微笔直写条形聚酰亚胺光波导的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光波导是光器件的最基本结构单元,因此对光波导理论、波导材料的合成和波导的制备工艺开展研究具有十分重要的意义。氟化聚酰亚胺因其损耗低、折射率可调、热稳定性与机械性能好而被广泛用于制作条形光波导材料。本文利用含氟二胺和二酐合成了含氟聚酰亚胺光波导材料,并通过微笔直写工艺制备出了条形光波导。
     采用有限折射率法对条形波导进行了理论分析,利用BPM(光束传播方法)方法模拟了光能量的分布,计算出当波导下包层厚度大于3.5μm时,能有效的约束光的传输。由于微笔直写具有效率高、工艺简单、可以一次成型等优点,选择它作为条形光波导的制作工艺。
     通过“两步法”,利用含氟二胺与二酐,合成出了氟化聚酰亚胺材料,并对其相关性能进行了分析与表征。DSC和TGA分析表明,其玻璃化温度大约为380℃,起始分解温度大于480℃;通过改变含氟量,其折射率可以在1.521~1.672之间调节。将其中间产物聚酰胺酸配制成浓度为0.2g/ml的溶液,通过称重量的方法可以较定量地确定溶液的黏度。
     直写出了条形光波导,并对其形貌进行了分析。实验表明,直写施加气压(P)、微笔的平移速度(V)和微笔头到基板的高度(H)等工艺参数对波导形貌有较大影响。当聚酰胺酸与其配制的溶液抽黏后的质量比为4和3.7时,分别在V=4mm/s、P=9KPa、H=18μm和V=3mm/s、P=11KPa、H=20μm时,热固化后能得到宽高比分别约为11和5且形貌良好的条形波导。
Optical waveguide is the basic unit of optical device. It is meaningful to study on the waveguide theory, synthesis of waveguide material, fabrication process of waveguide. Fluorinated polyimide has been widely applied to prepare strip optical waveguide because of its low absorption, controllable refractive index, high thermal stability and excellent mechanical properties. In this thesis, the fluorinated polyimide was synthesized from diamine and dianhydride, and the strip optical waveguide was fabricated through micropen direct-wring process.
     Theoretical analysis was conducted to the strip waveguide by the effective refractive index method, and the distribution of optical intensity was stimulated with BPM(Beam Propagation Method). It was calculated out that the optical field can be constrained in the strip waveguide only when the thickness of the undercoating was more than 3.5μm. The micropen direct-writing was applied to dispense strip waveguide owing to its high efficiency, simple process and rapid prototyping.
     Fluorinated polyimide was synthesized from diamine and dianhydride by two-step method, and its properties were characterized. Thermal analysis by DSC and TGA showed that its glass transition temperature was about 380℃and its starting decomposition temperature was higher than 480℃. The refractive index could be ranged by the content of fluorine from 1.521 to 1.672. The viscosity of polyamic acid solution could be relatively quantitated through weighing.
     The strip waveguide was fabricated and its shape was tested. Experiments demonstrated that the processing parameters such as the exerted gas pressure(P), velocity of micropen tip(V)and height from micropen to substrate(H)affected the shape of the dispensed waveguide. When the weight ratios of fluorinated polyimide to polyamic acid solution were 4 and 3.7, the optimal parameters were V=4mm/s, P=9KPa, H=18μm and V=3mm/s, P=11KPa, H=20μm, respectively. The shapes of the dispensed waveguides were perfect with the width/height ratios of approximately 11 and 5, respectively.
引文
[1] Jill Michelle Kalajian. Towards A Single-mode Dispensed Polymer Optical Waveguide: [Master's thesis]. Florida: Library of University of South Florida, 2003
    [2]王菲.硅基聚合物阵列波导光栅波分复用器的研制: [博士论文].吉林:吉林大学图书馆, 2005
    [3] L.R. Dalton. Nonlinear optical polymeric materials: from chromophore design to commercial applications. Advances in Polymer Science. 2002, (158): 1~ 86
    [4] Shixiang Xie, Zhijian Zhang, Wei Wei. Synthesis and Properties of Polyimide-Based Optical Materials. Journal of the Korean Physical Society, 2007, 51(4): 1536~1541
    [5] J.H. Kim, E.J. Kim, H.C. Choi, et al. Evaluation of fluorinated polyimide etching processes for optical waveguide fabrication Thin Solid Films, 1999, 341(1~2): 192~195
    [6] K.Han, J.Kim, W.H.Jang. Evaluation of halogenated polyimide etching for optical waveguide fabrication by using inductively coupled plasma. J. Appl. Polym. Sci., 2001, 79(1): 176~182
    [7]天津市金飞博光通讯技术有限公司. ICP与RIE相比有什么优点?结构有什么区别呢. http://www.kfiber.com/news/news_show.php?newsid=17, 2009-04-18
    [8] Joonoh Park, Taehyung Lee, Donghyun Lee, et al. Widely Tunable Coupled-Ring- Reflector Filter Based on Planar Polymer Waveguide. IEEE Photonics Technology Letters, 2008,20(12): 988~990
    [9] Yongbin Lin, Rahmanian, N. Seunghyun Kim. Fabrication of compact polymer waveguide devices using air-trench bends and splitters. IEEE Southeastcon, 2008, (4): 421~426
    [10]陈长鸣.紫外固化型聚合物阵列波导光栅(AWG)器件的研制: [硕士论文].吉林:吉林大学图书馆, 2005
    [11] Arnold C, Thomas E. Sutto, Alberto Piqué. Direct-write laser processing creates tiny electrochemical systems. Laser Focus World, 2004, (40): 9~12
    [12] L. Eldada, C. Xu, K. M. T. Stengel, et al. Laser-fabricated low-loss single-mode raised-rib wave guiding devices in polymers. Journal of Light wave Technology, 1996, 14(7): 1704~1713
    [13] W.H.Wong, J.Zhou, E.Y.B.Pun. Low-loss polymeric optical waveguides using electron-beam direct writing. Appl. Phys. Lett., 2001,78(15): 2110~2112
    [14] Cheng-Chih Lai, Tso-Yun Wei, Chang, Chin-Yu, et al. Gamma-ray irradiated polymer optical waveguides. Appl. Phys. Lett., 2008, 92(2): 3303~3305
    [15] A.A. Bettiol, T.C. Sum, F.C. Cheong, et al. A progress review of proton beam writing applications in micro photonics. Nucl. Instr. and Meth. in Phys. Res. B. 2005, 231 (1~4): 364~371
    [16] Yunqi Liu, Kin Seng Chiang. CO2-laser writing of long-period fiber gratings in optical fibers under tension. Optics Letters, 2008, 33(17): 1933~1935
    [17] C. R. Mendonca, L. R. Cerami, T. Shih, et al. Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores. Optics Express, 2008, 16(1): 200-206
    [18] H.Y. Zheng, T.T.Tan and W.Zhou. Studies of KrF laser-induced long periodic structures on polyimide. Optics and lasers in Engineering, 2009, 47(1): 180~185
    [19] M. Vogler, S. Wiedenberg, M. Muhlberger, et al. Development of a novel, low-viscosity UV-curable polymer system for UV-Nan imprint lithography,”Microelectron. Eng., 2007, 84(5~8): 984~988
    [20] D.Qin, Y.Xia,J.Rogers, et al. Micro system Technology in Chemistry and Life Sciences. Springer-Verlag, 1998, (194): 1~20
    [21] Shah, H.V., Deguzman, P.C., Nordin, G.P., et al. Fabrication of Sub wavelength Diffractive Elements and Photonic Waveguides Using Perfluorocyclobutyl. Polymeric Materials Science and Engineering, 2000, (83): 180
    [22] F. Reuther. Advanced Polymers and Resists-A Key to the Development of Nanoimprint Lithography. Journal of Photopolymer Science and Technology, 2005, 18(4): 525~530
    [23] M. Bender, A. Fuchs, U. Plachetka, et al. Status and prospects of UV-nanoimprint technology. Micro electron Eng., 2006, 83 (4~9): 827~830
    [24] Ting Han, Steve Madden, Mathew Zhang, et al. Low loss high index contrast Nanimprinted polysiloxane waveguides. Optics Express, 2009, 17(4): 2623
    [25] S. Kopetz, D. K. Cai, E. Rabe, et al. PDMS-based optical waveguide layer for integration in electrical-optical circuit boards. Int. J. Electron. Common, 2007, (61): 163~167
    [26] S. Kopetz, E. Rabe, W. J. Kang, et al. Polysiloxane optical waveguide layer integrated in printed circuit board. Electron. Let., 2004, 40(11): 668~669
    [27] B. P. Keyworth, R. Narendra, J. N. McMullin, et al. Direct dispensing of polymer waveguides on silicon substrates. LEOS Topical Meeting on Hybrid Optoelectronic Integration and Packaging, Santa Barbara, California, 1993. 41~42
    [28] Barrie P. Keyworth, James N. McMullin, R. Narendra, et al. Computer-Controlled Pressure-Dispensed Multimode Polymer Waveguides, IEEE Transactions on Components, Packaging, and Manufacturing Technology-part B, 1995, 18(3): 572~577
    [29] Christopher Altman. Micro lens array fabrication via micro jet printing technologies. 2007, OFT/AP3601
    [30] J. Jahns, K.H. Brenner. Micro optics: From Technology to Applications. Springer- Verlag, 2004. 161~82
    [31] K.Svetlana, B. Stanislav; G.Karlheinz. Microstructures on soluble polymer surfaces via drop deposition of solvent mixtures. Applied Physics Letters, 2006, 89(3): 683~689
    [32] C. Berger, N. Collings, R. Vlkel, et al. A micro lens-array-based optical neural network application. Pure Appl. Opt., 1997, 6 (6): 683~689
    [33] Mohamad Hajj-Hassan, Timothy Gonzalez, Ebrahim Ghafar-Zadeh, et al. Direct- Dispense Polymeric Waveguides Platform for Optical Chemical Sensors. Sensors, 2008, (8): 7636-7648
    [34]王宇基于FD-BPM的有机聚合物光波导器件的模拟: [硕士论文].吉林:吉林大学图书馆, 2007
    [35] D. Bosc, A. Maaloufa, F. Henrioa, S. Haesaert. Strengthened poly (methacrylate) materials for optical waveguides and integrated functions. Optical Materials, 2008, 30(10): 1514~1520
    [36] Hong Ma, Alex K.Y.Jen, Larry R.Dalton. Polymer-Based Optical Waveguides: Materials, Processing, and Devices. Advanced Materials review, 2002, 14(19): 1339~1365
    [37] R. Reuter, H. Franke, C. Feger. Evaluating polyamides as light guide materials Applied Optics, 1988, 27(21): 4565~4571
    [38] T Matsuura, S Nishi, S Sasaki, et al. Polyimide optical waveguide. US Patent, Invention, 6654535, 2003. 1~5
    [39] S. Ando, T. Matsuura, S. Sasak. Perfluorinated polyimide synthesis. Macromolecules, 1992, (25): 5858~5899
    [40] T.Matsuura, S.Ando, S.Sasaki, etal. Polyimides Derived from 2,2'-Bis (trifluoromethyl)-4,4'-diaminobiphenyl. Macromolecules, 1994, (27): 6667
    [41] T. Matsuura, N. Yamada, S. Nishi, et al. Polyimides Derived from TFDB. Macromolecules, 1993, (26): 421
    [42]戴俊燕,刘德山.含氟PI的研究进展.功能高分子学报, 1999, 12(3): 337~344
    [43]刘金刚,何民辉,王丽芳等.含氟PI及其在微电子工业中的研究进展Ⅰ含氟单体及PI的合成.高分子通报, 2003, 6(3): 1~14
    [44] Hougham G, Tesoro G, Viehbeck A. Influence of Free Volume Change on the Relative Permittivity and Refractive Index in Fluoropolyimides. Macromolecules, 1996, 29 (10): 3453~345
    [45]李金洪.基于Micropen直写技术快速制造聚合物条形光波导的工艺研究: [硕士论文].武汉:华中科技大学图书馆, 2007
    [46]李安英,杨亚培.光波导光束传输法数值分析新进展.激光技术, 2000, 24(4): 236~240
    [47]刘金刚,何民辉,王丽芳等.含氟PI及其在微电子工业中的研究进展Ⅱ含氟PI在微电子工业中的应用.高分子通报, 2003, 8(4): 10~12
    [48]梁东波,陈抱雪,袁一方等.含氟PI高分子光波导工艺研究.上海理工大学学报, 2003, 25(3): 230~234
    [49]王延熹主编.材料表面能与界面结合力. http://www.ttmn.com/topic/fq032/070926/book/75.htm, 2009-03-20
    [50] Anis Shahida Niza Mokhtar. Study On Loss Characteristic Of Polymer Material For Optical Waveguide Application: [Master's thesis]. Malaysia: Library of Technological University of Malaysia, 2005
    [51] Herman, W. N., Chen. Wei-Yen, Kim. Younggu, et al. Advances in polymer optical devices and waveguide fabrication techniques. Linear and Nonlinear Optics of Organic Materials IV, 2004, (5517): 1~11
    [52] D. W. Boertjes, J. N. McMullin, B. P. Keyworth. Graded Effective Index Planar Polymer Waveguides. J. Lightwave Tech., 1996, 14(12): 2714~2718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700