犬颅脑枪弹伤后局部脑组织BDNF蛋白表达及意义的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颅脑火器伤具有死亡率、致残率高、救治难度大等特点,其死亡率历来居各部位火器伤之首。颅脑战伤的发生率在第一次世界大战未用钢盔时为25%,以后为9%~15%或10%~17%。自二战以来,其死亡率一直保持在30%~40%,伤死率为10%~20%,伤残率为40%,在火器伤致死的总人数中,颅脑伤几乎占50%。颅脑火器伤不仅多见于战时,平时也时有发生,平时枪击伤的死亡率超过60%。在国内、外颅脑火器伤研究中,存在一个共同问题是动物模型制作困难,体现在动物伤后存活时间过短,无法进入更深入的研究。本实验采用低速德国小口径步枪射击犬头颅,建立犬脑贯通伤(penetrating craniocerebral injury,PCI)和脑切线伤模型,研究犬颅脑火器伤后局部脑组织脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)蛋白的表达与意义。
     一、犬脑枪弹伤模型建立及相关生理、病理指标观察:目的建立犬脑枪弹伤致伤模型,检验该模型用于颅脑枪弹伤进一步研究的可行性。方法 杂种犬16只,采用低速德国小口径步枪子弹致伤。测定弹丸致伤参数,观察实验犬伤后相关生理与病理指标改变。结果 脑切线伤组和PCI组的弹丸撞击速度与撞击能量基
    
    第四军医大学硕士学位论文
    本一致;脑切线伤组的组织对弹丸吸收能量较大(P<0.05),且实验
    犬伤后存活时间也较长(P<0.05)。两组均在伤后数分钟至lh内出
    现明显的心率减慢、血压下降、颈动脉血流量减少、呼吸暂停或
    减慢、颅内压(运让acranial pressure,ICP)逐渐升高。两组挫伤区病
    理表现为脑血管扩张、充血、血管周围环形出血、神经细胞轻度
    缺血、坏死及脑水肿(b rain edema,BE)。结论上述模型均具有弹
    道伤恒定、重复性好、伤后动物存活时间较长等特点,尤以脑切
    线伤模型更为理想。
     二、犬颅脑枪弹伤后局部脑组织BDNF蛋白的表达:目的探
    讨犬颅脑火器伤后脑组织内BDNF的变化规律及其对颅脑火器创
    伤神经元的保护作用。方法建立犬颅脑枪弹伤模型,制备不同
    部位不同时间点脑组织切片,免疫组化法染色,检测BDNF的表
    达。与设立的对照组相比较,并进行组间比较。结果损伤组脑
    组织BDNF含量明显高于对照组,动物的伤情相对愈重,表达愈
    明显。在2一4h为表达高峰期,不同组织间亦存在明显差异
    (P<0 .01),以海马及挫伤区含量高。结论颅脑枪弹伤后不同部位
    脑组织BDNF随时间的变化出现不同表达,提示BDNF在颅脑枪
    弹伤的早期修复中发挥作用。
     综上所述,采用低速德国小口径步枪致伤犬颅脑、建立PCI
    和脑切线伤模型,两模型具有存活时间长、重复好等特点,尤以
    脑切线伤模型存活时间更长,为颅脑火器伤的进一步研究提供了
    较为理想的动物模型。通过对枪弹伤后脑组织神经元BDNF蛋白
    的表达变化的研究,从分子水平阐述了颅脑火器伤后BDNF在早
    期修复中所发挥的作用。
The craniocerebral missile wounds have the characteristic of a high death rate and mutilation rate and are particularly difficult to be managed. They are the most common cause of death in missile injure victims. Since world war two, the craniocerebral missile wounds contributed to 30%~40% of death rate under shield, 10%~20% of casualty rate and 40% of mayhem rate. Up to 50% of deaths caused by missile injury are penetrating missile injuries of the head. It happened not only in wartime, but also in peacetime. The mortality of gunshot wound is more than 60% during times of peace. The common problem of research for craniocerebral missile wounds is difficult to make the animal models because the animals will survive a short time after injury. The aim of this study was to make the canine models of penetrating craniocerebral injury (PCI) and tangent brain injury by the bullets of the small-calibre rifle made in German and test the BDNF expression of cerebral neuronal cells after craniocerebral missile wounds and h
    igh energy missile wounds in the extremity of canines. 1. Model establishment and observation of related pbysiopatholog-ical parameters in canines with craniocerebral gunshot wounds
    AIM To set up the experimental model of canine craniocerebral gunshot wound and examine its feasibility, for further study in craniocerebral gunshot wound. METHODS Sixteen canines, which
    
    
    were wounded by the bullets of the small-calibre rifle made in German, were made into penetrating craniocerebral injury (PCI) group (n=10) and tangent brain injury group (n=6). The wounded parameters of bullets were measured, the physiopathological changes of canines were observed. RESULTS The impact velocity and the impact energy of the two groups were recorded. There was no significant difference between two groups. The absorbed energy in the TBI group was more than that in the PCI group (P<0.05). The average survival time of the canines in the tangent brain injury group was longer than that of the PCI group (P<0.05). The heart rate, respiratory frequency, blood pressure and carotid blood flow were reduced, and the intracranial pressure (ICP) was increased obviously in both groups at a few minutes to 1 hour post-wound. There were cerebral vascular dilation, hyperemia, perivascular hemorrhage, ischemia necrosis of the neunons and perivascular edema in the specimen of two groups. CONCLUSION The experimental model showed invariable wound trajectory. The reiteration of the model was good and the survival times were long, especially in the model of the tangent brain injury. 2. Expression brain-derived neurotrophic factor (BDNF) in canines with craniocerebral gunshot wounds
    AIM To observe the expression of BDNF in cerebral cortex, hippocampus CA2 and brain stem in canines with cranicerebral gunshot wounds. METHODS Twenty canines were divided into normal control and injury group. Using the model of gunshot-injured canine cerebrum made by the bullets of small-caliber rifles made in German, BDNF positive neurons were observed in the contusion trajectory area, the concussion trajectory area, hippocampus, and brain stem at 30 min,l, 2, 4, 6, 8 and 12 h after trauma by immunohistochemical method. The results of the control group and injury group were compared. RESULTS The Expression of BDNF in the injury group was obviously higher than that of the control group. The expression appeared 2-4 hour after trauma (p<0.01).
    
    
    CONCLUSION BDNF plays a positive role in repair of brain injury.
    In summary, we conclude that using the bullets of the small-calibre rifle made in German, we established the canine models of PCI and tangent brain injury. The canines with PCI or tangent brain injury, especially the tangent brain injury, will survive long time and the model is easy to repeat. Therefore, the models can serve better for the research of craniocerebral missile wounds. The study that BDNF expressed in cerebral neuronal cells after gunshot injury explained the effect of craniocerebral missile wound and the principle of the cerebral secondary
引文
[1] 雷鹏,朱诚,张光霁,等.7.62mm弹颅脑火器伤实验研究Ⅰ、脑贯通伤、脑切线伤和颅骨切线伤的比较[J].第二军医大学学报,1989;10(3):201-203.
    [2] Carey ME, Sarna GS, Farrell JB. Experimental missile wound to the brain[J], J Neurosurg, 1989; 71(5 Pt 1): 754-764.
    [3] 刘伟国,段国升,罗毅,等.不同能量弹丸致颅脑伤后病理生理研究[J].中华神经外科杂志,1998;14(1):19-21.
    [4] Jordan CL. Ciliary neurotrophic factor may act in target musculature to regulate developmental synapse elimination[J]. Dev Neurosci. 1996; 18(3): 185-198.
    [5] Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain[J]. EMBO J, 1982; 1 (5): 549-553,
    [6] 李力燕,王廷华,杨正伟,陈彦红,李朗,刘宗良.脑源性神经营养因子在成年猴脑的分布[J].神经解剖学杂志,2002;18(1):67-70.
    [7] 米兰兰,王廷华,曾兢,张晓.NGF,BDNF在成年大鼠大脑皮质分布的免疫组织化学研究[J].昆明医学院学报,2002;(1):32-34.
    [8] Wetmore C, Emfors P, Persson H, Olson L. Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in situ hybridization[J]. Exp Neurol. 1990;109(2): 141-152.
    [9] Phillips LL, Belardo ET. Expression of c-fos in the hippocampus following mild and moderate fluid percussion brain injury[J]. J Neurotrauma. 1992;9(4): 323-333.
    [10] 董吉荣,朱诚,江基尧,卢亦成,张光霁,刘志敏.大鼠液压脑
    
    损伤后BDNF mRNA原位杂交组织化学表达的变化[J].中华创伤杂志,1998;14(3):151-153.
    [11] 陈于波,黄代新,吴梅筠,张林,李荣华,吴家文.液压冲击脑损伤大鼠海马表达实验研究[J].中国危重病机就医学,2001;13(8):560-463.
    [12] 张峡,王正国,朱佩芳.大鼠脊髓腹侧压迫损伤后神经营养素及受体表达的变化规律[J].中国脊柱脊髓杂地,2001;11(6):347-350.
    [13] 贾丛林,田碧野,迟风令.脑源性神经营养因子在创伤后鼠脑中的表达[J].齐齐哈尔医学院学报,2001;22(7):726-727.
    [14] 曾兢,王廷华张晓,米兰兰,高礼.脑缺血后大脑皮质神经生长因子和脑源性神经营养因子的改变[J].华西医大学报,2001;32(2):216-218.
    [15] Arai S, Kinouchi H, Akabane A, et al. Induction of brain-derived neurotrophic factor (BDNF) and the receptor TrkB mRNA following middle cerebral artery occlusion in rat[J].Neurosci Lett, 1996;211 (1): 57-60
    [16] Kokaia Z, Zhao Q, Kokaia M, et al. Regulation of brain-derived neurotrophic factor gene expression alter transient middle cerebral artery occlusion with and without brain damage[J].Exp Neurol, 1995; 136(1): 73-88.
    [17] Kokaia Z, Nawa H, Uchino H, et ai. Regional brain-derived neurotrophic factor mRNA and protein levels following transient forebrain ischemia in the rat[J].Brain Res Mol Brain Res, 1996;38(1): 139-144.
    [18] Ferrer I, Ballabriga J, Marti E, et al. BDNF and TrkB co-localize in CA1 neurons resistant to transient forebrain ischenva in the adult gerbil[J]. J Neuropathol Exp Neurol, 1997;56(7): 790-797.
    [19] Schorr M,Zhou L, Schwechheimer K. Expression of ciliary
    
    neurotrophic fator is maintain in spinal motor neurons of amyotrophic lateral sclerosis[J]. J Neurol Sci, 1996;14(10): 117-122.
    [20] Le Weu, Yang Kai, Whitson J S, et al. Liposome-mediated NGF gene transfection increase ChAT activity in rat septo-hippocampal cell cultures[J]. Neuro Report, 1996;7(9): 7-10.
    [21] Schabitz WR, Schwab S, Spranger M, et al. Intraventricular brain-derived neurotmphic factor reduces infarct size aider focal cerebral ischemia in rats[J]. J Cereb Blood Flow Metab, 1997; 17(5): 500-506.
    [22] Kiprianova I, Freiman TM, Desiderato S, et al BrainI-derived neurotrophic factor prevents neuronal death and filial activation after global ischemia in the rat[J]. J Neunosci Res, 1999;56(1): 21-27.
    [23] Cheng Y, Gidday JM, Yah Q, et al. Marked age-dependent neuroprotection by brain-derived neurotrophic factor against neonatal hypoxic-ischemic brain injury[J]. Ann Neural, 1997;41 (4): 521-529.
    [24] Chen J, Li Y, Chopp M. Intraeerebral transplantation of bone marrow with BDNF after MCAO in rat[J]. Neurophannaoology, 2000;39(5): 711-716.
    [25] 周晖,毛萌,刘卫平,李胜富,王华.脑源性神经营养因子对缺氧胚鼠脑皮质神经元的保护作用[J].华西医大学报,2002;33(4):573-576.
    [26] 洪新如,郑铃,侍坚,陈新民.脑室注射脑源性神经营养因子对新生大鼠缺氧缺血性脑损伤的影响[J].解放军医学杂志,2002;27(8):680-682.
    [27] Wong V, Arriaga R, Ip NY, Lindsay RM. The neurotrophins BDNF, NT-3 and NT-4/5, but not NGF, up-regulate thecholinergic phenotype of developing motor neurons[J].
    
    Eur J Neurosci 1993; 5(5): 466-474.
    [28] Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system[J]. J Neurochem 1992;59(1): 99-106
    [29] Rosenthal A, Goeddel DV, Nguyen T, Martin E, Burton LE, Shih A, Laramee GR, Wurrn F, Mason A, Nikolics K, et al. Primary structure and biological activity of human brain-derived neurotrophic factor[J]. Endocrinology. 1991;129(3): 1289-1294.
    [30] Acheson A, Barker PA, Alderson RF, Miller FD, Murphy RA. Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF[J]. Neuron. 1991;7(2): 265-275.
    [31] Merlio JP, Emfors P, Kokaia Z, Middlemas DS, Bengzon J, Kokaia M, Smith ML,Siesjo BK, Hunter T, Lindvall O, et al. Increased production of the TrkB protein tyrosine kinase receptor after brain insults[J].Neuron, 1993; 10(2): 151-164.
    [32] F Zafra, D Lindholm, E Castren, J Hartikka and H Thoenen,et al. Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes[J]. J Neurosci 1992; 12: 4793 -4799.
    [33] Katoh-Semba R, Takeuchi IK, Inaguma Y, et al. Brain-derived neurotrophic factor, nerve growth and neurolxophin-3 selected regions of the rat brain following kainic acid-induced seizure activity[J].Neurosci Res,1999; 35(1): 19-29.
    [34] Tandon P, Yang Y, Das K, et al.Neuroprotective effects of brain-derived neurotrophic factor in seizures during development [J]. Neuroscience, 1999; 91(1): 293-303.
    
    
    [35] Ip NY, Yancopouios GD, Lindsag RM.Cultured hippacampal neurons show respons to BDNF, Nt-3 and NT-4, but not NGF[J]. JNeurosci, 1993; 13: 3394.
    [36] Beminger B, Garcia DE. BDNF and NT-3 induce intracellular Ca~(2+) elevation in hippocampal neurons [J]. Neuroreport, 1993;4(5): 1303-1306.
    [37] 王正国.颅脑战创伤研究[J].中华神经外科疾病研究杂志,2002;1(2):97-99.
    [38] 刘荫秋,王正国,马玉缓.创伤弹道学[M].北京:人民军医出版社,1991;261-268.
    [39] 黎鳌,盛志勇,王正国.现代战伤外科学[M].北京:人民军医出版社,1998;608-665.
    [40] Sertac Y, Mustafa K. High velocity gunshot wounds to the head and neck: A review of wound ballistics[J]. Milit Med, 1998;163(5): 346-348.
    [41] Mattox KL, Feliciano DV, Moore EE. Trauma [M]. 4thed. New York: McGraw-Hill Publisher, 2000;377-400.
    [42] 中国人民解放军总后勤部卫生部.抗美援朝战争卫生工作总结[M].北京:人民军医出版社,1987;30-31
    [43] Davorin D, Dinko L, Drago P, et al. War injuries to the head and neck[J]. Milit Medicine, 1998;163(2): 117-119
    [44] 章翔,费舟,易声禹,等.颅脑火器伤的急救措施[J].中华创伤杂志,1999;15(4):247-250
    [45] Zhang Xiang, Fei Zhou, Yi Shengyu, et al. Emergency treatment of craniocerebral firearm wounds[J]. Chinese Journal of Traumatology, 1999;2(2): 96-100.
    [46] Allen IV, Scott R, Tanner JA. Experimental high-velocity missile head injury[J], Injury, 1982; 14(2): 183-185.
    [47] West OGH. A short history of the management of penetrating missile injuries of the head[J]. Surg Neurol, 1981;16(6):
    
    145-146.
    [48] Webster JE, Gurdjian ES. Acute physiological effect of gunshot and other penetrating wounds of the brain[J]. J Neurophsiol, 1943;6(8): 255-257.
    [49] Gerber AM, Moody R. Craniocerebral missile injury in the monkey: An experimental physiological model[J]. J Neurosurg, 1972;3(6): 43-45.
    [50] Povlishock JT, Hayes RL, Michel ME, et al. Workshop on animal models of traumatic brain injury[J], d Neurotrauma, 1994; 11 (6): 723-725.
    [51] Clemedson C J, Falconer B, Frankenberg L, et al. Head injuries caused by small-calibre high velocity bullets[J]. An experimental study. Z Rechtsmed 1973; 16 (2): 103-114.
    [52] Croekard HA,Brown FD,Johns LM,Mullan S. An experimental cerebral missile injury model in primates[J]. J Neurosurg. 1977;46(6): 776-783,
    [53] Maynard R, Cooper G; Evans VA, et al. Pathophysiological effects of experimental medium velocity penetrating head injury[J]. CDE Technical, Note No: 567, Porton Down, Salisbury, Wilts, England
    [54] 朱诚,雷鹏,张光霁,等.7.62mm弹颅脑火器伤实验研究Ⅱ、大剂量地塞米松防治继发病理损害的作用[J].第二军医才学学报,1989;10(1):208-215.
    [55] Crockard HA, Brown FD, Trimble J, Mullan JF. Somatosensory evoked potentials, cerebral blood flow and metabolism following cerebral missile trauma in monkeys[J]. Surg Neurol. 1977;7(5): 281-287.
    [56] Axelsson H,Hjelmqvist H,Medin A,et al. Physiological changes in pigs exposed to a blast wave from a detonating high-explosive charge[J]. Mil Med, 2000; 165(4): 119-126.
    [57] Saljo A, Bao F, Haglid KG; et al. Blast exposure causes
    
    redistribution of phosphorylated neurofilament subunits in neurons of the adult rat brain[J]. J Neurotrauma, 2000; 17(6): 719-726.
    [58] Irwin R J, Lemer MR, Bealer JF, et al. Shock after blast wave injury is casused by a vagally mediated reflex[J]. J Trauma, 1999;47(7): 105-110.
    [59] 侯立军,张光霁,卢亦成,等.犬颅脑爆震伤模型的建立[J].中华创伤杂志,2001;17(12):725-728.
    [60] 侯立军,张光霁,卢亦成,等.经小脑延髓池局部应用反义寡核苷酸对脑组织TNF-α表达的影响[J].第二军医大学学报,2001;22(7):655-657.
    [61] 侯立军,张光霁,卢亦成,等.TNF-α反义寡核苷酸对颅脑爆炸伤后脑组织含水量的影响[J].第二军医大学学报,2001;22(3):767-769.
    [62] 张光霁,侯立军,卢亦成,等.7NF-α反义寡核苷酸对犬颅脑爆炸后低血压的影响[J].中华神经外科疾病研究杂志,2002;1(2):140-143.
    [63] 刘荫秋,周宝桐,李曙光,等.高速投射物伤远达效应的机理及其对伤情转归的初步探讨[J].中华创伤杂志,1991;(7)增刊:8-11.
    [64] 黎鳌,盛志勇,王正国.现代战伤外科学[M].北京:人民军医出版社.1998;82~85.
    [65] Goransson D Inguar H, Kutyna F. Remote cerebral effects on EEG in high energy missile trauma [J]. J Trauma, 1998;78(1): 204-205.
    [66] 赖西南,刘荫秋,张良潮.现代火器伤实验研究回顾与展望[J].解放军医学情报,1996;4(10):202-205.
    [67] 张良潮,赖西南,夏铭生,等.肢体火器伤时脑微循环变化的特点[J].微循环学杂志,1998;8(2):12-13.
    
    
    [68] Suneson A,HA,Seeman T. Central and peripheral nervous damage following high energy missile wounds in the high [J]. J Trauma, 1998;28(1): 197-199.
    [69] 雷鹏,朱诚,张光霁,等.7.62mm弹颅脑伤时冲击波远达效应对内脏损伤的研究[J].中华神经外科杂志,1990;6(3):290-293.
    [70] 王正国.枪弹致伤力和致伤机制的再认识[J].中华创伤杂志,1998;14(5):263-265.
    [71] 侯立军,张光霁,卢亦成,等.犬颅脑穿透性爆炸伤后的病理生理变化[J].第二军医大学学报,2001;22(12):1108-1110.
    [72] Duma Meynell AA, Hassanain M, Levin BE. Norepinephrine and traumatic brain injury: a possible role in post-traumatic edema[J]. Brain Res, 1998;80(2): 245-247.
    [73] Zhang X, Liu WP, Yi ShY et al. Principles for managing penetrating craniocerebral in juries caused by firearm missiles[J]. J Clin Neurosci, 1996;3(3): 229-231.
    [74] 章翔.重型颅脑损伤的基础与临床救治研究[J].解放军医学杂志,2001;26(8):549-551.
    [75] Chart KH, Miller JD, Dearden NM, et al. Effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe head injury[J]. JNeurosurg, 1992;77(8): 55-57.
    [76] 钱畅,陈长才.颅脑火器伤脑微血管铸型的方法[J].微循环学杂志,1998;8(2):32-33.
    [77] 钱畅,陈长才,宁可,等.颅脑火器伤早期脑微血管三微构型和超微结构实验研究[J].中华创伤杂志,1999,15(增刊):54-55.
    [78] 李开慧,刘丛军,严利春.实验性颅脑火器伤的脑电图研究[J].临床脑电学杂志,1997;6(1):32-34.
    [79] Douglas SD, Donald,Carl L,et al.Reduced cerebral blood
    
    flow oxygen delivery and electroencephalographic activity after traumatic brain injury and mild hemorrhage in cats[J]. J Neurosurg, 1992;76(7): 812-821.
    [80] 刘荫秋,王正国,马玉媛.创伤弹道学[M],北京:人民军医出版社,1991;175-178.
    [81] 魏学忠,胡深.颅脑火器伤机制与病理[J].人房军医,1996,10(10):14-16.
    [82] Miller JD, Sweet RC, Narayan R, et al. Early insults to the injured brain[J]. JAMA, 1978;24(5): 439-442.
    [83] Fei Zhou, Zhang Xiang Lu Peiling, et al. Level of the neuronal free Ca~(2+), BBB permeability and ultrastructure in head injury with secondary insults[J]. J Clin Neurosci, 2001;8(6): 557-563.
    [84] 费舟,章翔,易声禹,等.弥漫性脑损伤二次脑创伤鼠脑血栓素A2、前列环素的变化及DCLHb的作用[J].中华实验外科杂志,1996;增:146-148.
    [85] 侯立军,张光霁,朱诚.犬颅脑爆炸伤后早期脑组织病理改变[J].第二军医大学学报,2001;22(12):1105-1107.
    [86] 李兵仓,刘鲁岳,陈志强.某型榴弹爆炸时绵羊的颅脑伤[J].第三军医大学学报,2001;23(4):384-386.
    [87] 侯立军,张光霁,朱诚.狗颅脑爆震伤后脑组织中TNF-α mRNA 表达变化[J]第二军医大学学报,2001;22(12):1111-1113.
    [88] 刘荫秋,李曙光,王建民,等.现代火器伤远达效应发生机制[J].解放军医杂志,1995;20(4):305-307.
    [89] Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part Ⅱ: Morphological characterization [J]. J Neurosurg, 1994;80(2): 301-313.
    [90] Lobaro R, Sarabia R, Cordobes F, et al. Post-traumatic cerebral hemispheric swelling[J]. J Neurosurg,
    
    1998;88(6): 417-420.
    [91] Bouma DJ, Muizelar JP, Stringer WA. Ultraearly evaluation of regional cerebral blood flow in severely head-injured parients using xenon-enhanced computerized tomography[J]. JNeurosurg, 1992;77(3): 360-362.
    [92] Stover JF, Morganti-Kosmarm MC, I.enzlinger PM,et al. Glutamate and taurine are increased in ventricular cerebrospinal fluid of severely brain-injured patients[J]. J Neurotrauma, 1999; 16(2): 135-142.
    [93] Fisher M. Potentially effective therapies for acute ischemic stroke. Eur Neurol. 1995;35(1): 3-7.
    [94] Winkler T, Sharma HS, Stalberg E. et al. Benzodiazepine receptors influence spinal cord evoked potentials and edema following trauma to the rat spinal cord. Acta Neurochir Suppl (Wien), 1997,70(21): 216-219.
    [95] Strijbos PJ,Leach MJ,Garthwaite J. Vicious cycle involving Na~+ channels, glutamate release,and NMDA receptors mediates delayed neurodegeneration through nitric oxide formation[J]. JNeurosci, 1996; 16(16): 5004-5013.
    [96] Mclntosh TK, Saatman KE, Raghupathi R, et al. The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms[J]. Neuropathol Appl Neurobiol, 1998;24(4): 251-267.
    [97] Buki A.Siman R,Trojanowski JQ.et al. The role of calpain-mediated spectrin proteolysis in traumatically induced axonal inj ury[J]. Neuropathol Exp Neurol, 1999;58(2): 365-375.
    [98] Conti AC, Raghupathi R, Trojanowski JQ, et al. Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period[J]. J Neurosci, 1998; 18(10): 5663-5672.
    
    
    [99] LaPlaca MC, Raghupathi R, Verma A, et al. Temporal patterns of Poly(ADP-Ribose) polymerase activation in the cortex following experimental brain injury in the rat[J]. J Neurochem, 1999;73(1): 205-213.
    [100] Clark RS, Koehanek PM, Chen M, et al. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury[J]. FASEBJ, 1999;13(8): 813-821.
    [101] Wang X, Jung J, Asahi M, et al. Effects of matrix metalloproteinases-9 gene knock-out on morphological and motor outcomes after traumatic brain injury[J]. J Neurosci, 2000;20(18): 7037-7042.
    [102] Beer R, Franz G, Schopf M, et al. Expression of Fas and Fas ligand after experimental traumatic brain injury in the rat[J]. J Cereb Blood Flow Metab, 2000;20(4): 669-677.
    [103] Raghupathi R, Fernandez SC, Murai H, et al. Bcl-2 overexpression attenuates cortical cell loss following traumatic brain injury in transgenic mice[J]. J Cereb Blood Flow Metab. 1998; 18(10): 1259-1269.
    [104] Napieralski JA, Raghupathi R, McIntosh TK. The tumor-supressor gene, p53. is induced in injured brain regions following experimental traumatic brain injury[J]. Mol Brain Res, 1999;71(1): 78-86.
    [105] Cookson MR, Ince PG, Shaw PJ. Peroxynitdte and hydrogen peroxide induced cell death in the NSC34 neuroblastoma x spinal cord cell line: Role of poly (ADP-ribose) polymerase[J]. J Neurochem, 1998;70(2): 501-508.
    [106] LaPlaca MC, Raghupathi R, Verma A, et al. Temporal patterns of poly (ADP-ribose) polymerase activation in the cortex following experimental brain injury in the rat[J]. Neurochem, 1999;73 (2): 205-213.
    [107] Whalen NU, Clark RS, Dixon CE, et al. Reduction of
    
    cognitive and motor deficits after traumatic brain injury in mice deficient in poly (ADP-ribose) polymerase[J]. J Cereb Blood Flow Metab. 1999;19(20): 835-842.
    [108] Teasdale GM, Nicoll JA, Murray G. et al. Association of apolipoprotein E polymorphism with outcome after head injury[J]. Lancet, 1997;350(9084): 1069-1071.
    [109] Buttini M, Orth M, Bellosta S, et al. Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/-mice: Isoform-specific effects on neurodegeneration[J-]. J Neurosci, 1999; 19(12): 4867-4880.
    [110] Holmin S, Mathiesen T. Intraeerebral administration of interleukinlbeta and induction of inflammation, apoptosis, and vasogenic edema[J]. J Neurosurg, 2000;92(1): 108-120.
    [111] Stover JF, Schoning B, Beyer TF, et al. Temporal profile of eerebrospinal fluid glutamate, interleukin-6, and tumor necrosis factor alpha in relation to brain edema and contusion following controlled cortical impact injury in rats[J]. Neurosic Lett, 2000;288(1): 25-28.
    [112] Galasso JM, Wang P, Martin D, et al. Inhibition of TNF-alpha can attenuate or exacerbate excitotoxic injury in neonatal rat brain[J]. Neuroreport, 2000; 11(2): 231-235.
    [113] 张光霁,黄承光,王驹,等.狗颅脑火器伤后不同体温时外周血和脑脊液中神经肽的含量变化[J].中华创伤杂志,1997;13(1):4-6.
    [114] ZHANG Guangji, ZHU Cheng, JIANG Jiyao, et al. Experimental study and clinical observation on changes of β-endorphin after head injury[J]. Chin J Traumatol, 1998;14(1): 1-4.
    [115] 侯立军,卢亦成,张光霁,等.姑息清创术治疗颅脑爆震伤的实验研究[J].第二军医大学学报,2001;22(12):1114-1116.
    [116] Boisver D, Schreiber C, Interrelationship of excitotoxic and
    
    free radical mechanisms in Krieglstein J, Oberpichler H. Pharmacology of cerebral ischemia[j]. Stuttgart: Wissenshafrlich Verlaggesellschafi, 1992; 12(8): 1-10.
    [117] Rohn TT, Hinds TR, Vincdnzi FF. Ion transport ATPase as targets for free radical damage: protection by an aminosteroid of the Ca~(2+)pump ATPase and Na~+/K~+ pump ATPase of human red blood cell membranes[J]. Biochern Pharmacol, 1993; 46(8): 525-528.
    [118] Christian M, Catherine V, Monique A, et al. Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors[J]. J Neurotrauma, 1996;13(1): 11-14.
    [119] Fraekler MLI. Applied wound ballistics [J]. What's new and what's true J Trauma (China), 1990;6 (2) Supple.32-35.
    [120] Barach E, Tomlanovich M, Nowak R. Ballistics: a pathophysiologic examination of the wounding mechanisms of firearrns: Part Ⅰ [J].,J Trauma 1986;26(3): 225-239.
    [121] 章翔,封亚平,费舟,等.犬颅脑枪弹伤模型建立及其超微结构观察[J].中华创伤杂志,2003;19(9):557-558.
    [122] Yakovlev AG, Faden AI. Molecular strategies in CNS injury [J]. Neurotrauma, 1995;12(5): 767-770.
    [123] Mocchetti I, Wrathal JR. Neurotrophic factors in central nerves system trauma [J]. Neurotrauma, 1995; 12(5): 853-870.
    [124] 封亚平,章翔,柏秀松,等.Fos蛋白和Jun蛋白在犬颅脑枪弹伤局部脑组织的表达[J].中华神经外科病症研究杂志 2003;2(2):138.141.
    [125] Lindvall O, Kokain Z, Bengzon J, Elmér E, Kokaia M. Neurotrophins and brain insults [J]. Trends Neurosci, 1994; 17(11): 490-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700