PS胶体球的制备及其模板的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用种子乳液聚合法和无皂乳液聚合法制备不同粒径的单分散PS胶体球,通过浸渍-提拉法组装了PS胶体晶体阵列,并以此为模板制备了SiO2和TiO2纳米结构。分析了单分散PS球和胶体晶体的合成机理,讨论了采用浸渍-提拉法组装胶晶模板的特点,研究了工艺参数对PS球的合成、模板组装质量和有序纳米结构形貌的影响,对PS胶晶模板和模板结构进行了分析与表征。
     以苯乙烯为单体,过硫酸钾为引发剂,十二烷基硫酸钠为乳化剂进行了种子乳液聚合。研究了影响因素对制得的PS胶体球的粒径及粒径分布的影响,结果如下:在其他条件不变的情况下,胶体球粒径随苯乙烯单体增加而增加;引发剂增加,胶体球粒径成增大趋势;随乳化剂的增加,胶体球粒径减小。
     以苯乙烯为单体,过硫酸钾为引发剂进行了无皂乳液聚合。研究了单体、引发剂及反应时间等因素对合成的PS胶体球的粒径及其分散性的影响,结果如下:在其他条件不变的情况下,胶体球粒径随单体浓度的增加而增大;引发剂增加,胶体球粒径呈减小趋势;反应时间增加,胶体球粒径增大。
     PS胶体球在固-液界面的弯月面处进行组装的过程中,吸附力、浮力和毛细管力使胶体球成核并生长成为密排的胶体晶体。由于弯月区上沿的生长边的快速移动,浸渍-提拉法增大了湿阵列的面积,使溶剂蒸发和乳液流动得到了增强。
     合适的提拉速率能够得到密排的高度有序的胶晶模板。基板的物理化学性质对模板形貌也有影响,基底表面要洁净、平坦(起伏应比颗粒直径小得多),表面化学性质均一,有良好的亲水性。胶体球粒径均一、分布窄且分散良好,有利于形成完美的PS胶晶模板。
     采用浸渍法在PS胶晶模板的间隙内填充溶胶时,由于毛细管力的作用,易于实现前驱体溶胶的有效填充。溶胶浓度和溶胶颗粒粒径是影响纳米结构的重要因素。溶胶浓度的选择应与模板球径协同考虑,以得到规则排列的纳米结构。PS球直径和溶胶浓度都会影响纳米结构的形貌。
     填充硅溶胶和二氧化钛溶胶的PS胶晶阵列模板经过干燥后,除去PS胶体球得到了连续的规则的纳米结构,通过扫描电子显微镜对纳米结构进行了表征。
The mono-disperse Polystyrene (PS) colloid spheres with controllable size were synthesized by the seeded emulsion polymerization and Emulsifier-free emulsion polymerization. Polystyrene (PS) colloid spheres crystal array was assembled by dip-drawing method and ordered SiO2, TiO2 nano-structure were fabricated by using the PS colloid crystal as template. The forming mechanism of colloid spheres and colloid crystal were discussed, the advantage of dip-drawing method to assemble PS template was exhibited, the influence of fabricating parameters on the preparation of spheres, array quality and morphology of nano-structure was studied; and the structure of PS array,SiO2 and TiO2 were analyzed.
     The seeded emulsion polymerization was prepared by using styrene as monomers, KPS as initiator, SDS as emulsifier. The influence factors on PS colloid sphere diameter have been investigated. The results revealed:When other factors were kept constant, the diameter of PS colloid spheres increased with monomer concentration. When the initiator reagent increased, the diameter of PS colloid spheres increased; When the concentration of emulsifier increased, the diameter of PS colloid spheres decreased.
     The Emulsifier-free emulsion polymerization was prepared by using styrene as monomers, KPS as initiator. The influence factors of monomer, initiator and polymerize time on PS colloid sphere diameter have been investigated:When other factors were kept constant, the diameter of PS colloid spheres increased with monomer concentration. When the initiator reagent increased, the diameter of PS colloid spheres decreased; When the polymerize time increased, the diameter of PS colloid spheres increased.
     In the course of PS sphere assembly in meniscus at the solid/liquid interface, the absorption force, flotage and capillary force are responsible to the nucleation and growth of colloid crystal. Dip-drawing method enlarges the evaporation area of the wet array due to the quicker movement of leading edge, so that the solvent evaporation and solution flux are accelerated.
     Appropriate drawing rate can obtain highly ordered colloid crystal templet. The properties of base plate have effect on morphology of colloid crystal templet, the base plates should be clean and enev. To obtain a perfect colloid crystal, the sphere diameter should be homogeneous.
     With dipping method used to fill sol into the PS array can lead to a stable filling content by capillary force. The concentration of sol and sol particle diameter are important factors on effecting nano-structure. The choice of the sol concentration used should match to the sphere size to obtain ordered nano-structure, because the appearance of nano-structure is affected by both PS sphere diameter and sol concentration.
     The nano-structure was obtained after dryness and removing PS template, then it is characterized by SEM.
引文
[1]程龙江.纳米:科技新大陆.长沙:湖南科学技术出版社,2002.4
    [2]张立德,解思深.纳米材料和纳米结构.北京:化学工业出版社,2004.2
    [3]尹邦跃.纳米时代-现实与梦想.北京:中国轻工业出版社,2002.71
    [4]李俊寿.新材料概论.北京:国防工业出版社,2004.296-298
    [5]黄德欢.纳米技术与应用.上海:中国纺织大学出版社,2001.129-132
    [6]刘吉平,廖莉玲.无机纳米材料.北京:科学出版社,2003.16-22
    [7]许如人,科学,1998,50(1):12-15
    [8]Alfons Van Blaaderen, Materials Science:Opals in a New Light,Science,1998,282:887-888
    [9]秦振平,郭红霞,模板法合成有序多孔材料研究进展,化工进展,2002,21(5):323-327
    [10]Velev O D, Jede T A, Lobo R F, Lenhoff A M. Porous silica via colloidal crystallization, Nature(London),1997,389(6650):447-448
    [11]Zhao DY, Feng J L, Huo Q S, Melosh N, Fredriekson G H, ehmelka B F, Stueky G D, Triblock Copolymer Syntheses of Mesoporous Silica With Periodic 50 to 300 Angstrom Pores, Science,1998,279:548-552
    [12]Zhao D Y, Sun J Y, Li Q Z, Stueky G D, Morphological Control of Highly Ordered Mesoporous Silica SBA-15, Chem Mate,2000,12:275-279
    [13]ChaJ N , Stueky G D, Morse D E, Deming T J, Biomimetic Synthesis of Ordered Silica Sturetures Mediated by Block Copolypeptides, Nature,2000,403:289-292
    [14]Wei Y, Jin D L, Ding T Z, Shih W H, Liu X H, Cheng S Z D, Fu Q, A Non-surfactant Templating Route to Mesoporous Silica Materials, Adv Mater 1998,10:313-316
    [15]郑金玉,丘坤元,危岩,有机小分子模板法合成二氧化钦中孔材料,高等学校化学学报,2000,21:647—649
    [16]Imhof A, Pine D J, Ordered Macroporous Materials by Emulsion Templating, Nature,1997, 389:948-951
    [17]Holland B T, Blandford C F, Do T, Stein A, Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic Oxides, Phosphates, and Hybrid Composites, Chem. Mater.,1999,11 (3):795-805
    [18]Yan H W, Blandford C F, Holland B T, Smyrl W H, Stein A, General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion, Chem. Mater., 2000,12(4):1134-1141
    [19]Velev O D, Jede T A, Lobo R F, Lenhoff A M. Porous silica via colloidal crystallization, Nature (London),1997,389(6650):447-448
    [20]Wijndhoven J E G J, Vos W L, Preparation of photonic crystals made of air spheres in titania, Science,1998,281:802-804
    [21]Brian T H, Christopher F B, Andreas S, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of periodical voids, Science,1998,281:538-540
    [22]Jones J B, anders J V, Segnit E R, Structure of opal,Nature,1964,204:990-991
    [23]Sanders J V, Co lour of precious opal, Nature,1964,204:1151-1153
    [24]潘明祥,汪卫华,Alice P Gast,胶体晶体结晶过程与人造三维周期性集团点阵材料,物理,2000,29:468-475
    [25]E. Y Balonovitch. P. Rev. Le. tt,1987,58(20):2059-2061.
    [26]StoberW, Fink A. Controlled growth of monodisperse silica spheres in the micro size range. J. Colloid Interface Sci.1968,26,62-70.
    [27]曹同玉,刘庆普,胡金生。聚合物乳液合成原理性能及应用,化学工业出版社,1999。
    [28]Ibarz G, Dohne L, Donath E, Muhwald, H. Smart Micro-and Nanocontainers for Storage, Transport, and Release.Adv.Mater.2001,13,1324-1328.
    [29]Pierranski P. Contemp. Phys.,1983,24:25
    [30]Yi D K, Kim DY. Suarface Relief Grating Induced Colloidal Crystal Structures Langmiur, 2002,18,2019-2023.
    [31]Fischer U C, Zingshein H P.J.Vac.Sci.Technol,1981,19:881-887.
    [32]Hulteen J C, Van Duyne R P.J.Vac.Sci.TechnolA.1995,13:1553-1556.
    [33]Xia Y N, Gates B, Yin Y D, et al. Adv Mater,2000,12:693
    [34]Velev O D, Lenhoff A M. CurrOpin Colloid Inter face Sci,2000,5:56
    [35]Xia Y, Gates B, Yin Y, Lu Y.Monodispersed colloidal spheres:old material with new applications. Adv. Mater.2000,12,693-713.
    [36]陈祖耀,郝凌云,江万权,等,单分散胶粒、胶态晶体和三维有序周期性材料的研究进展,2002,2:22-28,45
    [37]E. Yablonovitch, Phys. Rev. lett.,1987,58,2059.
    [38]S.John, Phys. Rev. Lett,1987,58,2486.
    [39]E. Yablonovitch, Science,1999,286,2227
    [40]E. Yablonovitch and. T J. Gmitter, Photonic band structure:The face-centered-cubic case, Phys. Rev. Lett.,1989,63:1950-1953;
    [41]E. Yablonovitch, T. J. Gmitte, K. M. Leung, Photonic Band structure:The Face-centerd-cubic case employing Nonspherical atoms, Phys. Rev. Lett.,1991 67:2295-2298;
    [42]Chan C T, Ho K M, C. M.Soukoulis, Europhys.Lett.1991,16,563
    [43]Ho K M, Chan C T, Soukoulis C M, et al, Photonic band gaps in three dimensions:New layer-by-layer periodic structures, Solid State Commun,1994,89:413-416
    [44]Wijnhoven J E G J, Vos W L, Preparation of photonic crystals made of air spheres in titania, Science,1998,281:802-804
    [45]Subramania G, Constant K, Biswas R, et al, Optical photonic crystals fabricated from colloidal systems, Appl. Phys. Lett.,1999,74:3933-3935
    [46]Rundquist P A, Photinos P, Jagannathan S, t al, Dynamical bragg diffraction from crystalline colloidal arrays,J.Chem.Phys.,1989,91:4932-4941
    [47]Busch K, John S, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E,1998,58:3896-3908
    [48]Berger L I, Semiconductor materials, Boca Raton, FL:CRC Press,1997
    [49]Stein A, Schroden R C. Curr Opinion Solid State Mater Sci,2001,5:553
    [50]Velev O D, Lenhoff A M. Curr Opin Colloid Interface Sci,2000,5:56
    [51]Zakhidov A A, Baughman R H, Iqbal Z, et al. Science,1998,282:897
    [52]Yang SM, Jang S G, Choi D G, et al. Sm all,2006,2:458
    [53]John C H, David A T, Matthew T S, et al. Nanosphere lithography:Size-tunable silver nanoparticle and surface cluster arrays,J.Phys.Chem.B,1999,103:3854-3863
    [54]Haynes C L, Van Duyne R P, Nanosphere lithography:A versatile nanofabrication tool for studies of size-dependent nanoparticle optics J. Phys. Chem. B,2001,105:5599-5611
    [55]秦振平,郭红霞,模板法合成有序多孔材料研究进展,化工进展,2002,21(5):323-327
    [56]Beck S, Vartuli J C.Roth W J, et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc.,1992,114:10834-10843
    [57]Ogawa M, A simple sol-gel route for the preparation of silica-surfactant mesostructured materials, J. Chem. Soc. Chem. Commun,1996:1149-1150
    [58]Huo Q, Margolese D I, Clesla U, et al.Generalized synthesis of periodic surfactant/inorganic composite materials,Nature,1994,368:317-321
    [59]Zhao D, Sun J, Li Q, et al.Morphological Control of Highly Ordered Mesoporous Silica SBA-15,Chem.Mater..2000,12:275-279
    [60]Lu Y, Gangull R, Drewlen C A, et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating,Nature,1997,389:364-368
    [61]Lu Y, Fan H,Stump A, et al.Aerosol-assisted self-assembly of mesostructured spherical nanoparticles.Nature,1999,398:223-226
    [62]Velev 0 D, Jede T A, Lobo R F,Lenhoff A M. Porous silica via colloidal crystallization, Nature(London),1997,389(6650):447-448
    [63]Holland B T, Blanford C F, Stein A,Synthesis of Macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,Science,1998,281:538-540
    [64]马光辉,苏志国.高分子微球材料:63
    [65]韩绍华,等.皂种子乳液法制备复合微球[J].东华大学学报(自然科学版)2002,6(3):120-124
    [66]Matsumoto T. A behavior of unsaturated acid monomers in emulsion Polymerization [J]. Kobunshi Kagaku,1965,22:481-492.
    [67]罗时忠,等.无皂高分子乳胶粒子的组成、单分散性和稳定性[J].物理化学学报.2003,19(8):774-778
    [68]Goodall A R, et al, Mechanism and emulsion polymerization of styrene in soap-free systems[J]. J Polym Sci Chem Ed,1977.15(9):2193-2218
    [69]Yablonovitch E Phys. Rev. Lett.,1987.58:2059-2062
    [70]曹同玉.聚合物乳液合成原理、性能及应用[M].北京:化学工业出版社,1997.
    [71]严亚,张坤,陈启明.聚苯乙烯均匀分散颗粒的制备及其表面电性研究,第十届全国交替与界面化学会议论文集,西安,2004
    [72]Y. Z. Piao, A. Bums, J. Kim, U. Wiesner, T. Hyeon. Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications. Adv. Funct. Mater., 2008,18:1
    [73]K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, R. P. Duyne, Toward a Glucose Biosens or Based on Surface-Enhanced Raman Scattering. J. Am. Chem. Soc.,2002,125: 588
    [74]A. Corma. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev..1997,97(6):2373
    [75]C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. JeRinija, S. Xu, S. JeRinija, V. S. Lin. A Mesoporous Silica Nanosphere. Based Cartier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. J. Am. Chem. Soc.,2003,125(15):4451
    [76]李玉东,于秀珍,刘式墉.SiO2高反射率半导体激光器腔面涂层的制备与研究.吉林大学学报。1990,2:68
    [77]Stober W, Fink A. [J]. Colloid Interface Sci,1968,26:62~69.
    [78]Seo, H.; Ki m, G.; Ansari, S.G.; Kim,Y.; Shin, H.; Shim, K.; Suh, E. Solar Energy Materials and Solar Cell,2008,92:1533
    [79]Zuo, J.; Nie, C. G.; Gu, X.; Lai, Y. K.; Zong, Y.; Sun, L.; Lin, C. J. Materials Letters,2007,61:2632
    [80]Wang, W.; Lin, H.; Li, J.; Wang, N. Journal of the American Ceramic Society,2008, 91:628
    [81]Wu, L. Z.; Zhi, J. F. Acta Phys-Chim. Sin.,2007,23:1173
    [82]Li, P.; Zeng, C. F.; Zhang, L. X.; Xu, N. P. Journal of Inorganic Materials,2008,23:49[李平,曾昌凤,张利雄,徐南平.无机材料学报,2008,23:49]
    [83]Zhang, X.; Yao, B.; Zhao, L.; Liang, C.; Zhang, L.; Mao, Y. Journal of the Electrochemical Society,2001,148:G398
    [84]Yun, H.; Lin, C.; Li, J.; Wang, J.; Chen, H. Applied Surface Science,2008,255: 2113
    [85]Conforto, E.; Caillard, D.:Muller, L.; Muller, F. A. Acta Biomaterialia,2008,4: 1934

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700