双臂空间机器人捕获自旋目标的协调运动规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间技术的发展,人类空间活动日益频繁,为了提高工作效率和降低宇航员的风险,空间机器人将在未来的在轨服务中扮演越来越重要的角色,而目标捕获是在轨服务的一项关键技术。本文以国家863计划航天领域某重大项目为背景,开展自旋目标捕获的协调运动规划研究,为未来我国空间机器人在轨服务技术的实用化奠定基础。
     实际在轨服务的对象为在轨故障卫星、空间垃圾等,可能处于自旋运动状态,这对目标捕获提出了巨大挑战。经过大量调研,总结了自旋目标的实际运动特征,并从理论上建立了其运动学模型,根据该模型采用无损卡尔曼滤波方法对其运动状态进行预测,基于此提出了单臂自主捕获及双臂协调的运动规划方法,实现对自旋目标的成功捕获。
     由于存在动力学耦合,机械臂的运动会改变基座的姿态及质心位置,从而影响任务的执行。首先建立了“基座质心等效机械臂”的模型,基于此提出了保持基座稳定的无奇异多臂协调运动规划方法。通过求解等效机械臂的位置级逆运动学确定平衡臂的运动轨迹,不需求解微分运动学方程,可很好地回避了传统方法中存在的雅克比矩阵奇异的问题。该方法对平衡臂的运动学和动力学参数及安装位置无特殊要求,具有更好的通用性。
     与捕获前的状态相比,目标捕获后形成的复合体系统的质量特性和动量发生了很大改变,可能失稳。针对此问题提出了两种基于角动量守恒的协调规划方法:关节阻尼和关节函数参数化。通过协调规划各关节和飞轮的速度实现对系统角动量的重分配。在此基础上,采用粒子群算法优化关节函数参数,在实现目标停靠的同时保证基座姿态的偏转最小。该方法采用实际飞轮作为动量交换装置,具有很好的工程可实现性。
     为了对协调运动规划方法进行实验验证,基于动力学模拟与运动学等效的思想建立了一套地面实验系统。提出了两种基于6自由度工业机器人的自旋运动模拟方法:机械臂末端运动模拟法和机械臂肩部奇异运动模拟法。后者充分利用了肩部奇异构型的运动特性,考虑了实际的关节约束,具有很强的工程可实现性。该系统具备多种任务的演示能力,可充分利用成熟的工业产品,减少了开发成本和时间,利用该系统对自旋目标自主捕获规划方法进行验证和评估。
     本文的研究面向未来高轨在轨服务中急需解决的自旋目标自主捕获问题,顺应了我国大力发展空间机器人在轨服务技术的大方向,对于未来开展空间机器人在轨维护、装配、援救等任务,具有重要的理论研究意义和工程应用价值。
With the development of space technology, space activities of human have become increasingly frequent. Space robot will play an increasingly important role in efficiency improvement and astronauts’ risk reduction. Target autonomous capture is the key technology of space robotic applications. This thesis was based on a project sponsored by the National High-Tech863Program in aerospace industry, and researches coordinated motion planning for spinning target capturing, which lays the foundation for the practical of future services technology.
     In fact, targets to be serviced in orbit are failure satellite, space debris, etc. These objects are in spin motion state that it is very difficult to capture them. Based on extensive research, we summed up the characteristics of the real movement of the spinning target and established its kinematic model which can be used to predict its movement by Unscented Kalman Filter (UKF), and then methods of autonomous capture and coordinated motion planning were proposed to capture the spin target successfully.
     Due to the existed of dynamic coupling, the motion of the arms will alter the attitude and position of the base, which can affect the implementation of the task. Firstly, established a “base centroid equivalent manipulator” model, then the singularity-free method was proposed to plan the coordinated trajectories of the balance arms. With solving inverse kinematics of the equivalent manipulator instead of solving the differential motion equations to determine the trajectory of the balance arm, the jacobian matrix singularity is avoided. Furthermore, there are not any specific constraints on the configuration, mass properties, geometry parameters and mounted position of the balance arm.
     The captured coupling system may be unstable due to the change of the quality characteristics and momentum, thus, two coordinated plan methods—joint damping and parameters of joint function configurable, were proposed to solve this problem. According to these methods, management and re-distribution of angular momentum were used to stabilize the coupling system by planning and controlling the velocity of the flywheel and joints. On the basis of them, PSO algorithm was used to optimize the parameters of joint function in order to ensure the minimum deflection of the base attitude. These methods adopted the actual flywheel as momentum exchange device, which can obtain great effectiveness in engineering.
     In order to verify the motion planning methods, a ground experiment system was developed based on the idea of dynamics simulation and the principle of kinematic equivalent. Then two methods of motion simulation, which were based on6-DOF industrial robot, were proposed: the conventional simulation method and shoulder singularity method. The second method owned a strong engineering feasibility, which took the advantage of the motion characteristics of the shoulder singular and considered actual joint constraint. The experimental system used commercial devices which was relatively low cost and easily to be implemented. In this system, the path plan method of spin target autonomous capture by space robot could be verified and evaluated
     The research in this dissertation is focused on the autonomous capture of spinning target which has to be settled urgently in servicing mission on high orbit in the future. It conforms to the trend on the development of on orbit service using space robot in our country, and has an important theoretical and practical significance in orbital maintenance, assembly, and rescue using space robot.
引文
1. Andrew M L, Matthew G R, Daniel E H. On-Orbit Servicing: A New ValueProposition for Satellite Design and Operation[J]. Journal of Spacecraft andRockets,2007,4(4):964-975.
    2. Xu W. F, Liang B, Li B, Xu Y S. A Universal On-orbit Servicing System Used inthe Geostationary Orbit[J]. Advances in Space Research,2011,48(1):95-119.
    3. Yao W, Chen X, Huang Y, Tooren M. On-orbit Servicing System Assessment andOptimization Methods Based on Lifecycle Simulation Under Mixed Aleatory andEpistemic Uncertainties[J]. Acta Astronautica,2013,87:107-126.
    4. Larouche B P. Vision–based Control for On–orbit Servicing[J]. Int. J. SpaceScience and Engineering,2013,1(1):96-111.
    5.颜世佐.空间机器人协调控制与地面实验研究[D].哈尔滨工业大学博士论文,2009:1-20.
    6.谢箭.不确定性空间机器人轨迹规划及智能控制方法研究[D].哈尔滨工业大学博士论文,2009:1-30.
    7.张福海.面向在轨维护的自由漂浮空间机器人运动规划与控制研究[D].哈尔滨工业大学博士论文,2010:1-2
    8. Yoshida K. Engineering Test Satellite VII Flight Experiments for Space RobotDynamics and Control: Theories on Laboratory Test Beds Ten Years Ago, Now inOrbit[J]. The International Journal of Robotics Research,2003,22(5):321–335.
    9. Wilson J R. Satellite Hopes Ride on Orbital Express. Aerosp-DARPA Plans toExtend the Lives of Satellites Already in Orbit by Refueling and Upgrading Themin Space[J]. Aerospace America,2007,45(2):30-35.
    10. Obermark J, Creamer G, Kelm B E, et al. SUMO/FREND: Vision System forAutonomous Aatellite Grapple[C]. SPIE Sensors and Systems for SpaceApplications,2007, Vol.6555.
    11. Debus T J, Dougherty S P. Overview and Performance of the Front-End RoboticsEnabling Near-Term Demonstration (FREND) Robotic Arm[C]. AIAAInfotech@Aerospace Conference, Seattle, Washington,2009, AIAA2009-1870.
    12. David L A, Mary L B. Human-Robot Hybrids for Deep Space EVA: The SpaceConstruction and Orbital Utility Transport Concept[C]. AIAA Space2003, LongBeach, CA, September2003.
    13. Tactical Technology Office of DARPA. Broad Agency Announcement for PhoenixTechnologies [R]. DARPA-BAA-12-02, Dec.22,2011.
    14. Tactical Technology Office of DARPA. Broad Agency Announcement for PhoenixOperations [R]. DARPA-BAA-13-12, Mar.4,2013.
    15. Christoph W B, Richard A V. Telerobotic Ground Control of a Space Free-Flyer[C]. IEEE/RSJ Internatilnal Conference on Intelligent Robots and Systems,Victoria, B.C.Canada.1999:1183~1189.
    16. David L A, J Corde L, Brian J R, et al. Robotic Capabilities for Complex SpaceOperations[C]. AIAA Space–Conference and Exposition, Albuquerque, NM,Aug.28-30,2001, AIAA2001-4538.
    17. Parrish J C. The Ranger Telerobotic Flight Experiment: A Teleservicing Systemfor On-orbit Spacecraft[C]. Photonics East'96. International Society for Opticsand Photonics,1996:177-185.
    18. David L A. Flight-Ready Robotic Servicing for Hubble Space Telescope: A WhitePaper. Response to NASA/Goddard Space Flight Center request for informationon Hubble Space Telescope servicing, March22,2003.
    19. Zimpfer D, Spehar P. STS-71Shuttle/Mir GNC Mission Overview[J]. Advancesin the Astronautical Sciences, vol.93, American Astronautical Society, San Diego,CA,1996:441-460.
    20. Taylor L W. Continuum Modeling of the Space Shuttle Remote ManipulatorSystem[C]. Proc. of IEEE Int. Conf. on Decision and Control, Dec.16-18, Tucson,Arizons.1992:626-631.
    21. Michael E S, Michael M, George V. Vision-Based Sensing and Control for SpaceRobotics Applications[J]. IEEE Transactions on Instrumentation andMeasurement,1999,48(4):807-812.
    22. Masanori N, Chikara H, Yasuo I, et al. Results of the Manipulator FlightDemonstration (MFD) Flight Operation[C]. spaceOp98,1998:1-7.
    23. Oda M. Space Robot Experiment on NASDA’s ETS-VII Satellite[C]. IEEEInternational Conf. on Robotics and Automation,1999:1390-1395.
    24. Sato N, Wakabayashi Y. JEMRMS Design Features and Topics from Testing[C].6th Int. Symp on Artificial Intelligence, Robotics and Automation in Space,Montreal,2001:1-7.
    25. Hirzinger G, Brunner B, Dietrich J. ROTEX—the First Remotely ControlledRobot in Space[C]. IEEE Int. Conf. on Robotics and Automation, San Diego, CA,1994:2604–2611.
    26. Landzettel K, Albu-Sch ffer A, Preusche C. Robotic On-Orbit Servicing-DLR'sExperience and Perspective[C]. IEEE/RSJ Intl. Conference on Intelligent Robotsand Systems, Beijing, China,2006:4587-4594.
    27. Settelmeyer E, Hartmann R, Landzettel K., et al. The Experimental ServicingSatellite ESS[C],21th ISTS ConferenceOmiya, Japanm,1998:617-621.
    28. Cusumano F, Lampariello R, Hirzinger G. Development of Tele-operation Controlfor A Free-floating Robot During the Grasping of A Tumbling Target[C].International Conference on Intelligent Manipulation and Grasping,2004:1-2.
    29. Visentin G, Brown D L. Robotics for Geostationary Satellite Service[J]. Roboticsand Autonomous System,1998,23(1):45-51.
    30. Boumans R, Heemskerk C. The European Robotic Arm for the InternationalSpace Station[J]. Robotics and Autonomous Systems,1998,23(1):17-27.
    31. Umetani Y, Yoshida K. Resolved Motion Rate Control of Space Manipulators withGeneralized Jacobian Matrix[J]. IEEE Trans. Robotics Autom,1989,5(3):303–314.
    32. Umetani Y, Yoshida K. Workspace and Manipulability Analysis of SpaceManipulator [J]. Trans. Soc. Instrum. Control Eng,2001, E-1(1):116–123.
    33. Xu W F, Liu Y, Liang B, et al. Autonomous Path Planning and Experiment Studyof Free-floating Space Robot for Target Capturing[J]. J. Intell. Robotic Syst,2008,51(3):303–331.
    34. Xu W F, Liang B, Li C, et al. Autonomous Target Capturing of Free-floatingSpace Robot: Theory and Experiments [J]. Robotica,2008,27:425–445.
    35. Nagamatsu H, Kubota T and Nakatani I, et al. Autonomous Retrieval of ATumbling Satellite Based on Predictive Trajectory[C]. International Conferenceon Robotics and Automation, Albuquerque, New Mexico,1997:3074–3079.
    36. McCourt R A, deSilva C W. Autonomous Robotic Capture of A Satellite UsingConstrained Predictive Control[J]. IEEE/ASME Trans. Mechatronics,2006,11(6):699–708.
    37. Jacobsen S, Lee C, Zhu C, Dubowsky S. Planning of Safe Kinematic Trajectorisfor Free Flying Robots Approaching an Uncontrolled Spinning Satellite[C].ASME2002Design Engineering Technical Conferences and Computer andInformation in Engineering Conferences, Montreal, Canada, Sep.29-Oct.02,2002:1-6.
    38. Aghili F, Parsa K. An Adaptive Vision System for Guidance of a RoboticManipulator to Capture a Tumbling Satellite with Unknown Dynamics[C].IEEE/RSJ International Conference on Intelligent Intelligent Robots and System,2008:3064-3071.
    39. Aghili F. A Prediction and Motion-Planning Scheme for Visually Guided RoboticCapturing of Free-Floating Tumbling Objects with Uncertain Dynamics [J]. IEEETransactions on Robotics,2012,28(3):634-649.
    40.王汉磊,解永春.自由漂浮机械臂抓取翻滚目标的自适应控制策略[J].空间控制技术与应用,2009,35(5):6-12.
    41. Luo Z H, Sakawa Y. Control of Space Manipulator for Capturing a TumblingObject[C]. Conference on Decision and Control, Honolulu, Hawall,1990:103-108.
    42. Nagamatus H. Capture Strategy for Retrieval of a Tumbling Satellite by a SpaceRobotic Manipulator[C]. International Conference on Robotic and Automation,Minneapolis, Minnesota,1996:70-75.
    43. Wee L B, Walker M W. On the Dynamics of Contact Between Space Robots andConfguration Control for Impact Minimization[J]. IEEE Transactions onRobotics and Automation,1999,9(5):581-591.
    44. Huang P F, Xu Y, Liang B. Contact and Impact Dynamics of Space Manipulatorand Free-Floating Target[C]. IEEE/RSJ International Conference on IntelligentRobots and Systems, Alberta, Canada,2005:1935-1940.
    45. Huang P F, Xu W F, Liang B and Xu Y S. Configuration Control of Space Robotsfor Impact Minimization[C]. IEEE International Conference on Robotics andBiomimetics,2006:357–362.
    46. Agrawal S K, Chen M Y, Annapragada M. Modeling and Simulation of Assemblyin a Free-Floating Work Environment by a Free-Floating Robot[J]. Journal ofMechanical Design, Transactions of ASME,1996,118(1):115-120.
    47. Fernandes C, Gurvits L and Li Z X. Near-optimal Nonholonomic MotionPlanning for A System of Coupled Rigid Bodies[J]. IEEE Transactions onAutomatic Control,1994,39(3):450-463.
    48. Yoshida K, Hashizume K, Abiko S. Zero Reaction Maneuver: Flight Validationwith ETS-VII Space Robot and Extension to Kinematically Redundant Arm[C].IEEE International Conference on Robotics and Automation, Piscataway, USA,2001:441-446.
    49. Dubowskys S, Torres M. Path Planning for Space Manipulators to MinimizingSpacecraft Attitude Disturbance[C]. IEEE International Conference on Roboticsand Automation, Piscataway, USA.1991:2522-2528.
    50. Yamada K. Arm Path Planning for a Space Robot[C]. IEEE/RSJ InternationalConference on Intelligent Robots and Systems Yokohama, Japan,1993:2049-2055.
    51. Suzuki T, Nakamura Y. Planning Spiral Motion of Nonholonomic SpaceRobots[C]. IEEE International Conferences on Robotics and Automation,Minneapolis, Minnesota,1996:718-725.
    52. Papadopoulos E, Tortopidis I, Nanos K. Smooth Planning for Free-floating SpaceRobots Using Polynomials[C]. IEEE International Conference on Robotics andAutomation Barcelona, Spain,2005:4272-4277.
    53. Huang P F, Xu Y, Liang B. Modeling Human Intelligence and Application toSpace Object Capturing[C]. IEEE International Conference on InformationAcquisitionpp, Hong Kong,2005:210-215.
    54. Mineta T, Qiu J, Tani J. Trajectory Planning of a Manipulator of a Space RobotUsing a Neural Network[C]. IEEE International Workshop on Robot and HumanCommunication,1997:34-39.
    55.郭琦,洪炳熔,张华.用Hopfield网络优化空间机器人的路径[J].哈尔滨工业大学学报,2003,35(8):970-973.
    56.戈新生,张奇志,刘延柱.基于遗传算法的空间机械臂运动规划的最优控制[J].空间科学学报,2000,20(2):185-191.
    57. Wang C H, Feng B M, Ma G C. Robust Tracking Control of Space Robots UsingFuzzy Neural Network[C]. IEEE International Symposium on ComputationalIntelligence in Robotics and Automation, Espoo, Finland,2005:181-185.
    58.吴为民.基于隐式位姿空间分层量化的空间机械手无碰撞路径规划方法[J].宇航学报,1996,17(4):44-49.
    59.吴为民.自由浮动空间机械手的无碰撞路径规划[J].机械科学与技术,1997,16(5):838-841.
    60.王鸿鹏,洪炳熔,郭恒业.双臂空间机器人的通用运动学路径规划算法[J].系统工程与电子技术,2000,22(7):65-68.
    61.戈新生,陈力,刘延柱.空间机械臂非完整运动规划的最优控制[J].应用力学学报,1999,15(4):6-11.
    62.张青斌,唐乾刚,孙世贤.飘浮式空间机器人路径规划的全局最优解析解[J].国防科技大学学报,1999,21(3):25-28.
    63.顾晓勤,刘延柱.载体姿态无扰动的空间机械臂路径规划[J].空间科学学报,1996,16(4):322-325.
    64. Belousov I, Estevès C, Laumond J P, et al. Motion Planning for the Large SpaceManipulators with Complicated Dynamics[C]. IEEE/RSJ InternationalConference on Intelligent Robots and Systems,2005:2160-2166.
    65. Franch J, Agrawal S, Fattah A. Design of Differentially Flat Planar Space Robots:A Step Forward in their Planning and Control[C]. IEEE/RSJ Intl. Conf. OnIntelligent Robots and Systems, Las Vegas, Nevada.2003:3053-3058.
    66. Nenchev D N, Yoshida K. Impact Analysis and Post-Impact Motion ControlIssues of a Free-Floating Space Robot Subject to a Force Impulse[J]. IEEETransactions on Robotics and Automation,1999,15(3):548-557.
    67. Yoshida K, Kurazume R and Umetani Y. Dual Arm Coordination in Space Free-Flying Robot[C]. IEEE International Conference on Robotics and Automation,Piscataway,1991:2516-2521.
    68. Yoshida K, Nakanishi H. Impedance Matching in Capturing a Satellite by a SpaceRobot[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,2003:3059-3064.
    69. Yoshikawa S and Yamada K. Impact Estimation of a Space Robot at Capturing aTarget[C]. IEEE/RSJ/GI International Conference on Advanced Robotic Systemsand the Real World,1994,3:1570-1577.
    70. Xu W L and Yue S. Pre-Posed Configuration of Flexible Redundant RobotManipulators for Impact Vibration Alleviating[J]. IEEE Transactions OnIndustrial Electronics,2004,51:195-200.
    71. Oda M. Experiences and Lessons Learned from the ETS-VII Robot Satellite[C].IEEE International Conference on Robotics and Automation,2000,1:914-919.
    72. Inaba N and Oda M. Autonomous Satellite Capture by a Space Robot: World FirstOn-Orbit Experiment on a Japanese Robot Satellite ETS-VII[C]. IEEEInternational Conference on Robotics and Automation,2000,2000:1169-1174.
    73. Nenchev D N, Yoshida K. Impact Analysis and Post-impact Motion Control Issuesof a Free-floating Space Robot Contacting a Tumbling Object [C]. InternationalConference on Robotics and Automation, Leuven, Belgium, May1998:16-20.
    74. Yoshida K, Sashida N. Modeling of Impact Dynamics and Impulse Minimizationfor Space Robots[C]. International Conference on Intelligent Robots and Systems,Yokohama, Japan, Jul,1993:26-30.
    75. Yoshida K, Sashida N, Kurazume R, et al. Modeling of Collision Dynamics forSpace Free-floating Links with Extended Generalized Inertia Tensor[C].International Conference on Robotics and Automation, Nice, France, May12-14,1992.
    76. Abiko S, Lampariello R, Hirzinger G. Impedance Control for a Free-floatingRobot in the Grasping of a Tumbling Target with Parameter Uncertainty[C].International Conference on Intelligent Robots and Systems, Beijing, China, Oct9-15,2006.
    77. Nenchev D N, Yoshida K, Vichitkulsawat P, et al. Reaction Null-space Control ofFlexible Structure Mounted Manipulator Systems[J]. IEEE Transactions onRobotics and Automation,1999,15(6):1011-1023.
    78. Dimitar D. Dynamics and Control of Space Manipulators during a SatelliteCapturing Operation[D]. Tohoku University:Department of AerospaceEngineering,2005.
    79. Dimitrov D N, Yoshida K. Utilization of the Bias Momentum Approach forCapturing a Tumbling Satellite[C]. International Conference on Intelligent Robotsand Systems, Sendai, Japan, Sept28-Oct2,2004,4:3333-3338.
    80. Dimitrov D N. Momentum Distribution in a Space Manipulator for Facilitatingthe Post-impact Control[C]. International Conference on Intelligent Robots andSystems, Sendai, Japan, Sept28-Oct2,2004,4:3345-3350.
    81. Aghili F. Optimal Control for Robotic Capturing and Passivation of a TumblingSatellite with Unknown Dynamics[C]. AIAA Guidance, Navigation,and ControlConference and Exhibit,2008,21:2008-7274.
    82. Walker M W and Kim D M. Satellite Stabilization Using Space Leeches[C].Proc.IEEE Amer. Contr. Conf, San Diego, CA,1990:1314–1319.
    83. Papadopoulos E, Dubowsky S. Coordinated Manipulator/spacecraft MotionControl for Space Robotic Systems[C]. International Conference on Robotics andAutanatim, Sacramento, USA,1991:16961701.
    84. Oda M. Motion Control of The Satellite Mounted Robot Arm which AssuresSatellite Attitude Stability[J]. Acta Astronautica,1997,41(11):739750.
    85.马保离,霍伟.自由飞行空间机器人系统的协调运动控制[J].自动化学报,1998,24(1):5055.
    86. Gu Y L, Xu Y S. A Normal Form Augmentation Approach to Adaptive Control ofSpace Robot Systems[J]. Journal of the Dynamics and Control,1995,5:275-294.
    87.徐文福,李成,梁斌,刘宇,强文义.空间机器人捕获运动目标的协调规划与控制方法[J].自动化学报,2009,35(9):1216-1225.
    88. Papadopoulous E, Evangelos S, Moosavian A. Dynamics and Control of Multi-arm Space Robots during Chase and Capture Operations[C]. IEEE InternationalConference on Intelligent Robots and Systems, Munich, Germany,1994:1554-1561.
    89. Yasuyoshi Y, Takeshi T, Tsuneo Y. Efficient Computational Algorithms forTrajectory Controlof free-flying Space Robots with multiple Arms[J]. IEEETransactions on Robotics and Automation,1993,9(5):571-580.
    90. Yoshida K, Kurazume R, Umetani Y. Dual Arm Coordination in Space Free-flyingRobot[C]. IEEE International Conference on Robotics and Automation,Piscataway,1991:2516-2521.
    91. Xu W F, Liu Y and Xu Y S. The Coordinated Motion Planning of a Dual-armSpace Robot for Target Capturing[J]. Robotica,2012,5(3):755-771.
    92. Huang P F, Xu Y, Liang B. Dynamic Balance Control of Multiarm Free-FloatingSpace Robots[J]. International Journal of Advanced Robotic Systems,2005,2(2):117-124.
    93. Chen L, Tang X T. Optimal Motion Planning of Attitude Control for Space RobotSystem with Dual-arms[C]. Proceedings of the Sixth World Congress onIntelligent Control and Automation,Dalian, China,2006:8858–8861.
    94. Gary E Y, Brij N A. Lyapunov Controller for Cooperative Space Manipulators[J].Journal of Guidance, Control and Dynamics,1998,21(3):477-484.
    95.郭益深,陈力.双臂空间机器人系统运动规划的双向逼近方法[J].空间科学学报,2005,25(6):564-568.
    96. Robertson A, Inalhan G, How J P. Spacecraft Formation Flying Control Design forthe Orion Mission[C]. AIAA Guidance, Navigation, and Control Conference andExhibit, Potland, OR.1999,3:1562-1575.
    97. Carignan C R, Akin D L. The Reaction Stabilization of On-Orbit Robots[J]. IEEEControl Systems Magazine, Dec.2000,20(6):19-33.
    98. Menon C, Busolo S, Cocuzza S, et al. Issues and New Solutions for Testing Free-flying Robots[C]. IAC-04-IAF-1.J.5,2004:1-11.
    99. Sawada H, Ui K, Mori M, et al. Micro-gravity Experiment of a Space RoboticArm Using Parabolic Flight[J]. Advanced Robotics,2004,18(3):247-267.
    100. Xu Y S, Brown Jr H B, Friedman M, et al. Control System of the Self-MobileSpace Manipulator[J]. IEEE Transactions on Control Systems Technology,1994,2(3):207-219.
    101.黄献龙,梁斌,陈建新,吴宏鑫. EMR系统机器人运动学和工作空间的分析[J].控制工程,2000,3:1-6.
    102. Agrawal S K, Hirzinger G, Landzettel K, et al. A New Laboratory Simulator forStudy of Motion of Free-floating Robots Relative to Space Targets[J]. IEEETransactions on Robotics and Automation,1996,12(4):627-633.
    103. Dubowsky S, Durfee W, Corrigan T, et al. A Laboratory Testbed for SpaceRobotics: The VES II[C]. IEEE conference of Robots and Systems,1994:1562-
    1569.
    104. Ma O, Wang J G, Misra S, et al. On the Validation of SPDM Task VerificationFacility [J]. Journal of Robotic Systems,2004,21(5):219–23.
    105. Kane T R and Levinson D A. The Use of Kane’s Dynamical Equations inRobotics[J]. The International Journal of Robotics Research,1983,2(3):3-21.
    106. Xu Y, Kanade T. Space Robotics: Dynamics and Control [M]. Kluwer AcademicPublishers, November, ISBN0-7923-9265-5,1992.
    107. Papadopoulos E and Dubowsky S. On the Nature of Control Algorithms for Free-floating Space Manipulators [J]. IEEE Transactions on Robotics and Automation,1991,7(6):750-758.
    108. Vafa Z. On the dynamics of manipulators in space using the virtual manipulatorApproach[C]. IEEE Int. Conf. Robotics Automat. Raleigh, NC.1987:579-585.
    109. Vafa Z, Dubowsky S. On the Dynamics of Space Manipulator Using the VirtualManipulator with Application to Path Planning[J]. The Journal of theAstronautical Science,1990,38(4):441-472.
    110.梁斌,刘良栋,李庚田.空间机器人的动力学等价机械臂[J].自动化学报,1998,24(6):761-767.
    111. Liang B, Xu Y S, Bergerman M. Mapping a Free-floating SSpace Manipulator toa Dynamically Equivalent Manipulators[J]. ASME Trans on Dynamics,Measurement, and Control,1998,120:1-7.
    112. Umetani Y, Yoshida K. Continuous Path Control of a Satellite Manipulator[J].Acta Astronautica,1987,15(12):981-986.
    113. Yamada K, Tsuchiya K. Efficient Computation Algorithm for Manipulator Controlof a Space Robot[C]. Soc. Instrument Contr. Eng. Trans,1990,26(7):765-772.
    114. Mukherjee R and Nakamura Y. Formulation and Eficient Computation of InverseDynamics of Space Robots[J]. IEEE Trans. on Robotics and Automation,1992,8(3):400-406.
    115. Yokokohji Y, Toyoshima T, Yoshikaka T. Efficient Computational Algorithms forTrajectory Control of Free-Flying Space Robots with Multiple Arms. IEEE Trans.on Robotics and Automation,1993,9(5):571-57.
    116. Taira Y, Sagara S, Katoh R. Digital Adaptive Control of Space RobotManipulators Using Transpose of Generalized Jacobian Matrix[C]. IEEE/RSJInternational Conference on Intelligent Robots and Systems,2000,2:1553-1558.
    117.徐文福,王学谦,薛强,梁斌.保持基座稳定的双臂空间机器人轨迹规划研究[J].自动化学报,2012,38(9):1-11.
    118. Aghili F. Coordination control of a free-flying manipulator and its base attitude tocapture and detumble a noncooperative satellite[C]. Proceedings of the IEEE/RSJInternational Conference on Intelligent Robots and Systems. Piscataway, NJ, USA:IEEE,2009:2365-2372.
    119. Yoshida K, Dimitrov D, Nakanishi H. On the capture of tumbling satellite by aspace robot[C]. Proceedings of the IEEE/RSJ International Conference onIntelligent Robots and Systems. Piscataway, NJ, USA: IEEE,2006:4127-4133.
    120. Pringle R. Tumbling Motions of an Artificial Satellite[J]. AIAA Journal,1965.3(6):1087-1093.
    121.李巍,任顺清,赵洪波.三轴转台误差对陀螺仪标定精确度的影响[J].电机与控制学报,2011,15(10):101-106.
    122.陶景桥,孙小松,李明.自旋卫星测试转台精度分析[J].空间控制技术与应用,2010,36(2):20-24.
    123. Kawamoto S, Matsumoto K, Wakabayashi S. Ground experiment of mechanicalimpulse method for uncontrollable satellite capturing[C]. Proceeding of the6thInternational Symposium on Artificial Intelligence and Robotics&Automation inSpace. Montreal, Canada,2001:1-8.
    124.徐福祥.用地球磁场和重力场成功挽救风云一号(B)卫星的控制技术[J].宇航学报,2001,22(2):1-11.
    125.熊有伦.机器人技术基础[M].14版.武汉:华中科技大学出版社,2010:26-29.
    126. Oki T, Nakanishi H and Yoshida K. Whole-body Motion Control for Capturing aTumbling Target by a Free-floating Space Robot[C]. IEEE/RSJ Int. Conf. onIntelligent Robots and Systems,2007:2256–2261.
    127.耿云海,卢伟,陈雪芹.在轨服务航天器对失控目标的姿态同步控制[J].哈尔滨工业大学学报,2012,44(1)1-6.
    128. Yoshikawa S. and Yamada K. Impulsive Control for Angular MomentumManagement of Tumbling Spacecraft[J]. Acta Astronautica,2007,60:810-819.
    129. Khosla P K and Kanade T. Visual Tracking of a Moving Target by a CameraMounted on a Robot: a Combination of Control and Vision[J]. IEEE Transactionson Robotics and Automation,1993,9(1):14-35.
    130. Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation[J].Proceedings of the IEEE,2004,92(3):401–422.
    131. Julier S J, Uhlmann J K, Durrant-Whyte H F. A New Approach for FilteringNonlinear Systems[C]. Proceedings of the American Control Conference,1995:1628–1632.
    132. Chesi G, Hashimoto K, Prattichizzo D. Keeping Features in the Camera’s Field ofView: A Visual Servoing Strategy[C]. International Symposium on MathematicalTheory of Networks and Systems,2002:2321-2326.
    133. Hager G D. A Modular System for Robust Positioning Using Feedback FromStereo Vision[J]. IEEE Trans on Robotics and Automation,1997,13(4):582-595.
    134. Espiau B, Chaumette F, Rives F. A New Approach to Visual Servoing in Robotics[J]. IEEE Trans on Robotics and Automation,1992,8(3):313-326.
    135. Xu Y S, Shum H Y, Kanade T and Lee J. Parameterization and Adaptive Controlof Space Robot Systems[J]. IEEE Transactions on Aerospace and ElectronicSystems,1994, vol.40:435-451.
    136. Xu Y S and Shum H. Dynamic Control and Coupling of a Free-Flying SpaceRobot System[J]. Journal of Robotic Systems,1994,11(7):573-589.
    137. Papadopoulos E and Moosavian S A A. Dynamics and Control of Multi-armSpace Robots during Chase and Capture Operations[C]. IEEE InternationalConference on Intelligent Robots and Systems, Munich, Germany,1994:1554-1561.
    138. Moosavian S A A and Rastegari R. Multiple-arm Space Free-flying Robots forManipulating Objects with Force Tracking Restrictions[J]. Robotics andAutonomous Systems,2006,10(5):779-788.
    139. Coleshill E, Oshinowo L, Rembala R, et al. Dextre: Improving MaintenanceOperations on the International Space Station[J]. Acta Astronautica,2009,64:869-874.
    140. Diftler M A, Mehling J S, Abdallah M E, et al. Robonaut2-The First HumanoidRobot in Space[C]. IEEE International Conference on Robotics and Automation,Shanghai, China,2011:2178-2183.
    141. Sabelli E, Akin D L and Carignan C R. Selecting Impedance Parameters for theRanger8-DOF Dexterous Space Manipulator[C]. AIAA Aerospace Conferenceand Exhibit, Rohnert Park, California,2007:1-15.
    142. Huang P F, Xu Y S and Liang B. Dynamic Balance Control of Multi-arm Free-Floating Space Robots[J]. International Journal of Advanced Robotic Systems,2005,2(2):117-124.
    143. Yoshida K, Kurazume R and Umetani Y. Torque Optimization Control in SpaceRobots with a Redundant Arm[C]. IEEE/RSJ International Workshop onIntelligent Robots and Systems, Osaka, Japan,1991:1647-1652.
    144. Papadopoulos E. and Dubowsky S. Dynamic Singularities in the Control of Free-Floating Space Manipulators[J]. ASME Journal of Dynamic Systems,Measurement and Control,1993,15(1):44-52.
    145. Paden B and Sastry S. Optimal Kinematic Design of6R Manipulators[J] TheInternational Journal of Robotics Research,1988,7(2):43-61.
    146. Wenger P. Some Guidelines for the Kinematic Design of New Manipulators[J].Mechanism and Machine Theory,2000,5(3):437-449.
    147. Ottaviano E, Ceccarelli M and Husty M. Workspace Topologies of Industrial3RManipulators[J]. International Journal of Advanced Robotic Systems,2007,4(3):355-364.
    148. Lee E and Mavroidis C. Solving the Geometric Design Problem of Spatial3RRobot Manipulators Using Polynomial Homotopy Continuation[J]. Journal ofMechnical Design,2002,124(4):652-661.
    149. Stani i M M and Duta O. Symmetrically Actuated Double Pointing Systems: theBasis of Singularity-free Robot Wrists[J]. IEEE Transactions on Robotics andAutomation,1990,6(5):562-569.
    150. Charles S, Das H, Ohm T et al. Dexterity-enhanced Telerobotic Microsurgery[C].The8th International Conference on Advanced Robotics, Monterey, CA,1997:5-10.
    151. Aghili F. Optimal Control of a Space Manipulator for Detumbling of a TargetSatellite[C]. International Conference on Robotics and Automation, Kobe, Japan,May2009:12-17.
    152. Eberhart R and Kennedy J. A new Optimizer Using Particle Swarm Theory[C].Proceedings of the Sixth International Symposium on Micro Machine and HumanScience, Nagoya, Japan,1995:39-43.
    153.徐文福.空间机器人目标捕获的路径规划与实验研究[D].哈尔滨工业大学博士论文,2007:153-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700