长垣及以西地区特低渗透油层水驱动用界限研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆外围油田从1982年投入以来,伴随着油田注水开发技术的不断创新和发展,石油储量和年产油量逐年增加,2011年产量达到了500万吨以上。十一五以后,大庆外围油田评价和开发对象急剧变差。探明未开发储量和待探明地区剩余控制、预测储量资源主要以特低丰度、特低渗透油层油层为主,主要分布在大庆长垣及长垣以西地区。对此类特低渗透储层进行综合评价,揭示其储层微观孔隙结构特征和渗流机理,优选开发储量,确定水驱开发技术界限,是加快这类地区储量动用和储量升级急需解决技术难题。
     本文综合运用铸体薄片、电镜扫描、恒速压汞和核磁共振等实验手段,分析了特低渗透储层的微观孔隙结构特征,喉道形状,岩石颗粒大小、以及这些因素对渗流能力的影响;利用恒速压汞、启动压力测试及可动流体饱和度测试等资料,研究了大庆长垣及以西地区特低渗透储层渗流特征;通过分析主流喉道半径、储层微观非均质特征参数、可动流体百分数、启动压力梯度、原油粘度和粘土矿物成分对低渗透油田开发效果的影响,应用综合分类方法对低渗透油藏进行了综合评价;应用考虑非线性渗流的特低渗透油藏数值模拟软件,对长垣、龙西、齐家南、古龙南和葡西区块的井网进行了研究。
     本文研究得到以下4点主要成果:
     1)渗流能力主要受喉道半径及分布规律控制,平均喉道半径、最大喉道半径、平均孔喉比以及分选系数与渗透率呈较好的半对数关系。
     2)确定了长垣西部等待探明储量区的极限流动孔喉下限、极限流动渗透率下限及水驱动用渗透率下限,分析认为各区块极限流动喉道半径一般在0.2~0.5μm,极限流动渗透率界限一般在0.1~0.3×10~(-3)μm~2,水驱渗透率界限一般在0.7~0.9×10~(-3)μm~2。古龙北区块油水流动能力最强,其次为古龙南、葡西、齐家南,最差为龙西和长垣,渗透率在2~5×10~(-3)μm~2以下的储层,开发难度较大的关键在于驱动压力体系不能有效建立,渗透率在2~5×10~(-3)μm~2以上的储层,微观非均质性是影响开发的关键因素。
     3)储层综合分类评价结果表明,古龙北区块属于Ⅰ类储层,物性最好,开发动用最为容易;葡西区块和古龙南区块属于II类储层,亦较容易动用;齐家南区块、龙西区块和长垣区块均属于Ⅲ类储层,为有效动用需要进行技术攻关。
     4)井网部署研究表明,长垣扶杨油层选用300m×100m矩形井网,龙西区块选用400m×150m矩形井网,齐家南区块选用500m×100m矩形井网,古龙南、葡西区块选用500m×150m矩形井网。
Since put into development from1982, with constantly innovating and developing ofoilfield flooding technique, oil reserves and annual oil production of peripheral Daqingoilfield increase year by year, and the annual oil production reaches500Mtpa. After theEleventh Five-Year Plan, targets evaluated and developed by peripheral Daqing oilfieldsharply worse off. Undeveloped proved reserves and residual controlled and prognosticreserves resourses of unproved areas are mainly ultra-low abundance and ultra-lowpermeability reservoirs, which distribute in Daqing Placanticline and its western areas.Comprehensively evaluating such ultra-low permeability reservoirs reveals the themicroscopic characteristics of pore texture and percolation mechanism. Optimizingdevelopment reservior and confirm limits of water flooding devepment technique aretechnical problems which are to be solved urgently in order to accelerate producing andupgrading reserves in such areas.
     In this dissertation, combining with mud-stoile casting, electric-microscope, constant ratemercury injection and nuclear magnetic resonance, we analyse the micro pore structurecharacter of ultra-low permeability reservoir, the shape of pore-throat, the size of the mineralgrains,and these factors can effect permeability; We can use constant rate mercury injection,the start-up pressure gradient test and the saturation of mobile fluid test, the filtrationcharacteristics of ultra-low permeability reservoir in Daqing Placanticline and the west ofthese area are researched; Through analyzing the influence of mainline throat radius,microcosmic heterogeneity characteristic parameters, movable fluids percentage, thresholdpressure gradient, oil viscosity and clay compositions on development effect oflow-permeability oilfields, low-permeability oilfields can be comprehensively evaluatedutilizing comprehensive sorting technique. Well patterns in Placanticline, western andsouthern areas of GuLong, southern area of QiJia and western area of Pu are researchedutilizing numerical simulation software of ultra-low permeability reservoirs which takenon-linear filtration into account.
     The main research results are as followed:
     1)Throat radius and distribution are the main factors that control reservoir permeability,The relationship between the average throat radius, the biggest throat radius, the averagepore-throat ratio, sorting coefficient and permeability are linear in semi-logarithmiccoordinates.
     2)The west of Daqing Placanticline, waiting for proven reserves, the minimum of limitflow about pore-throat, permeability and the minimum in water flooding about permeabilityhas been determined. Analysis think that limit flow about throat radius generally in0.2~0.5μm in each area, limit flow about permeability generally in0.1~0.3×10~(-3)μm~2, the limit in water flooding about permeability generally in0.7~0.9×10~(-3)μm~2. The strongest oil-waterflow are in the north area of Gulong, the second are in the south of Gulong, the west of Pu,the south of Qijia, the worst are in the west of Gulong and Daqing Placanticline. The reservoirabove2~5×10~(-3)μm~2, the key about the difficult explore is driving pressure system can’teffective establish, microscopic heterogeneity is the key factors of affecting oilfielddevelopment.
     3) The results of evaluation about comprehensive classification of reservoir show that,the north of Gulong area belongs to classⅠ reservoir, own the best reservoir properties,most easy to use development; the west of Pu and the south of Gulong belongs to classIIreservoir, also is easy to use; the south of Qijia, the west of Gulong and Daqing Placanticlinebelongs to classⅢ reservoir, in order to effective use these areas, we need technologicalbreakthrough.
     4) The research of deploy well network shows that, Daqing Placanticline Fuyu reservoirchoose300m×100m well nets, the west of Gulong area choose400m×150m well nets, thesouth of Qijia choose500m×100m well nets, the south of Gulong area and the west of Puchoose500m×150m well nets.
引文
[1] Pettijohn. An Empirical Evaluation of the Effect of Peer and Managerial EthicalBehaviors and the Ethical Predispositions of Prospective AdvertisingEmployees.SPE2003-12.
    [2] Pettijohn.Using Trade Incentives to Promote Customer Relationships in a RetailSetting.SPE2002-06.
    [3] Peter Weber.Hydroxytyrosol protects retinal pigment epithelial cells fromacrolein-induced oxidative stress and mitochondrial dysfunction SPE2008-10-18.
    [4]裘亦楠,陈子琪,居娟,等.我国油藏开发地质分类的初步探讨[J].石油勘探与开发,1983年第5期:35-48.
    [5]徐安娜,穆龙新,裘亦楠.我国不同沉积类型储集层中的储量和可动剩余油分布规律[J].石油勘探与开发,1998,25(5):23-27.
    [6]罗明高.开发地质学[M].北京:石油工业出版社,1996:61-68.
    [7]杨家福.胜坨油田砂体沉积类型与储层特征[J].石油学报,1988,9(2):43-56.
    [8] Purcell W R. Capillary pressures-Their measurement using mercury and the calculationof permeability from it[J].Trans RIME.1949.41(5):39-48.
    [9] Thomeer J H M. Introduction of a pore geometrical factor defined the capillary pressurecurve[J].Trans RIME.196052(3):354-358.
    [10]Wardlaw, N.C.,Taylor, RP. Mercury Capillary Pressure Curves and the Interpretation ofPore Structure and Capillary Behavior in Reservoir Rocks [J]. B.C.P.G.,1976,24(2):225-262.
    [11]ShenPingping, Li Kevin, Jia Fensllu. Quantitative Description for the Heterogeneity ofPore Structure by Using Mercury Capillary Pressure Curves[C]. SPE29996.
    [12]罗蛰潭,王允诚.油气储集层的孔隙结构.北京:科学出版社,1986:40-49.
    [13]罗蛰潭,王允诚.储层孔隙结构、润湿性和油田采收率田[J].成都理工大学学报,1980年第4期:1-16.
    [14]王允诚.油田开发与储集岩的孔隙结构[J].成都地质学院学报,1982,2:97-113.
    [15]庞彦明,章凤奇,邱红枫,等.酸性火山岩储层微观孔隙结构及物性参数特征[J].石油学报,2007,28(6):72-77.
    [16]贺承祖,华明琪.低渗砂岩气藏的孔隙结构与物性特征闭.新疆石油地质,2005,26(3):280-283.
    [17]杨满平,彭彩珍,郭平,等.流纹岩储层的孔隙结构特征研究田.试采技术,2004,25(1):11-14.
    [18]廖明光,付晓文,何光怀,等.陕甘宁盆地中部气田奥陶系碳酸盐岩储层孔喉大小与孔隙度和渗透率间的关系[J].西南石油学院学报,1995,17(1):1-7.
    [19]涂富华,唐仁琪,韩锦文,等.砂岩孔隙结构对水驱油效率影响的研究[J1.石油学报,1983,4(2):49-62.
    [20]祁庆祥.砂岩储层某些孔隙结构参数与水驱油效率的对比关系[l].石油勘探与开发,1984,11(2):56-63.
    [21]李传亮.孔喉比对地层渗透率的影响[J].油气地质与采收率,2007,14(5):78-79.
    [22]A.J.Katz, A.H.Thompson. Fractal Sandstone Pores: Implications for Conductivity andPore Formation [J]. Physical Review Letters.1985,54(3):1325-1328.
    [23]C.E.Krohn. Sandstone fractal and Euclidean pore volume distribution [J]. Journal ofGeophysical Research,1988,93(B4):3286-3296.
    [24]肖立志.核磁共振测井资料解释与应用导论[M],北京:石油工业出版社.2001.
    [25]谢然红,肖立志.储层流体及其在岩石孔隙中的核磁共振弛豫温度特性[J].地质学报,2007,81(2):280-284.
    [26]Hsu, Wen-Fu, Li, Xiao-yu. Wettability of Porous Media NMR Relaxation Methods[C].SPE24761.
    [27]R.J. Zittel-D. Beliveau, T. O,Sullivan. Reservoir Crude-Oil Viscosity EstimationFromWireline NMR Measurements-Rajasthan, India[C]. SPE101689.
    [28]J. L. Bryan, F. P. Manalo, Y Wen. Advances in Heavy Oil and Water PropertyMeasurements Using Low Field Nuclear Magnetic Resonance[C]. SPE78970.
    [29]燕继红译.NMR技术的最新进展一测量总孔隙度[J].石油物探译丛.1998.12:69-89.
    [30]黄延章,尚根华,陈永敏.用核磁共振成像技术研究周期注水驱油机理[J].石油学报.1995,16(4):62-64.
    [31]黄延章等.低渗透油层渗流机理[M].北京:石油工业出版社,1998:58
    [32]王为民,孙佃庆,苗盛.核磁共振测井基础实验研究[J].测井技术,1997,21(6):385-392.
    [33]高敏,安秀荣,衹淑华,等.用核磁共振测井资料评价储层的孔隙结构[J],测井技术,2000,24(3):483-486.
    [34]H.H.Yuan,B.F.Swanson.Resolving Pore Space Characteristics by Rate-ControlledPorosimetry[C]. SPE14892,2000,24(3):188-193.
    [35]Pedro.G..Toledo,L.E.Scrieven. Supplement to Pore-Space Statistics and CapillaryPressure Curves from Volume-control Prosimetry:Mechanisms of Mercury Injection andWithdrawal[C].SPE27950.
    [36]王金勋,杨普华,刘庆杰.应用恒速压汞实验数据计算相对渗透率曲线[J].石油大学学报(自然科学版)2003.27(4):66-69.
    [37]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征明[J].大庆石油学院学报.2006.30(2):22-25.
    [38]刘峰.基于恒速压汞技术的基山砂体孔隙结构特征研究[J].中国科技信息,2008.
    [39]朱永贤,孙卫,于锋.应用常规压汞和恒速压汞实验方法研究储层微观孔隙结构[J].天然气地球科学,2008,19(4):553-556.
    [40]时宇,齐亚东,杨正明,等.基于恒速压汞法的低渗透储层分形研究[J].油气地质与采收率,2009,16(2):88-90.
    [41]王玉英,王江.低渗透储层形变对原油采出程度的影响[J].油气田地面工程,2007,26(12):10-12.
    [42]刘爱武,李学文.低渗油藏的两相渗流特征及其影响因素[J].石油天然气学报,2006,28(3):325-327.
    [43]李劲峰,曲志浩,孔令荣.贾敏效应对低渗透油层有不可忽视的影响[J].石油勘探与开发,1999,26(2):93-96.
    [44]孙卫,史成恩,赵惊蛰等.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用[J].地质学报,2006,80(5):775-780.
    [45]高旺来.安塞低渗油田孔隙结构对渗流特征曲线的影响[J].石油勘探与开发,2003,30(1):79-80.
    [46]Hurst.Establishment of the Skin Effect and Its Impediment to Fluid Flow into aWellbore,Pet.Eng(Oct,1953)Vol.25-6.
    [47]Kazemi,H.PressureTransientAnalysiso NaturallyFraeturedReservoirs.SPEJ(Dec,1969)451-462.
    [48]Cinco-Ley H. etal.Transient pressure analysis for fractured wells.JPTSept.1981:1749-1766.
    [49]Bennett C.O. etal.Performance of finite-conductivity vertically fractured wells insingle-layer reservoirs.SPE FE Aug.1986:399-412.
    [50]Vongvuthiporchai S. etal.Pressure fall-off behavior in vertically fracturedwells,non-newtonian power-law fluids.SPE13058,1984:1-4.
    [51]夏惠芬.低渗透油田开采工艺技术.北京:石油工业出版社,1996.26-32
    [52]吴景春,袁满,张继成,等.大庆东部低渗透油藏单相渗流低速非达西渗流特征[J].大庆石油学院学报,1999,23(2):82-84.
    [53]Farquhar R A, Smar B G D t·Stress sensitivity of low permeabilitysandstones from therotliegendes Sandstone [C],SPE26501.
    [54]CHI U Ikuko, HENRY J Ramey Jr. Transient Flow ofNon-Newtonian Power-law Fluidsin Porous Media[M].SPE-AIME,1979.164-174.
    [55]张洪亮等译.低渗透油田注水动态综述[J].大庆石油勘探与开发,1985年第5期.
    [56]任晓娟,齐银,张宁生,等.低渗孔隙介质中低速非达西渗流特征研究进展[C].第九届全国渗流力学学术讨论会论文集,2007-05-12.
    [57]薛定那.多孔介质渗流物理.北京:工业出版社,1983.
    [58]郭尚平,黄延章,周娟等.物理化学渗流微观机理[M].北京科学出版社,1990:20-51.
    [59]孔令荣,曲志浩,万发宝等.砂岩微观孔隙模型两相驱替实验[J].石油勘探与开发,1991,(4):79-84.
    [60]郭尚平.物理化学渗流原理与应用[M].重庆重庆人学出版社,1989:32-68.
    [61]李洪玺,刘全稳,何家雄.物理模拟研究剩余油微观分布[J].新疆石油地质,2006,27(3):351-353.
    [62]贾忠伟,杨清彦,兰玉波.水驱油微观物理模拟实验研究[J].大庆石油地质与开发,2002,21(1):46-50.
    [63]苏娜,黄健全,韩国辉.微观水驱油实验及剩余油形成机理研究[J].断块油气田,2007,14(6):50-52.
    [64]朱义吾.长庆油田延安组油层光刻显微空隙模型水驱研究[J].石油学报,1989,(3),40-47.
    [65]宋付权,刘慈群.含启动压力梯度油藏的两相渗流分析[J].石油大学学报(自然科学版),23(3),1999,47-50陈亮,彭仕密,聂吕谋.胡状集油田胡十二断块剩余油微观形成机理研究[J].断块油气田,1997,4(4):43-45.
    [66]刘慈群.刘慈群渗流力学论文集.北京:石油工业出版社,2010.
    [67]宋付权,刘慈群.低渗透油藏水驱采收率影响因素分析[J].大庆石油地质与开发,2000,19(1):30-32.
    [68]冯文光,葛家理.多重介质组合油层非定常非达西高速渗流问题的解析研究[J].西南石油学院学报,1985,22(3):14-27.
    [69]冯文光,葛家理.单一介质、双重介质中非定常非达西低速渗流问题[J].石油勘探与开发,1985,22(1):56-67.
    [70]冯文光,葛家理.单一介质、双重介质非达西低速渗流的压力曲线动态特征[J].石油勘探与开发,1986,23(5):52-57.
    [71]冯文光,葛家理.单一介质中非达西低速渗流时续流和表皮效应的影响[J].大庆石油地质与开发,1988,7(2):36-41.
    [72]闫庆来.单相液体低速渗流机理及流动规律[C].第二届全国流体力学学术会议论文集.北京:科学出版设,1983.
    [73]闫庆来.低渗透油田开发技术[M].北京:石油工业版社,1993.
    [74]闫庆来.低渗透油田中单相液体渗流特征的实验研究[J].西安石油学院学报,1990,5(2):87-93.
    [75]闫庆来,何秋轩,尉立岗,等.低渗透油层中单相液体渗流特征的实验研究[J].西安石油学院学报,1990,5(2):1-6.
    [76]闫庆来、何秋轩,等.低渗透储层中油水渗流规律的研究[M].低渗透油气藏勘探开发技术.北京:石油工业出版社,1993.
    [77]邓英尔,刘慈群.具有启动压力梯度的油水两相渗流理论与开发指标计算方法[J].石油勘探与开发,1998,25(6):36-39.
    [78]韩德金,张凤莲,周锡生.大庆外围低渗透油藏注水开发调整技术研究[J].石油学报,2007,28(1):83-86.
    [79]王玉普,计秉玉,郭万奎.大庆外围特低渗透特低丰度油田开发技术研究[J].石油学报,2006,27(6):70-74.
    [80]李孟涛,张英芝,刘先贵.大庆榆树林油田天然气驱油研究[J].天然气工业,2006,26(5):84-86.
    [81]姚约东,葛家理,李相方.低渗透油藏油水两相渗流研究[J].石油大学学报(自然科学版),2005,29(2):52-56.
    [82]宋付权.变形介质低渗透油藏的产能分析[J].特种油气藏.2002,9(4):33-35.
    [83]张新红,秦积舜.低渗岩心物性参数与应力关系的实验研究[J].石油大学学报(自然科学版),2001,25(4):56-57,60.
    [84]阮敏,何秋轩.低渗透非达西渗流综合判据初探[J].西安石油学院学报(自然科学版),1999,14(4):46-48.
    [85]阮敏,何秋轩.低渗透非达西渗流临界点及临界参数判别法[J].西安石油学院学报(自然科学版),1999,14(3):9-10,58.
    [86]王厉强.低渗透变形介质油藏流入动态关系及应用研究.成都:成都理工大学,2008.
    [87]高旺来.安塞低渗油田孔隙结构对渗流特征曲线的影响[J].石油勘探与开发,2003,30(1):79-80.
    [88]王厉强,刘慧卿,甄思广,等.低渗透储层应力敏感性定量解释研究[J].石油学报,2009,30(1):96-103.
    [89]程时清,徐论勋.低速非达西渗流试井典型曲线拟合法[J].石油勘探与开发,1996,23(4):50-53.
    [90]张立娟,岳湘安.亲油岩石壁面残余油膜的微观驱替机理[J].油气地质与采收率,2007,14(1):79-82,85.
    [91]冯慧洁,聂小斌,徐国勇,等.砾岩油藏聚合物驱微观机理研究[J].油田化学,2007,24(3):232-237.
    [92]KLIMENTOS Tet al.Experimental determination of the biot elastic constant: applicationsin formation evalua-tion (sonic porosity, rock strength, earth stresses andsandingpredictions)[J]. SPE30593,1995.
    [93]STEHFEST H. Algorithm368numerical inversion of Laplace transforms[J]. D-5Communications of ACM,1970,13(1):47-49.
    [94][苏]弗洛林.B.A.土体压密理论[TU43].北京:中国工业出版社.1964.
    [95][苏]A.班恩,B.A马克.岩石性质对地下液体渗流的影响[M].张朝琛译.北京:石油工业出版社,1992.
    [96]N.A.Berrniy,ete.WaterfloodPerformaoeofHeterogeneousSystem.JPT,Vol.31.
    [97]ArthurErdelyi.Higher Trans Cende,ltalFtioetionsVol.1.
    [98]A.FVan.Everdingen,W.Hurst.TheApplieationoftheLaplaeeTransbormationtoFlowProblemsinReservoirs.AIME,Vol.186,1949,305.
    [99]STANGROOM J E. The Bingham plastic model of ERfluids and itsimplications[A].Proceedings of theSecond International Conference on ER Fluids[C].
    [100]Huskin DH, Rollmann LD. Polysilicate esters for oil reservoir perm eability contro:l US,4785883[P].1988.
    [101]JOHN A T. Hydrodynamic lubrication theory for the Bingham plastic flow model[J].JRheol,1991,35(4):477-496.
    [102]Raghavan R,Miller F G. An investigation by numerical meth-ods of the effect ofpressure dependent rock and fluid proper-ties on well llow tests[C]. SPE2617,1969:267-275.
    [103]Samaniego V F,et al. An investigation of transient flow of reservoir fluids consideringpressure dependent rock and flu-id properties[J]. SPE5593-PA,1977,17(2):140-150.
    [104]Samaniego V F,Cinco-Ley H. Production rate decline in pressure-rensitive reservoirs[J]. JCPT,1980,19(3):75-86.
    [105]Samaniego V F, Cinco-Ley H. On the determination of the pressure-dependentcharacteristics of a reservoir through transient pressure testing[C]. SPE AnnualTech-nical Conference and Exhibition,1989:9-20.
    [106]Pedrosa O A. Pressure transient response in stress-sen-sitive formations[C]. SPECalifornia Regional Meeting,1986:203-210.
    [107]Kikani J,Pedrosa O A. Perturbation analysis of stress sensitive reservoirs[J]. SPEFE,1991,6(3):379-386.
    [108]Zhang M Y,et al. New insights in pressure-transient a-nalysis for stress-sensitivereservoirs[C]. SPE Annual Technical Conference and Exhibition,1994:617-628.
    [109]A.T.戈尔布诺夫.异常油田开发.张树宝译.北京:石油工业出版社,1987;27-28
    [110]戈尔布诺夫AT.异常油田开发[M].北京:石油工业出版社,1987:181.
    [111]马尔哈辛.油层物理化学机理.李殿文译.北京:石油工业出版社,1987,117-120.
    [112]诺曼R莫罗.石油开采中的界面现象[M].鄢捷年,曾利容,陈志刚,译.北京:石油工业出版社,1991.
    [113]鄢捷年.油藏岩石湿润性对注水过程中驱油效率的影响[J].石油大学学报(自然科学版),1998,22(3):43-46.
    [114]朱玉双,曲志浩,孔令荣,等.靖安油田长6、长2油层驱油效率影响因素[J].石油与天然气地质,1999,20(4):333-335.
    [115]王尤富,鲍颖.油层岩石的孔隙结构与驱油效率的关系[J].河南石油,1999,13(1):23-25.
    [116]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):45-49.
    [117]张绍东,王绍兰,李琴等.孤岛油田储层微观结构特征及其对驱油效率的影响[J].石油大学学报(自然科学版),2002,26(3):47-53.
    [118]熊敏,王勤田.盘河断块区孔隙结构与驱油效率[J].石油与天然气地质,2003,24(1):42-44.
    [119]何秋轩,高永利.沈阳油田储层微观驱油效率研究[J].西南石油学院学报,1996,48(2):20-24.
    [120]宋付权,刘慈群.低渗透油藏水驱采收率影响因素分析[J].大庆石油地质与开发,2000,19(1):30-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700