasty. Bone Joint Surg Am,2008,90(2):349-56.
    154.Aebli N, Goss BG, Thorpe P. In vivo temperature profile of intervertebraldiscs and vertebral endplates during vertebroplasty: an experimental study insheep. Spine,2006,31(15):1674-1678
    155.Aebli N, Krebs J, Davis G. Fat embolism and acute hypotension duringvertebroplasty: an experimental study in sheep.Spine,2002,27(5):460-6.
    156.刘宏建,杜靖远,王义生,刘辉,韩松辉,郭建刚。不同充填材料应用于山羊椎体成形术的组织学研究。中国骨伤,2007,20(4):230-232。
    157.Wang ML, Massie J, Perry A, Garfin SR, Kim CW.A rat osteoporotic spinemodel for the evaluation of bioresorbable bone cements. The Spine Journal,2007,7:466–474.
    158.Aerssens, J, Boonen S, Lowet G, Dequeker J. Interspecies difference in bonecomposition density and quality, potential implications for in vivo boneresearch. Endocrinology,1998,139:663-670.
    159.刘忠厚,潘子昂,唐海。骨质疏松学。北京:科学出版社,1998:160-162,386-387。
    160.刘崇静,关立,孙积慧。腰椎各椎体骨密度的分析。中国骨质疏松杂志,1999,5(1):32-34。
    161.Deramond H, NT Wright, and SM Belkoff. Temperature elevation caused bybone cement polymerization during vertebroplasty. Bone.1999,25:17S–21S.
    162.San Millan Ruiz, DK, Burkhardt B, et al. Pathology findings with acrylicimplants. Bone,1999,25:85S–90S.
    163.Baroud G, J Nemes, Heini P, Steffen T. Load shift of the intervertebral discafter a vertebroplasty: A finite-element study. Eur. Spine. J.2003.
    164.Grados F, C Depriester, G Cayrolle. Long-term observations of vertebralosteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology(Oxford),2000,39:1410–1414.
    165.Polikeit A, LP Nolte, and SJ Ferguson. The effect of cement augmentationon the load transfer in an osteoporotic functional spinal unit: Finite-elementanalysis. Spine,2003,28:991–996.
    166.Uppin AA, JA Hirsch, LV Centenera. Occurrence of new vertebral bodyfracture after percutaneous vertebroplasty in patients with osteoporosis.2003,Radiology226:119–124.
    167.Hitchon PW, Goel V, Drake J, Taggard D, Brenton M, Rogge T, Torner JC.Comparison of the biomechanics of hydroxyapatite andpolymethylmethacrylate vertebroplasty in a cadaveric spinal compressionfracture model. J Neurosurg,2001,95(2Sup2pl):215-220.
    168.Belkoff SM, Mathis JM, Jasper LE. An ex vivo biomechanical evaluation ofa hydroxyapatite cement for use with vertebroplasty. Spine,2001,26:154221546.
    169.Watson JT. The use of an injectable bone graft substitute in tibialmetaphyseal fractures. Orthopedics2004,27:s103–107.
    170.Kelly CM, Wilkins RM. Treatment of benign bone lesions with an injectablecalcium sulfate-based bone graft substitute. Orthopedics2004,27:s131–135.
    171.Peltier LF. The use of plaster of Paris to fill defects in bone. Clin Orthop1961,21:1–31.
    172.Turner TM, Urban RM, Gitelis S, Haggard WO, Richelsoph K. Resorptionevaluation of a large bolus of calcium sulfate in a canine medullary defect.Orthopedics2003,26(5, Suppl.):577–579.
    173.Rohmiller MT, Schwalm D, Glattes RC. Evaluation of calcium sulfate pastefor augmentation of lumbar pedicle screw pullout strength. Spine J2002,2:255–260.
    174.Yi X, Wang Y, Lu H, Li C, Zhu T. Augmentation of pedicle screw fixationstrength using an injectable calcium sulfate cement: an in vivo study. Spine.2008,33(23):2503-2509.
    175.Andrew Perry, MDa, Andrew Mahar Biomechanical evaluation ofkyphoplasty with calcium sulfate cement in a cadaveric osteoporoticvertebral compression fracture model. The Spine Journal2005,(5):489–493.
    176.Dalle CL, Giannini S. Bone microarchitecture as an important determinant ofbone strength. J Endocrinol Invest,2004,27:99-105.
    177.戴如春,姚学锋,刘沐荣。骨小梁微破裂及微骨痂的扫描电镜观察。中国骨质疏松杂志,2005,11(4):434-436。
    178.Rajapaksea CS, Thomsenb JS, Julio S. An expression relating breaking stressand density of trabecular bone.Journal of Biomechanics,2004,37:1241–1249.
    179.Kosmopoulos V, Keller TS. Finite element modeling of trabecular bonedamage. Comput Methods Biomech Biomed Engin,2003,6:209-216.
    180.Martin-Badosa E, Amblard D, Nuzzo S, Elmoutaouakkil A, Vico L, Peyrin F.Excised bone structures in mice: imaging at three-dimensional synchrotronradiation micro-CT. Radiology,2003,22(9):921-928.
    181.David V, Laroche N, Boudignon B, Lafage-Proust MH, Alexandre C,Ruegsegger P, Vico L. Noninvasive in vivo monitoring of bone architecturealterations in hindlimb-unloaded female rats using novel three-dimensionalmicrocomputed tomography. J Bone Miner Res,2003,18:16221-1631.
    182.Jiang Y, Zhao J, Dai RC, Wu XP, Genant HK. Application of micro-CTassessment of3-D bone microstructure in preclinical and clinical studies. JBone Miner Metab,2005,23Suppl:122-131.
    183.Stauber M, Müller R.Volumetric spatial decomposition of trabecular boneinto rods and plates:a new method for local bone morphometry. Bone,2006,38:475-484.
    184.Ding M, Havid I. Quantification of age-related changes in the structuremodel type and trabecular thickness of human tibial cancellous bone.Bone,2000,26:291-295.
    185.Lanyon L, Skerry T. Postmenopausal osteoporosis as a failure of bone’sadaptation to functional loading: a hypothesis. J Bone Miner Res,2001,16:1937-1947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700