高铝粉煤灰制备莫来石陶瓷的性能及烧结反应机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莫来石因独特的针、柱状穿插骨架结构使其具有优良的热稳定性、化学稳定性和机械性能而被广泛应用于耐高温、防腐蚀和耐磨损等领域。由于目前粉煤灰在我国排放量大、利用率低且技术含量不高,其资源化利用问题成为近年来我国政府所面临的一大难题。本文利用高铝粉煤灰的化学及物相组成优势,采用高粉煤灰掺量,研究中低温烧制高强度、高含量莫来石陶瓷的可行性。论文对制品的性能和显微结构进行了研究,对莫来石晶体化学与晶体结构作了分析,在莫来石陶瓷烧结机理的研究基础上,深入讨论了莫来石晶化反应热力学、动力学问题,并对比研究了铝硅凝胶体系中莫来石的形成机理。
     通过系统制备莫来石陶瓷的实验研究,确定了AS、AD两个系列陶瓷的制备工艺条件并获得了良好的性能指标。Al_2O_3/SiO_2(摩尔)=0.9(粉煤灰=70.1%),烧结温度为1550℃,保温时间为2~5h,获得AS90陶瓷的基本性能:吸水率为0.62~0.91%,显气孔率为1.72~2.45%,体积密度为2.76~2.82g/cm~3,抗折强度为80~98MPa。这些指标达到了《耐酸砖》GB/T 8488-2001等标准的要求。AD系列陶瓷还具有较高的抗折强度,其中M2和CF2的抗折强度分别达到了169MPa和131MPa。
     AS系列陶瓷,烧结温度≤1300℃,其物相主要为玻璃相及莫来石,还有刚玉和方石英;烧结温度≥1450℃,主要是莫来石和玻璃相,在AS90陶瓷中莫来石含量约为80%。AD系列陶瓷,莫来石含量及晶粒大小受添加剂种类及其含量的影响,莫来石晶粒的长径比为4~7。AS90的抗折强度与气孔率关系符合Ryskewitsch经验公式,而与莫来石晶粒长度关系符合Orowan半经验公式。合成莫来石的氧空位系数、Al_2O_3含量与晶格常数之间的关系不明显,这与其较高的Ti~(4+)、Fe~(3+)固溶量造成八面体扭曲或畸变有关。
     烧结初、中期,熔体粘度随时间延长呈指数下降,烧结反应速率常数为0.08min~(-1)(1100℃)~3.42min~(-1)(1500℃),烧结反应级数在0.29~0.52之间,烧结反应表观活化能为178~295kJ/mol。烧结中、后期,莫来石晶粒生长符合正常晶体的生长规律,其晶粒生长速率常数随温度升高而急剧增大。1300℃时,晶粒生长指数n=2.13,晶粒生长受化学位梯度扩散控制;1500℃时,n=3,晶粒生长主要受气孔迁移控制。在1100~1300℃,晶粒生长的表观活化能为226kJ/mol,在1300~1500℃,晶粒生长表观活化能为69kJ/mol。
     莫来石晶化反应的4种主次形式为:Al_2O_3(liq)+SiO_2(liq)>Al_2O_3(s)+SiO_2(liq)>Al_2O_3(liq)+SiO_2(s)>Al_2O_3(s)+SiO_2(s)。AS体系莫来石晶化反应的自由能要比红柱石、夕线石、蓝晶石等矿物分解生成莫来石的自由能低约100kJ/mol,比α-Al_2O_3或γ-Al_2O_3与石英反应生成莫来石的自由能也低。晶化反应的表观活化能较低,仅为151kJ/mol,原因是体系中种晶莫来石的存在免去了成核阶段所需的界面能。添加4w_B%Na_2O后,表观活化能下降至92kJ/mol。莫来石化过程具有鲜明的“玻璃微珠球体晶粒生长”特征:莫来石首先在粉煤灰玻璃微珠球体上析晶并生长导致球体破裂,继而按α-Al_2O_3与SiO_2(liq)反应模式生成莫来石。
     采用超临界CO_2一步法(形成与干燥)制备了铝硅前驱体干凝胶。经煅烧获得粒径较均一的纳米莫来石粉体。伴随着γ-Al_2O_3→δ-Al_2O_3→α-Al_2O_3的转变,干凝胶莫来石化在1200℃开始,至1400℃基本完成。
     本文研究表明,高粉煤灰掺量(>70%)制备的高莫来石含量的AS系列陶瓷可以用作耐酸砖、热电厂烟囱内衬砖等。论文取得的成果为粉煤灰高效资源化利用提供了新途径,也为利用高铝煤灰低成本制备高强度莫来石陶瓷提供了实验依据和技术参考,也提供了粉煤灰物料体系烧结反应机理及莫来石晶化反应热力学和动力学的理论依据。
Owing to the unique interlocking grain structure, excellent mechanical properties, favourable thermal and chemical stability, mullite and mullite based ceramics have been widely used in many fields such as refractory materials, anti-corrosion liners, sliding wear ceramics, etc. The huge amounts of fly ash from the coal combustion in China annually has put forwards the great challenge for the Chinese government to utilize it efficiently. In this work, author take the advantage of phase-mineral and chemical compositions of high-aluminum fly ash collected from North China Thermal Power Plant, and prepared mullite ceramics at lower sintering temperatures, which was aimed to apply in high strength, corrosion-resistance reinforced structure materials. This research focused on the correlations of the properties and structures of the mullite ceramics from point of mullitization thermodynamics, reaction kinetics and crystalloid chemistry. For comparison, this thesis also discussed the mechanism of the mullite formation from silicon-aluminium xerogel system.
    Processing parameter optimization and improved mechanical characteristics were obtained in two representative series of mullite ceramics named as AS and AD from series of experiments. At the molar ratio of Al_2O_3/SiO_2=0.9( fly ash mass content is about 70%), sintered temperature 1550℃, residence time 2~5h, the prepared AS90 sample exhibited the following properties of water absorption 0.62~0.91%, apparent porosity 1.72~2.45%, bulk density 2.76~2.82g/cm~3, bending strength 80~90MPa, which is up to the National Standard of China "Acid-resisting bricks and tiles" GB/T 8488-2001. Moreover, M2 and CF2 samples in AD series ceramics displayed much higher bending strength at 169 MPa and 131 MPa respectively.
    The mineralogical phases analysis indicated that the sample sintered below 1300℃ consisted glass phase, mullite, corundum and cristobalite, and the products fired at above 1450℃ contained only mullite and glass phase in the batches of AS system. It is estimated by standard curve methods from XRD analysis results that mullite content is about 80% in AS90 ceramics. For AD ceramics, mullite content and grain size is greatly affected by additives and their contents, the aspect ratio of mullite grain obtained is 4~7. The correlation between bending strength and porosity obeys "Ryskewitsch" formula, and the relationship between bending strength and the grain size of crystallies agree well with "Orowan" semi-experienced functions. However, there is no obvious correlation among the oxygen hole rate, Al_2O_3 content, lattice parameters of synthesized mullite. This may be attributed to the high dopant content of Ti~(4+)、Fe~(3+) that caused distortion or aberration of octahedron site in mullite crystals.
    At initial and intermediate sintering stage, the viscosity of the melt decreased along exponential gradient with sintering time, the constant of sintering rate
    increased from 0.08mm~(-1) at 1100℃ to 3.42 min~(-1) at 1500℃; and the reaction exponent lies within 0.29~0.52, apparent active energy of sintering reaction is calculated at about 178 kJ/mol within the temperature of 1100℃~1450℃ and 295 kJ/mol within 1450℃~1500℃. At intermediate and final stage, the grain growth of mullite consists with general crystal theory, the constant of mullite growth rate climbed from 1100 to 1500℃. The grain growth exponent n is 2.13 at 1300℃, which is interpreted that grain growth is controlled by chemical potential gradients diffusion. At the temperature of 1500℃, the grain growth exponent n amounts to 3, which showed that the growth rate is dominated by pore transferring and elimination. The results indicated that the apparent active energy of grain growth decrease from 226 kJ/mol (1100~1300℃) to 69 kJ/mol (1300~1500℃).
    This research proposed a model of mullitization mechanism of Fly ash and Bauxite reactants couples reaction, which was termed as cenosphere mullitization to summarize the sintering process of the reactions from high aluminum fly ash. Firstly, crystallization of mullite takes place around the pristine mullite seeds in the shell of the cenosphere of fly ash with the formation of gas. And then the hollow microspheres were broken for the swelling of gas and leading to green ceramics volume shrinkage. Lastly, the mullites crystals grows as the reaction route among α-Al_2O_3, amorphous SiO_2. It was found that mullitization reaction takes place in the order of: Al_2O_3(liq)+SiO_2(liq)>Al_2O_3(s)+SiO_2(liq)>Al_2O_3(liq)+SiO_2(s)>Al_2O_3(s)+ SiO_2(s) vis thermadynamic and kinetics calculation. In AS systems, the apparent free engery is ~100kJ/mol lower than those of decomposition reactions of andalusite, sillimanite and kyanite, and also lower than that of utilization of α-Al_2O_3+quartz or γ-Al_2O_3+quartz. The apparent mullitization active energy is around 151 kJ/mol in the rage of 1100℃~1500℃. When 4w_B%Na_2O added into the initial batches of AS90, the apparent crystallization active energy was evaluated to decrease further to 92kJ/mol in the rage of 1100℃~1300℃.
    In addition, nanosized mullite was successfully prepared by supercritical CO_2 and subsequent supercritical fluid extraction from the xerogel of mullite precursors. The mineralogical phases tracing experiment showed that the mullitization process underwent from 1200℃ to 1400℃ as followed by the phase transition of γ-Al_2O_3→ δ-Al_2O_3 →α-Al_2O_3.
    The prepared mullite ceramics of series AS (utilization rate of fly ash is above around 70%) and AD might find its application in middle-low temperature, anti-corrosion and high strength areas, such as acid-resisting brick, refractory materials and friction-resistance liners in boilers. The results provide inventive data in preparation of low-cost, high performance mullite based composites from high aluminum fly ash, and enrich the sintering mechanism of fly ash system in view of mullitization thermaldynamics and kinetics.
引文
1. Aksay, I. A. & Pask, J. A., Stable and Metastable Equilibria in the System SiO_2-Al_2O_3. J. Am. Ceram. Soc., 1975, 58(11-12): 507-512.
    2. Aksay, I. A., Dabbs, D. M. & Sarikaya, M., Mullite for Structural, Electronic, and Optical Applications. J. Am. Cerara. Soc., 1991, 74(10): 2343-2358.
    3. Angel, R. J. & Prewitt, C. T., Crystal structure of mullite: A re-examination of the average structure. American Mineralogist, 1986, 71: 1476-1482.
    4. Angel, R. J. & Prewitt, C. T., The incommensurate structure of mullite by patterson synthesis. Acta Crystallogr., 1987, B43: 116-126.
    5. Anggono, J. & Derby, B., Mullite formation from the pyrolysis of aluminium-loaded polymethylsiloxanes: The influence of aluminium powder characteristics. Journal of the European Ceramic Society, 2006, 26(52): 1107-1119.
    6. Aramaki, S. & Roy, R., Revised Phase Diagram for the System Al_2O_3-SiO_2. J. Am. Ceram. Soc., 1962, 45(1-2): 229-242.
    7. Ashby, M. F., Diffusion-tontrolled sliding at a serrated grain boundary. Scripta Met., 1970, 4: 737-756.
    8. Ban, T. & Okada, K., Structure refinement of mullite by the Rietveld method and a new method for estimation of chemical composition. J. Am. Ceram. Soc., 1992, 75: 227-230.
    9. Bartsch, M., Saruhan, B., Schmucker M. et al., Novel low-temperature processing route of dense mullite ceramics by reaction sintering of amorphous SiO_2-coated A_2O_3 particle nanocomposites. J. Am. Ceram. Soc., 1999, 82: 1388-1392.
    10. Baudin, C., Osendi, M. I. & Moya, J. S., Solid solution of TiO_2 in mullite. J. Mater. Sci. Lett., 1983, 2: 185-187.
    11. Bauer, W. H., Gordon, I. & Moore, C. H., Flame fusion synthesis of mullite single crystals. J. Am. Ceram. Soc., 1950, 33: 140-143.
    12. Behmanesh, N., Heshmati-Manesh, S. & Ataie, A., Role of mechanical activation of precursors in solid state processing of nano-structured mullite phase. Journal of Alloys and Compounds, 2006, 138: 1-5.
    13. Boch, P., Chattier, T. & Rodrigo, P. D., High-purity mullite ceramics by reaction-sintering. Ceramic Trans., 1990, 6: 353-374.
    14. Boer, J. H., Everett, D. H. & Stone, F. S., The Structure and Properties of Porous Materials, Butterworth, London, 1958: 68.
    15. Bohn, D., Mullit und Tialit im System Al_2O_3-SiO_2-Fe_2O_3-TiO_2. Diploma Thesis. Univ. Aachen., 1979.
    16. Boow, J. Fuel., 1969, 48(2): 171-178.
    17. Bottinga, Y. & Weill, D. F., The viscosity of magmatic: silicate liquids:a model for calculation. American Journal of Science, 1972, 272: 438-475.
    18. Bouchetou, M. L., Ildefonse, J. P., Poirier, J. et al., Mullite grown from fired andalusite grains: the role of impurities and of the high temperature liquid phase on the kinetics of mullitization and consequences on thermal shocks resistance. Ceramics International, 2005, 31: 999-1005.
    19. Bown, N. L., Greig, J. W. & Zies, E. G., Mullite-a silicate of alumina. J. Wash Acad Sci., 1924, 14(9): 183-191.
    20. Brook, R. J., Controlled grain growth. Treatise on materials science and technology. Ceramic Fabrication Process, New York: Academic press, 1976, 9: 331.
    21. Bulens, M., Leonard, A. & Delmon, B., Spectroscopic investigations of the kaolinite-mullite reaction sequence. J. Am. Cercan. Soc., 1978, 61: 81-84.
    22. Bulzar, D. & Ledbetter, H., Crystal structure and compressibility of 3: 2 mullite. American Mineralogist, 1993, 78: 1192-1196.
    23. Burnham, C. W., The ctystal structure of mullite, Carnegie Inst. Washington Yearb., 1964, 63: 223-227.
    24. Butler, B. D., Welberry, T. R. & Withers, R. L., Oxygen vacancy ordering and the incommensurate structure of mullite. Phys. Chem. Minerals., 1993, 20: 323-332.
    25. Caballero, A. & Ocana, M., Synthesis and structural characterization by X-ray absorption spectroscopy of tin-doped mullite solid solutions. J. Am. Ceram. Soc., 2002, 85: 1910-1914.
    26. Cameron, W. E., Compostion and Cell Dimensions of Mullite., Am. Ceram. Soc. Bull., 1977, 56(11): 1003-1011.
    27. Cameron, W. E., Nonstoichiometry in sillimanite: Mullite compositions with sillimanite-type superstructures. Phys Chem. Minerals., 1977, 1: 265-272.
    28. Campos, A. L., Silva, N. T., Melo, F. C. L. et al., Crystallization kinetics of orthorhom-bic mullite from diphasic gels. J. Non-Cryst. Solids. 2002, 304: 19-24.
    29. Campos, A. L., Kawachi, E. Y., Oliveira, T. C. et al., Mullite Crystallization mechanism obtained from kinetic parameters determination for seeded and non-seeded gel. Materials Science and Engineering B, 2005, 122(50): 169-173.
    30. Chandra, N., Agnihotri, N. & Bhasin, S., Effect of addition of talc on the sintering characteristics of fly ash based ceramics tiles., Journal of the European Ceramic Society, 2005(25): 81-88.
    31. Chen, C. Y., Lan, G. S. & Tuan, W. H., Preparation of mullite by the reaction sintering of kaolinite and alumina. Journal of the European Ceramic Society, 2000, 20: 2519-2525.
    32. Christina, G. V. & Stanislav, V. V., Behaviour of inorganic matter during heating of Bulgarian coals: 2. Subbituminous and bituminous coals. Fuel Processing Technology, 2006, 87: 1095-1116.
    33. Chen, G. H., Sintering, crystallization, and properties of CaO doped cordierite-based glass-ceramics. Journal of Alloys and Compounds, 2007, available online.
    34. Chen, Y. F., Wang, M. C. & Hon, M. H., Transformation kinetic and mechanism of kaolin-Al_2O_3 ceramics. J. Mater. Res., 2003, 18: 1355-1362.
    35. Chen, Y. F., Wang, M. C. & Hon, M. H., Kinetics of secondary mullite formation in kaolinAl_2O_3 ceramics. Scripta Materialia, 2004, 013(51): 231-235.
    36. Chen, Y. Y. & Wei, W. C., Formation of mullite thin film via a sol-gel process with polyvinylpyrrolidone additive. Journal of the European Ceramic Society, 2001, 21: 2535-2540.
    37. Claussen, N. et al., Proc. Brit. Ceram. Soc., 1974, 25: 139.
    38. Coble, R. L.(a)Sintering crystalline solids-Ⅰ intermediate and final state diffusion models;(b) Sintering scrystalline solids-Ⅱ experimental test to diffusion models in powder compacts. J. Appl. Phys., 1961, 32: (a)787-792; (b)793-799.
    39. Dabbs, D. M., Nan, Y. & Aksay, I. A., Journal of Nanoparticle Research, 1999, 1: 127-130.
    40. Davis, R. F. & Pask, J. A., Diffusion and reaction studies in the system Al_2O_3-SiO_2. J. Am. Ceram. Soc., 1972, 55: 524-531.
    41. Dokko, P. C., Pask, J. A. & Mazdiyasni, K. S., High temperature mechanical properties of mullite under compression. J. Am. Ceram. Soc., 1977, 60: 150-155.
    42. El-Shennawi, A. W. A., Morsi, M. M., Abdel-Hameed, S. A. M., Effect of fluoride nucleating catalysts on crystallization of cordierite from modified basalt-based glasses. Journal of the European Ceramic Society, 2007, 27: 1829-1835.
    43. Fischer, R. X., Schneider, H. & Schmucker, M. Crystal structure of Al-rich mullite. American Mineralogist, 1994, 79: 983-990.
    44. Fischer, R. X., Schmucker, M., Angerer, P. et al., Crystal structures of Na and K aluminate mullites. Amer. Min., 2001, 86: 1513-1518.
    45. Fischer, R. X. Schneider, H. & Voll, D., Formation of aluminum rich 9: 1 mullite and its transformation to low alumina mullite upon heating. J. Europ. Ceram. Soc., 1996, 16: 109-113.
    46. Francisco, J. T., Esther, R. & Javier, A., Effect of boron oxide on the microstructure of mullite-based glass-ceramic glazes for floor-tiles in the CaO-MgO-Al_2O_3-SiO_2 system. Journal of the European Ceramic Society, 2006, 26: 2285-2292.
    47. Frenkel, J., Kinetic theory of liquids. New York: Oxford University Press, 1946.
    48. Gelsdorf, G., Muller-Hesse, H. & Schwiete, H. E., Einlagerungsversuche and synthetischem Mullite and Substitutionsversuche mit Galliumoxyd und Germaniumoxyd. Teil Ⅱ. Arch. Eisenhuttenwesen., 1958, 29: 513-519.
    49. Ghate, B. B., Hasselman, D. P. H. &Spriggs, R. M., Kinetics of pressure sintering and grain growth of ultra fine mullite powders. Ceram. Intern. 1975, 1: 105-110.
    50. Ghiorso, M. S. & Sack, R. O., Chemical mass transfer inmagmatic progress Ⅵ: A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol, 1995, 119(2): 197-212.
    51. Gomes, S. & Francois, M., Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and ~(29)Si MAS NMR. Cement and Concrete Research, 2000, 30: 175-181.
    52. Griber, K. J., Untersuchungen im System Al_2O_3-SiO_2-B_2O_3 "Bormullite"., Master Thesis, Univ. Vienna., 2004.
    53. Hasselman, D. P. H., J. Am. Ceram. Soc., 1963, 46: 229.
    54. He, Y., Wei, M. C. & Cai, H. S., Characterization of α-cordierite glass-ceramics from fly ash. Journal of Hazardous Materials, 2005, B120: 265-269.
    55. Henry, J. & Hill, R. G., The influence of lithia content on the properties of fluorphlo-gopite glass-ceramics. Ⅱ. Microstrueture hardness and machinability. Journal of Non-Crystalline Solids, 2003, 319: 13-30.
    56. Hildmann, B., Schneider, H. & Schmucker, M., High temperature behaviour of polyerystalline alumo-silicate fibers with mullite bulk composition: Ⅱ Kinetics of γ-Al_2O_3mullite transformation. J. Europ. Ceram. Soc., 1996, 16: 287-292.
    57. Hong, S. H. & Messing, G. L., Mullite transformation kinetics in P_2O_5, TiO_2, and B_2O_3 doped aluminosilicate gels. J. Am. Ceram. Soc., 1997, 80(6): 1551-1559.
    58. Huang, T., Rahaman, M. N., Mah, T. I. et al., Anisotropic grain growth and Microstructural evolution of dense mullite above 1550℃. J. Am. Ceram. Soc., 2000, 83: 204-210,
    59. Huang, X., Hwang, J. Y. & Mustuddy, B. C., Properties of mullite synthesized from fly ash and alumina mixture. Interceram, 1995, 44(5): 65-71.
    60. Huling, J. C. & Messing, G. L., Epitactic nucleation of spinel in aluminium silicate gels and effect on mullite crystallization. J. Am. Ceram. Soc. 1991, 74: 2374-2381.
    61. Ivankovic, H., Tkalcec, E., Nass, R. et al., Correlation of the precursor type with densification behaveior and microstructure of sintered mullites. J. Europ. Ceram. Soc., 2003, 23: 283-292.
    62. Ivensen, V. A., Densification of metal powders during sintering. New York: London sonsultants bureau, 1973.
    63. Jimenez, A. F., Vallepu, R., Terai, T. et al., Synthesis and thermal behavior of different aluminosilicate gels. Journal of Non-Crystalline Solids, 2006, 352(37): 2061-2066.
    64. Jin, X. H., Gao, L. & Guo, J. K., The structural change of diphasic mullite gel studied by XRD and IR spectrum analysis. Journal of the European Ceramic Society, 2002, 22: 1307-1311.
    65. Johnson, S., Pask, J. A., Role of impurities on formation of mullite from kaolinite and Al_2O_3-SiO_2 mixtures. Amer. Ceram. Soc. Bull., 1982, 61: 838-842.
    66. Jung, J. S. & Park, H. C., Mullite ceramics derived from coal fly ash. Journal of materials science letter, 2001, 20: 1089-1091.
    67. Kang, S. J., Densification, Grain growth and microstructure[M]. Great Britain, 2005.
    68. Kingery, W. D. & Narasimhan, M. D., Densification during sintering in the presence of a liquid phase Ⅱ experimental. J. Appl. Phys., 1960: 307-310.
    69. Kingery, W. D., Bowen, D. R. & Uhlmann, D. R., Introduction to Ceramics. John Wiley & Sons, Inc. New York. Second Edition, 1976.
    70. Kingery, W. D., Densification during sintering in the presence of a liquid phase. I. Theory. J. Appl. Phys., 1959, 30: 301-306.
    71. Kingery, W. D., J. Am. Ceram. Soc., 1963, 46: 535.
    72. Kingery, W. D., J. Am. Ceram. Soc., 1969, 46: 600.
    73. Kleebe, H. J., Siegelin, F. & Straubinger, T., Conversion of Al_2O_3-SiO_2 powder mixtures to 3: 2 mullite following the stable or metastable phase diagram. Journal of the European Ceramic Society, 2001, 21: 2521-2533.
    74. Klug, F. J., Prochazka, S. & Doremus, R. H., Alumina-Silica phase diagram in the mullite region. J. Am. Ceram. Soc., 1987, 70(10): 750-759.
    75. Kollenberg, W. & Schneider, H., Microhardness of mullite at temperature up to 1000℃. J. Am. Ceram. Soc., 1989, 72: 1739-1740.
    76. Komameni, S. & Roy, R. ibid. 1985, 68: C243.
    77. Kong, L. B., Chen, Y. Z., Zhang, T. S. et al., Effect of alkaline-earth oxides on phase formation and morphology development of mullite ceramics. Ceramics International, 2004, 30(19): 1319-1323.
    78. Kong, L. B., Gan, Y. B., Ma, J. et al., Mullite phase formation and reaction sequences with the presence of pentoxides. Journal of Alloys and Compounds, 2003, 351: 264-272.
    79. Kress, V. C. & Carmichael, I. S. E., The compressibility of silicate liquids containing Fe_2O_3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol., 1991, 108: 82-92.
    80. Kriven, W. M., Palko, J. W., Sinogeikin, S. et al., High temperature single crystal properties of mullite. J. Europ. Ceram. Soc., 1999, 19: 2529-2541.
    81. Kriven, W. M., Siah, L. F., Schmucker M. et al.. High temperature microhardness of single crystal mullite. J. Am. Ceram. Soc., 2004, 87: 970-972.
    82. Kubicki, J. D. & Toplis, M. J., Molecular orbital calculations on aluminosilicate triclnster molecules: Implications for the structure of aluminosilicate glasses., American Mineralogist, 2002, 87: 668-678.
    83. Kumazawa, T., Kanzaki, S., wakai, T. et al., Creep of mullite ceramics. In processdings of the 25th Symposium on the Basic Science of Ceramics, Paper No. 1E08. Ceramic Society of Japan, Tokyo, 1987.
    84. Kutty, T. R. N. and Nayak, M., Photoluminescence of Eu~(2+)-doped mullite (xAl_2O_3ySiO_2; x/y=3/2 and 2/1) prepared by the hydrothermal method. J. mater. Chem. Phys., 2000, 65: 158-165.
    85. Lakatos, T., Johansson, L. G. & Simmingskold, B., Viscosity temperature relations in the glass system SiO_2-Al_2O_3-Na_2O-K_2O-CaO-MgO in the composition range of technical glasses. Glass Technology, 1972, 13(3): 88-95.
    86. Lange, R. A. & Carmichael, I. S. E., Densities of Na_2O-K_2O-CaO-MgO-FeO-Fe_2O_3-Al_2O_3TiO_2-SiO_2 liquids: New measurements and derived partial molar properties. Geochim Gosmochim Acta., 1987, 51: 2931-2946.
    87. Lee, J. E., Kim, J. W., Jung, Y. G. et al., Effects of precursor pH and sintering temperature on synthesizing and morphology of sol-gel processed mullite. Ceramics International, 2002, 28: 935-940.
    88. Lee, W. E., Souza, G. P., McConville, C. J. et al., Mullite formation in clays and clay-derived vitreous ceramics. Journal of the European Ceramic Society, 2007, 009: 1-7.
    89. Li, D. X. & Thomson, W. J., Mullite formation kinetics of a single phase gel. J. Am. Ceram. Soc., 1990, 73: 964-969.
    90. Liu, Y. & Nekvasil, H., Si-F bonding in aluminosilicate glasses: Inferences from ab initio NMR calculations. American Mineralogist, 2002, 87: 339-346.
    91. Liu, Z. M. Yang, G. Y., Lu, Y. et al., Phase equilibria of the CO_2-Jiangsu crude oil system and precipitation of heavy components induced by supercritical CO_2. The Journal of Supercritical Fluids, 1999, 16(1): 27-31.
    92. Mack, D. E., Becker, K. D. & Schneider, H., High temperature Mossbauer study of Fe-subtituted mullite. Amer. Min., 2005, 90(7): 1078-1083.
    93. MacKenzie, K. J. D., Meinhold, R. H., Brown, I. W. M. et al., The formation of mullite from kaolinite under various reaction atmospheres. Journal of European Ceramic Society, 1996, 16: 115-119.
    94. Marotta, A. & Buri, A., Kinetics of devitrification and differential thermal analysis. Therm. Acta., 1978, 25: 155-160.
    95. Mazza, D., Ronchetti, S. & Costanzo, A., Atomistic simulations on mullite Al_2(Al_(2+2x)Si_(2-2x)) O_(10-x) in a variable range of composition. Journal of the European Ceramic Society, 2007, available online.
    96. Mills, K. C. & Broadbent, C. P., Evaluation of slags program for the prediction of physical propertyes of coal gasification slags. Impact ash deposition coal fired plants., 1993, p.513-525.
    97. Murthy, M. K. & Hummel, F. A., X-ray study of the solid solution of TiO_2, Fe_2O_3, and Cr_2O_3 in mullitc(2Al_2O_3.2SiO_2). J. Am. Ceram. Soc., 1960, 43: 267-273.
    98. Murugavcl, P. & Kalaisclvam, M., Preparation and characterization of submicron spherical particles of Al_2O_3, SiO_2 and mullite. Materials Chemistry and Physics, 1998, 53(3): 247-252.
    99. Nikolaos, K., Zeng, R. & Perdikatsis, V., Mineralogy and geochemistry of Greek and Chinese coal fly ash. Fuel., 2006, 85: 2301-2309.
    100. Nishio, T., Kijima, K., Kajiwara, K. et al., The influence of preparation procedure in the mullitc preparation by solution method to the mixing of Al and Si and the crystallization behavior. J. ceram. Soc. Jpn. 102, 462-470.
    101. Ocana, M., Caballero, A., Gonzalcz, C. T. et al., Preparation by pyrolysis of aerosols and structural characterization of Fe-doped mullite powders. Materials Research Bulletin, 2000, (35): 775-788.
    102. Ohita, H., Shiga, H., Ismail, M. et al., Compressive creep of mullite ceramics. J. Mater. Sci. Lett, 1991, 10: 847-849.
    103. Ohnishi, H., Kawanami, T., Nakahira, J. et al., Microstructure and mechanical properties of mullite ceramics. J. Ceram. Soc. Jpn. 1990, 98: 541-547.
    104. Okada, K., Kaneda, J., Kameshima, Y. et al., Crystallization kinetics of mullite from polymeric Al_2O_3-SiO_2 xerogels. Materials Letters, 2003, 57: 3155-3159.
    105. Okada, K. & Otsuka, N., Chage in chemical compositeon of mullite formed from 2SiO_2 3Al_2O_3 xerogel during the formation process., J. Am. Ceram. Soc., 1987, 70: C245-247.
    106. Okada, K. & Otsuka, N., Characterization of the Spinel Phase from Al_2O_3-SiO_2 Xerogels and the Formation Process of Mullite. J. Am. Ceram. Soc., 1986, 69(9): 652-656.
    107. Okada, K., Otsuka, N. & Somiya, S., Review of mullitc synthesis routes in Japan. Amer Ceram. Soc. Bull., 1991, 70: 1633-1640.
    108. Okada, K., Activation energy of mullitization from various starting materials. Journal of the European Ceramic Society, 2007, 15: 1-6.
    109. Ossaka, K., Tetragonal mullite-like phase from coprecipitated gels. nature., 1961, 191(4792): 1000-1001.
    110. Padlewski, S., Heine, V. & Price, G. D., The energetics of interaction between oxygen vacancies in sillimanite: a model for the mullite structure. Phys. Chem. Minerals., 1992, 19: 196-202.
    111. Park, Y. M., Yang, T. Y. & Yoon, S. Y., Mullite whiskers derived from coal fly ash. Materials Science and Engineering A, 2007, 454-455: 518-522.
    112. Parmentier, J., Vilminot, S. & Dormann, J. L., Fe-and Cr-substituted mullites: Mossbauer spectroscopy and rietveld structure refinement. Solid State Sci., 1999, 1: 257-265.
    113. Pejovnik, S., Kolar, D., Huppmann, W. J. et al., Sintering of alumina in presence of liquid phase. Sci. sintering., 1978, 10(2): 87-95.
    114. Pejovnik, S., Smolej, V., Susnik, D. et al., Statistical analysis of the validity of sintering equation. Pow. Met. Int., 1979, 11(1): 22-23.
    115. Pitchford, J. E., Steam, R. J., Kelly, A. et al., Effect of oxygen vacancies on the hot hardness of mullite. J. Am. Ceram. Soc., 2001, 84: 1167-1168.
    116. Prochazka, S. & Klug, F. J., Infrared-Transparent Mullite Ceramc, J. Am. Ceram. Soc., 1983, 66(11): 874-880.
    117. Rager, H., Schneider, H. & Bakhshandeh, A., Ti~(3+) centers in mullite. J. Europ. Min. Soc., 1993, 5: 511-514.
    118. Rager, H., Schneider, H. & Graetsch, H., Chromium in corporation in mulite. Amer. Min., 1990, 75: 392-397.
    119. Rahman, S., Feustel, U. & Freimann, S., Structure description of the thermic phase transformation sillimanite-mullite. Journal of the European Ceramic Society, 2001, (21): 2471-2478.
    120. Rana, A. P. S., Aiko, O. & Pask, J. A., Sintering of α-Al_2O_3/quartz and α-Al_2O_3/cristobalite related to mullite formation. Ceramics Intern., 1982, 8: 151-153.
    121. Repelin, Y. & Husson, E., Etudes structurals d'aluminnes de transition I-Alumines gamma et delta. Materials Research Bulletin, 1990, 25: 611-621.
    122. Rodrigo, P. K. & Both P., High purity mullite-based ceramics by reaction sintering. Int. J. HighTechn. Ceramics., 1985, 1: 3-30.
    123. Rohatgi, P. K., Huang, P., Guo, R. et al., Morphology and selected properties of fly ash. In: fly ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Proceedings Fifth International Conference. Milwaukee, Wisconsin, USA., 1995, 21-25: 459-478.
    124. Romero, M., Martin-Marquez, RincOn J. Ms., Kinetic of mullite formation from a porcelain stoneware body for tiles production. Journal of the European Ceramic Society, 26(2006) 1647-1652.
    125. Rossman, G. R., Grew, E. S. & Dollase, W. A., The colors of sillimanite. Amer. Min., 1982, 67: 749-761.
    126. Routschka, G. R., Studies on the Behavior of Fine Clay, High-Alumina, and Zircon Bricks in Contact with Melts and Vapours of Alkali Salts. Partl. Inter ceram., 1988, 37(1): 54-59.
    127. Rubie, D. C. & Brearley, A. J., Metastable melting during the breakdown muscovite+quartz at 1 kbar. Bull. Mineral., 1987, 110: 533-549.
    128. Sacks, M. D. & Pask, J. A., Sintering of mullite-containing materials: Ⅰ. Effect of compostion. J. Am. Ceram. Soc., 1982, 65: 65-70
    129. Sadanaga, R., Tokonami, M., Takeuchi, Y., The structure of mullite, 2Al_2O_3.SiO_2 and relationship with the structure of sillimanite andalusite. Acta Crystallog R., 1962, 15: 65-68.
    130. Saruhan, B., Voss, U. & Schneider, H., Solid solution range of mullite up to 1800℃ and microstructural development of ceramics. J. Mater. Sci., 1994, 29: 3261-3268.
    131. Schmucker, M., Albers, W. & Schneider, H., Sintering of quartz and α-Al_2O_3-A TEM study. J. Europ. Ceram. Soc., 1993, 15: 511-515.
    132. Schmucker, M., Mechnich, P., Zaefferer, S. et al., The high-temperature mullite/α-alumina conversion in rapidly flowing water vapor. Scripta Materialia., 2006, 55(12): 1131-1134.
    133. Schmucker, M., Schneider, H., Mauer, T. et al., Temperature-dependent evolution of grain growth in mullite filbres. J. Europ. Ceram. Soc., 2005, 25: 3249-3256.
    134. Schmucker, M. & Schneider, H., Kinetic of mullite grain growth in alumino silicate fibers. J. Am. Ceram., 2005, 88(2): 488-490.
    135. Schneider, H. & Eberhard, E., Thermal expansion of mullite. J. Am. Ceram. Soc., 1990, 73: 2073-2076.
    136. Schneider, H. & Komarneni, S., Mullite[M]. The Federal Republic of Germany: 2005.
    137. Schneider, H. & Pager, H., Iron incorporation in mullite. Ceramics Intern., 1986, 12: 117-125.
    138. Schneider, H. & Pager, H., Occurrence of Ti~(3+) and Fe~(2+) in mullite. J. Am. Ceram. Soc., 1984, 67: 248-245.
    139. Schneider, H. & Vasudevan, R., Structural deformation of manganese substituted mullites: X-ray line broadening and lattice parameter studies. N. Jb. Min. Mh. 1989, 4: 165-178.
    140. Schneider, H., Fisher, R. X. & Voll, D., A mullite with lattice constants a>b. J. Am. Ceram. Soc., 1993, 76(7): 1879-1881.
    141. Schneider, H., Formation, properties and high-temperature behaviour of mullite. Habilitation Thesis Univ. Munster. 1986.
    142. Schneider, H., Iron exchange processes between mullite and coexisting silicate melts at high temperatures. Glastechn. Ber., 1989, 62: 193-198.
    143. Schneider, H., Magnesium incorporation in mullite. N. Jb. Min. Mh., 1985: 491-496.
    144. Schneider, H., Okada, K. & Pask, J. A., Mullite and Mullite Ceramics. John Wiley & Sons. Chichester, 1994.
    145. Schneider, H., Schreuer, J. & Hildmatm, B., Structure and properties of mullite-A review. Journal of the European Ceramic Society, 2007, available online.
    146. Schneider, H., Solid solubility of Na_2O in mullite. J. Am. Ceram. Soc., 1984, 67: 130-131.
    147. Schneider, H., Solubility of TiO_2, Fe_2O_3 and MgO in mullite. Ceramics intern., 1987, 13: 77-82.
    148. Schneider, H., Temperature-dependent iron solubility in mullite. J. Am. Ceram. Soc., 1987, 70: C43-C45.
    149. Schneider, H., Transition metal distribution in mullite. Ceramic Trans., 1990, 6: 135-158.
    150. Schobert, H. H., Diehl, E. K. & R. C., DOE/METC., 1982, 82(24): 415-431.
    151. Senior, C. L. & Srinivasachar, S., Energ Fuel., 1995, 9: 277-283.
    152. Shaw, H. R., Viscosities of magmatic silicate liquids: an empirical method of prediction. American Journal of Science, 1972, 272: 870-893.
    153. She, J. H. Ohji, T. Fabrication and characterization of highly porous mullite ceramics. Materials Chemistry and Physics, 2003, 80(3): 610-614.
    154. Shears, E. C. & Archibald, W. A., Aluminosicate Refractories. Iron Steel., 1954, 27(1): 61-65.
    155. Sin, A., Picciolo, J. J., Lee, R. H. et al., Synthesis of mullite powders by acrylamide polymerization. J. Mat. Sci. Lett., 2001, 20: 1639-1641.
    156. Singh, V. K., Densification of alumina and silica in the presence of a liquid phase. J. Am. Ceram. Soc., 1981, 64: 133-136.
    157. Sloss, L. L., Smithe, I. M. & Adams, D. M., Pulveriszed coal ash requirements for utilization. IEA Coal Research, Longon. UK., 1996.
    158. Song, H. B., Zhai, F. R. & Zhang, L. L., Comprehensive Utilization of Coal Ash in China. Journal of Kunming University of Science and Technology(Science and Technology), 2006, 31(5): 71-77.
    159. Soro, N., Aldon, L., Olivier, F. J. et al., Role of iron in mullite formation from kaolins by Mossbauer spectroscopy and Rietveld refinement. J. Am. Ceram. Soc., 2003, 86: 129-134.
    160. Stanislav, V., Rosa, M., Mercedes, D. et al., Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. Characterization of ceramic cenosphere and salt concentrates. Fuel., 2004, 83: 585-603.
    161. Streeter, R. C., Diehl, E. K. & Schobert, H. H., In The Chemistry of Low-Rank Coals. American Chemical Society Symposium Series, 1984, 264: 195-209.
    162. Sun, Z. Y., Liu, Z. M., Han, B. X. et al., Adv. Mater., 2005, 17(7): 928-932.
    163. Sundaresan, S., Aksay, I. A., Mullitization of diphsic aluminosilicate gels. J. Am. Ceram. Soc., 1991, 74: 2388-2392.
    164. Takei, T., Kameshima, Y., Yasumori, A. et al., Crystallization kinetics of mullite in alumina-silica fibers. J. Am. Ceram. Soc., 1999, 82: 2876-2880.
    165. Tamura, S., Kim, Y. W. & Masui, N. T., Imanaka, Electrochemical growth of nanometer-sized δ-Al_2O_3 single crystals by use of Al~(3+) conducting solid electrolyte. Solid State Ionics, 2004, 173: 131-134.
    166. Tang, Y., Lu, Y., Li, A. et al., Fabrication of fine mullite powders by α-Al(OH)_3-SiO_2 core-shell structure precursors. J. Appl. Surf. Sci., 2002, 202: 211-217.
    167. Taylor, A. & Holland, D., The chemical systhesis and crystallization sequence of mullite. J. Non. Cryst. Solids., 1993, 152(1): 1-17.
    168. Tkalcec, E., Ivankovic, H., Nass, R. et al., Crystallization kinetics of mullite formation in diphasic gels containing different alumina components. J. Europ. Ceram. Soc., 2003, 23: 1465-1475.
    169. Tkalcec, E., Kurajica, S. & Ivankovic, H., Isothermal and non-isothermal crystallization kinetics of zinc-aluminosilicate glasses. Thermochim. Acta., 2001, 378: 135-144.
    170. Tomsia, A. P., Saiz, E., Ishibashi, H. et al., Powder processing of mullite/Mo functionally graded materials. J. Europ. Ceram. Soc., 1998, 18: 1365-1371.
    171. Torres, F. J., DeSola, E. R. & Alarcon, J., Effect of boron oxide on the microstructure of mullite-based glass-ceramic glazes for floor-tiles in the CaO-MgO-Al_2O_3-SiO_2 system. Journal of the European Ceramic Society, 2006, 26: 2285-2292.
    172. Tripathi, H. S., Das, S. K., Mukherjee, B. et al., Synthesis and thermo-mechanical properties of mullite-alumina composite derived from sillimanite beach sand: effect of ZrO_2. Ceramics International, 2001, 27: 833-837.
    173. Urbain, G., J Mater Edu., 1985, 7(6): 1007-1078.
    174. Ueno, S., Ohji, T. & Lin H. T., Corrosion and recession of mullite in water vapor environment. Journal of the European Ceramic Society, 2007. available online.
    175. Urbain, G.., Cambier, F., Deletter, M. et al., Viscosity of silicate melts. Trans Journal of British Ceram Socience, 1981, 80(2): 139-141.
    176. Vargas, S., Frandsen, F. & Dam-Johansen, Ko, ELSAM—Idemitsu Kosan cooperative research project: performance of viscosity models for high-temperrature coal ashes, CHEC report No. 9719, Lyngby, 1997.
    177. Vargas, S., Frandsen, F. J. & Dam-Johansen, K., Rheological properties of high-temperature melts of coal ashes and other silicates. Progress in Energy and Combustion Science, 2001, 27(3): 237-429.
    178. Varley, E. R., Sillimanite. London Her Majesty's Stationery Office, 1965: 3.
    179. Vassileva, C. G. & Vassilev, S. V., Behaviour of inorganic matter during heating of Bulgarian coals: Subbituminous and bituminous coals. Fuel Processing Technology, 2006, 87: 1095-1116.
    180. Vieira, S. C., Ramos, A. S. & Vieira, M. T., Mullitization kinetics from silica-and alumina-rich wastes. Ceramics International, 2007, 33: 59-66.
    181. Wang, M. C., Thermal determinations of mullite crystallization of 65% Al_2O_3-35% SiO_2 glass fibers. Chinese J Mater. Sci., 1992, 24: 164-170.
    182. Wei, P. & Rongti, L., Crystallization kinetics of the aluminum silicate glass fiber. J. Mater. Sci. Eng., 1999, A271: 298-305.
    183. Wei, W. C. & Halloran, J. W., Transformation kinetics of diphasic aluminum silicate gels. J. Am. Ceram. Soc, 1988, 71: 581-587.
    184. Welch, J. H., New interpretation of the mullite problem. Nature., 1960, 186(4724): 545-546.
    185. Winkler, H. G. F., Petrogenesis of Metamorphic Rocks. Third edition. Springer: New York-Heidelberg-Berlin., 1974.
    186. Worden, R. H., Champness, P. E. & Droop, G. T. R., Transmission electron microscopy of pyrometamorphic breakdown of phengite and chalorite. Min. Mag., 1987, 51: 107-121.
    187. Wray, P. J., The geometry of two-phase aggregates in which the shape of the second phase is determined by its dihedral angel. Acta Metall, 1976, 24(2): 125-135.
    188. Yla-Jaaski, J. & Nissen, H. U., Investigation of superstructures in mullite by high resolution electron microscopy and electron diffraction. Phys. Chem. Minerals., 1983, 10: 47-54.
    189. Yue, R., Wang, Y., Chen, C. et al., Interface reaction of Ti and mullite ceramic substrate. Appl. Surf. Sci., 1998, 126(3): 255-264.
    190. Yue, Z. X., Li, L. T, Zhou, J. et al., Preparation and electromagnetic properties of ferritecordierite composites. Materials Letters, 2000, 44: 279-283.
    191. Zeng, Q. & Stebbins, J. F., Fluoride sites in aluminosilicate glasses: High-resolution 19F NMR results. American Mineralogist, 2000, 85: 863-867.
    192. Zhao, H. L. Hiragushi, K. & Mizota, Y., ~(27)A1 and ~(29)Si MAS-NMR studies of structural changes in hybrid aluminasilicate gels. Journal of the European Ceramic Society., 2002, 22: 1483-1491.
    193. Zhang, Y. & Zhang, X. D., Resource recovery and comprehensive utilization technology of solid waste. Research of Environmental Sciences, 1998, 3: 49-55.
    194. Zhou, M. H., Ferreira, J. M. F., Fonseca, A. T. et al., Coprecipitation and processing of mullite precursor phases. J. Am. Ceram. Soc., 1996, 79(7): 1756-1760.
    195.Zimmermann,R.,方绍富译.冶金和材料技术知识库[M].北京:冶金工业出版社.1988.
    196. Zipkin, H., Israel, L. & Guler, S., Dielectric properties of sodium fluoride added kaolinite at different firing temperatures. Ceramics International, 2007, 33: 663-667.
    197.白志民.SAMCKN体系陶瓷材料设计与烧结机理分析[M].北京:中国地质大学(北京)博士学位论文,2000.
    198.陈浩,旷成秀,余盛禄.纳米莫来石的制备及其机理研究.江西科学.2006,24(6):429-431.
    199.陈震宙,陈天明,郑启祥.粉煤灰形成莫来石条件的研究.福州大学学报(自然科学版).1994,22(5):93-96.
    200.果世驹 编著.粉末烧结理论[M].北京:冶金工业出版社.2002.
    201.何文,张旭东,沈建兴.Sol-Gel-SCFD法合成莫来石超细粉的结构性能表征.中国陶瓷.2000,36(3):18-20.
    202.何涌,张谦,吕彦杰.粉煤灰中氧化钙和氧化铁的存在及可分离性研究.粉煤灰.2005(6):16-19.
    203.焦景慧,陈天明.X 射线法粉煤灰形成莫来石影响因素的研究.粉煤灰综合利用.1996(3):6-11.
    204.李贺香,马鸿文.高铝粉煤灰中莫来石及硅酸盐玻璃相的热分解过程.硅酸盐通报.2006,25(4):1-5.
    205.李金洪,马鸿文,吴秀文.利用高铝煤灰合成 β-Sialon粉体的实验研究.岩石矿物学杂志.2005,24(6):643-647.
    206.刘巽伯,沈旦申,陈以理,等.上海市粉煤灰应用技术手册[M].上海:同济大学出版社,1995.
    207.马鸿文,杨静,刘贺,等.硅酸盐体系的化学平衡:(1)物质平衡原理.现代地质.2006,20(2):329-339.
    208.马鸿文.工业矿物与岩石[M].北京:化学工业出版社.2005.
    209.马鸿文.结晶岩热力学概论[M].北京:高等教育出版社.2001.115-124.
    210.倪文,陈哪娜,赵万智,等.莫来石的工艺矿物学特性及其应用.地质与勘探.1994,30(3):26-33.
    211.钱觉时.粉煤灰特性与粉煤灰混凝土[M].科学出版社.北京:2002.
    212.邵龙义,陈江峰,吕劲,等.燃煤电厂粉煤灰的矿物学研究.煤炭学报.2004,29(4):448-452.
    213.施剑林.固相烧结-Ⅲ实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为.硅酸盐学报.1998,26(1):1-13.
    214.孙俊民,程照斌,李玉琼,等.利用粉煤灰与工业氧化铝合成莫来石的研究.中国矿业大学学报.1999,28(3):247-250.
    215.王福元,吴正严主编.粉煤灰利用手册[M].北京:中国电力出版社,1997:46.
    216.王立旺,王家邦,杨辉,等.硅铝凝胶制备与晶化研究.材料科学与工程学报,2006,24(3):389-392.
    217.王运泉,张建平,郑燕君.粉煤灰的组成特征及其系统分类.环境科学研究.1998,11(6):1-4.
    218.文洪杰,苗圃,李文超.红柱石的莫来石化动力学.耐火材料.1995,29(3):140-141,148.
    219.魏存弟.煤炭固体废物资源化利用的实验研究[M].博士后出站报告.2005.
    220.魏尊莉,李金洪,刑净.NaF对高铝粉煤灰合成刚玉.莫来石材料的影响.岩石矿物学杂志.2007,26(2):184-190.
    221.吴刚.材料结构表征及应用[M].北京:化学工业出版社,2004.
    222.伊赫桑·巴伦.纯物质热化学数据手册[M].程乃良牛四通徐桂英,等译.北京:科学出版社.2003.
    223.殷庆瑞,祝炳和.功能陶瓷的显微结构、性能与制备技术[M].2005,北京:冶金工业出版社.
    224.赵惠忠,雷中兴,汪厚植,等.Sol-Gel-SCFD法制备纳米莫来石.无机材料学报.2004,19(3):471-476.
    225.周玉 编著.陶瓷材料学.北京:科学出版社[M],2004.
    226.朱伯铨,李雪冬,郝瑞,等.在硫酸钠熔盐中合成莫来石的热力学研究.硅酸盐学报.2006,34(1):76-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700