基于时频分析的跳频通信侦察技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跳频技术是通信抗干扰技术中最有成效的技术之一,加之其优越的抗截获、抗衰落和较强的多址组网能力,已经在军事和民用通信中得到了广泛的应用。由此所引发的,对跳频通信的侦察和监测,也成为通信对抗和无线电监管领域近年来的研究重点。这一研究在技术上极富挑战性,这主要是由于:①跳频信号的载频按照伪随机方式发生跳变,使得跳频信号的检测和参数估计比一般的定频信号要困难得多;②随着人类信息化程度不断提高,电磁环境日益复杂。密集的定频信号、噪声信号、外界干扰信号以及各种突发信号相互交织在一起,使得跳频信号的检测变得十分困难;③在复杂的电磁环境下,同时工作的多个跳频网台,既有同步网,又有异步网;既有正交网,又有非正交网。它们的跳变速度相近或相同,工作的频率范围又可能有重合,就更增加了网台分选的难度。
     由于跳频信号的频率随时间不断变化,属于典型的非平稳信号,单纯的时域或频域分析方法很难对其精确分析,而时频分析技术的出现则为处理这类非平稳信号提供了非常有效的方法。时频分析的基本思想是设计时间和频率的联合函数,用它同时描述信号在不同时间和频率的能量密度或强度。近年来,与此相关的研究工作不断发展与深入,其应用范围也不断扩大,成为当今信号处理领域的一个非常活跃而重要的研究课题。
     本文根据跳频信号的时变特征,深入研究了适用于跳频信号的时频分析方法,并以时频分析为主线,系统地解决了复杂环境中跳频信号的网台盲分选、信号盲识别和参数盲估计问题。主要研究工作和成果包含以下几个方面:
     ●本文对基于核函数滤波的时频分析方法进行了深入的研究。对于跳频信号,Wigner-Ville分布存在严重的交叉项干扰,现有的Cohen类时频分布在交叉项抑制和时频聚集性方面存在一定的局限性。为了解决这些问题,本文提出了一种新的Cohen类时频分布核函数,相对于其它的核函数,新构造的核函数能够更好地匹配跳频信号的模糊函数,在参数选取适当的条件下,它能够彻底抑制跳频信号的交叉项干扰,并保持较高的时频聚集性。为了使核函数的参数达到最佳取值,提出了一种基于3阶Renyi熵的核参数优化方法,根据3阶Renyi熵对核参数进行优化选择,可以使核函数与信号达到最佳匹配,从而获得不含交叉项干扰,并具有较高时频聚集性的时频分布。通过对这种新的时频分布的噪声分析表明,它具有较好的抗噪声性能,新的核函数不仅抑制了多分量信号的交叉项,同时也起到了平滑白噪声的作用。
     ●除了通过核函数来抑制交叉项,根据跳频信号的频谱特点,本文提出了一种基于信号分解的组合时频分布,通过高斯滤波器组将多分量跳频信号分解成为多个单分量信号,再将每个信号分量的Wigner-Ville分布线性叠加来逼近跳频信号的能量分布。这种新的时频分布能够有效避免多个分量相互作用带来的交叉项干扰,而且保留了Wigner-Ville分布良好的时频分辨率,从而更加准确地刻画了跳频信号的时变频率特性。与同类方法相比,它的运算复杂度更低,因而具有更大的实用价值。通过对这种新的时频分布的噪声分析表明,它的抗噪声性能虽然没有达到最优,但是通过阈值滤波的方法对时频分布进行降噪处理,可以减小原时频分布中扰动信号分量的噪声能量,从而得到降噪后的时频分布。
     ●为了分离不同的跳频网台,本文提出了一种基于时频分布的跳频网台盲分选方法。这种方法利用不同源信号时频特征的差异,通过对混合信号的时频分布矩阵集合联合近似对角化来实现信号的盲分离。只要源信号之间互不相关且具有不同的时频特征,不论它们是跳频信号还是其它信号,非正交网台还是正交网台,恒跳速网台还是变跳速网台,都可以得到有效分离。由于时频分布本身具有良好的能量集中度和噪声扩散特性,基于时频分布的跳频网台盲分选方法的抗噪声性能优于其它的跳频网台盲分选方法。
     ●现有的跳频信号盲检测方法大多仅研究如何从噪声中检测跳频信号,对电磁环境的假设过于理想,而实际的电磁环境异常复杂。对于盲源分离后获得的单个信号,本文通过比较不同信号瞬时频率特征的差异,提出了一种基于瞬时频率的跳频信号盲识别方法。这种方法抓住了跳频信号区别于噪声和其它信号的独特特征,在复杂的电磁环境中,具有高的识别概率和低的虚警概率,因而具有很强的鲁棒性。
     ●为了在低信噪比下达到更好的参数估计性能,本文提出了一种基于瞬时频率的跳频参数盲估计方法,根据跳频信号频率的瞬变特性,通过对瞬时频率的小波变换,可以准确估计跳周期,进而估计其它跳频参数。该方法可以在低信噪比下实现高精度的参数估计,估计方差接近Cramer-Rao界,整体性能优于目前的主流方法。
     本文的研究为跳频信号的侦察提供了新思路和新方法,这一研究对于跳频通信对抗的发展以及时频分析技术的拓宽应用无疑具有重大的理论意义和应用前景。
Frequency-hopping (FH) signals are widely used in both military and commercial communication for their good properties in term of:anti-jamming, low probability of interception, good capability against fading, code division multiple access. The reconnaissance and monitoring of FH signals is thereby the research emphasis of communication countermeasures and radio management.
     FH signals are typical non-stationary signals for their frequency changing with time. A single time domain analysis or frequency domain analysis is helpless to them. The rise of time-frequency analysis provides an effective solution for this kind of signals. The idea of time-frequency analysis is to design a joint function of time and frequency, and use it to describe the power density on each time and frequency simultaneously. These years, the researches on time-frequency analysis are hot in signal processing.
     In this dissertation, firstly, according to the time variant property of FH signals, a deep investigation is made on time-frequency distribution (TFD) suitable to FH signals in complicated electromagnetic environment. Then based on these TFD, a series of studies on blind separation, blind detection and blind parameter estimation of FH signals is made. Now list the main achievements as follows:
     ●The limitation of WVD and the existing time-frequency distributions of Cohen' class to FH signals is firstly be analyzed. To reduce the cross-terms in WVD, a new kernel function is put forward. Compared with other kernel functions, the new kernel function is rather matched to the ambiguity function of a FH signal. On the condition that kernel parameters are selected properly, the new kernel function can suppress the cross-terms of FH signals, and preserves a higher time-frequency resolution simultaneously. To optimize the kernel parameters, a method based on the second order Renyi entropy normalized by its volume is proposed. With this method, the kernel can obtain optimal match to the ambiguity function of a FH signal, and a TFD with high time-frequency concentration and without cross-terms is available.
     ●To reduce the cross-terms in WVD, according to the spectrum property of FH signals, a new time-frequency analysis method based on frequency decomposition is proposed. In this method, a multi-component FH signal is firstly decomposed into multiple single-component signals with a Gauss filter bank. Then the WVD of each component is sum up to form a new TFD. The theoretical analysis and simulation result shows that the new TFD can reduce the cross-term interference of FH signals, and preserves a higher time-frequency resolution simultaneously. So the new TFD can describe the time variant property of FH signals more accurately.
     ●To resist the noise in TFDs, the TFDs of noisy signals are deduced. A threshold filtering method is proposed to reduce the noise in TFDs. This method can reduce the power of noise and improve the readability of TFDs.
     ●To separate different FH signals, a new blind source separation (BSS) method based on TFD is proposed. This method exploits the difference in the time-frequency properties of the source signals to solve the blind source separation problem based on the joint diagonalization of a combined set of time-frequency distribution matrices. On the condition of source signals are non-correlative and have different time-frequency properties, the new method is effective on blind separation of FH signals. Due to the effect of spreading the noise power while localizing the source energy in the t-f domain, compared with those methods based on signal independence, the proposed BSS method has an increasing robustness with respect to noise.
     ●For the single signal achieved after blind source separation, via a comparison on instantaneous frequency (IF) of different signals, a blind detection method based on IF is proposed. Since the method exploits the particular property of FH signals different from other signals, it is robust for its high detection probability and low false alarm probability in complicated electromagnetic environment.
     ●A blind parameters estimation method for FH signals based on IF is proposed. According to the transient frequencies of FH signals, via the wavelet transform of IF, the hop period can be estimated accurately, and the switching time instants and the hopping frequencies can be estimated thereby. The method can accurately estimate the parameters of FH signals under a low SNR. It has a superior performance compared with the accepted method these days.
     The studies in this dissertation provide some new ideas and approaches for the reconnaissance of FH signals. Undoubtedly, it has important theoretical significance and practical value to the development of FH communication countermeasures and expanding the application of the time-frequency analysis.
引文
[1]田日才.扩频通信.北京:清华大学出版社,2007.
    [2]梅文华等.跳频通信.国防工业出版社,2005.
    [3]王铭三.通信对抗原理.北京:解放军出版社,1999.
    [4]周希元,刘志杰,张建立.跳频通信侦察干扰的技术可行性.无线电工程,1995,25(3):47-52.
    [5]L.科恩著,白居宪译.时一频分析:理论与应用.西安:西安交通大学出版社,1998.
    [6]Qian Shie, Chen Dapang. Joint time-frequency analysis. IEEE Signal Processing Magazine,1999,3:52-67.
    [7]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998.
    [8]Gabor D. Theory of communication. J. IEE,1946,93(3):429-457.
    [9]Potter R K, Kopp G, Green H C. Visible speech. New York:Van Nostrand,1947.
    [10]Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory and complex waves. Geophysics,1982:47(2):222-236.
    [11]Grossman A, Morlet J. Decomposition of Hardy function into square integrable wavelets of constant shape. SIAM J. Math,1984:15(4):723-736.
    [12]Mallat S G Multifrequency channel decompositions of image and wavelet models. IEEE trans. ASSP,1989,37(12):2091-2110.
    [13]Daubechies I. The wavelets transform, time-frequency localization and signal analysis. IEEE trans. Information Theory,1990,36:961-1005.
    [14]Vetterli M, Herley C. Wavelets and filter banks:theory and design. IEEE trans. Signal Processing,1992,40(9):2207-2232.
    [15]Ville J. Theorie et applications de la notion de signal analytique. Cables et Transmission,1948,2A:61-74.
    [16]Wigner E P. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 1932,40:749-759.
    [17]Claasen T A C M, Mecklenbrauker W F G. The Wigner distribution—A tool for time-frequency signal analysis. Philips J. Res.,1980,35:217-250,276-300, 1067-1072.
    [18]Cohen L. Generalized phase-space distributions. J. Math. Phys.,1966,7(5):781-786.
    [19]Page C H. Instantaneous power spectra. J. Appl. Phys.,1952,23:103-106.
    [20]Margenau H, Hill R N. Correlation between measurements in quantum theory. Prog. Theor. Phys.,1961,26:722-738.
    [21]Rihaczek A W. Signal energy distribution in time and frequency. IEEE Trans. Inform. Theory,1968,14:369-374.
    [22]Papandreou A, Boudreaux-Bartels G F. Generalization of the Choi-Williams distribution and the Butterworth distribution for time-frequency analysis. IEEE Trans. On Signal Processing,1993,41(1):463-472.
    [23]Choi H I, Willimas W J. Improved time-frequency representation of multicomponent signals using exponential kernel. IEEE Trans. ASSP,1989,37(6):862-871.
    [24]Diethorn E J. The generalized exponential time-frequency distribution. IEEE Trans. Signal Processing.1994,42(5):1028-1037.
    [25]Zhao Y X, Atlas L E, Marks R J. The use of cone-shaped kernels for generalized time-frequency representation of nonstationary signal. IEEE Trans. ASSP,1990,38(7): 1084-1091.
    [26]Guo Z Y, Durand L G, Lee H C. The time-frequency distributions of nonstationary signals based on a Bessel kernel. IEEE Trans. Signal Processing,1994,42(7): 1700-1707.
    [27]Costa A H, Boudreaux-Bartels G F. Design of time-frequency representation using a multiform, tiltable exponential kernel. IEEE Trans. Signal Processing.1995,43(10): 2283-2301.
    [28]Jeong J C, Williams W J. Kernel design for reduced interference distributions. IEEE Trans. Signal Processing,1992,40(2):402-411.
    [29]Barkat B, Boashash B. A high-resolution quadratic time-frequency distribution for multicomponent signal analysis. IEEE Trans. Signal Processing,2001,49(10): 2232-2239.
    [30]Boashash B. Note on the use of the Wigner distribution for time-frequency signal analysis. IEEE Trans. ASSP,1988,36(9):1518-1521.
    [31]Kratenthaler W, Hlawasch F. Time-frequency design and processing of signals via smoothed Wigner distributions. IEEE Trans. Signal Processing,1993,41(1):278-287.
    [32]Baraniuk R G, Jones D L. Signal-dependent time-frequency analysis using a radially Gaussian kernel. Signal Processing,1993,32(6):263-284.
    [33]Jones D L, Baraniuk R G An adaptive optimal-kernel time-frequency representation. IEEE Trans. Signal Processing,1995,43(10):2361-2371.
    [34]Czerwinski R N, Jones D L. Adaptive cone-kernel time-frequency analysis. IEEE Trans. Signal Processing,1995,43(7):1715-1719.
    [35]刘永红,王宏禹.自适应径向巴特沃思核时频表示.通信学报,1998,19(7):13-17.
    [36]Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Processing,1993,41(12):3397-3415.
    [37]Qian Shie, Chen Dapang. Signal representation using adaptive normalized Gaussian functions. Signal Processing.1994,36(1):1-11.
    [38]Bultan A. A four-parameter atomic decomposition of chirplets. ICASSP'97,1997,5: 3625-3628.
    [39]殷勤业,倪志芳,钱世愕.自适应旋转投影分解法.电子学报,1997,25(4):52-58.
    [40]马世伟.非平稳信号的参数自适应时频表示及其应用的研究[博士论文].上海大学,2000.11.
    [41]邹红星.参数化时频信号表示[博士论文].清华大学,2002.4.
    [42]Rosa M, FiguerasVentura, Pierre V. Matching Pursuit through Genetic Algorithms. Signal Processing Labora-tories Technical Report 01.2001,2.
    [43]Chen S, Donoho D, Saunders M. Atomic Decomposition by Basis Pursuit. SIAM Journal on Scientific Computing,1999,20:33-61.
    [44]Farook Sattar, Goran Salomonsson. The use of a filter bank and the Wigner-Ville distribution for time-frequency representation. IEEE Trans, on Signal Processing, 1999,47(6):1776-1783.
    [45]贾继德,孔凡让.基于时频分析的内燃机曲轴轴承磨损故障的诊断研究.中国科学技术大学学报,2003,33(6):709-717.
    [46]Bianu M, Isar A. The reduction of interference terms in the time-frequency plane. Signals, Circuits and Systems,2003,2:461-464.
    [47]郭汉伟,梁甸农.不同时频分析方法综合检测信号.信号处理,2003,19(6):586-589.
    [48]田光明,陈光禹.Wigner分布与谱图的几何平均时频表示.电子测量与仪器学报,2008,22(1):52-57.
    [49]Peter H Wu. Optimal interceptor for frequency-hopped DPSK waveform. MILCOM 2005,2005:1-7.
    [50]Lehtomaki J J. Maximum based detection of slow frequency hopping signals. IEEE Communications Letters,2003,7(5):201-203.
    [51]Janne J Lehtomaki, Markku Juntti, Harri Saarnisaan. Detection of frequency hopping signals with a sweeping channelized radiometer.38th Asilomar Conference on Signals, Systems and Computers,2004:2178-2182.
    [52]Furqan Ahmed, Shoab A khan. A framework for computationally efficient detection of frequency hopped signals in non-coopertive environment.16th International Conference on Software, Telecommunications and Computer Networks,2008.
    [53]Li K H, Milstein L B. On the use of a compressive receiver for signal detection. IEEE Trans, on Communications,1991,39(4):557-566.
    [54]Kim K, Lee J A. M-hop interception of FH/LPI signals using autocorrelation techniques. IEEE TENCON'89,1989:266-269.
    [55]Chung Char-Dir, Polydoros Andreas. Detection and hop-rate estimation of random FH signals via autocorrelation techniques. MILCOM,1991,1:345-349.
    [56]Fan Haining, Guo Ying, Xu Yaohua. A novel algorithm of blind detection of frequency hopping signal based on second-order cyclostationarity.2008 Congress on Image and Signal Processing,2008:399-402.
    [57]Pei Xiaodong, Kuang Jingming, He Zunwen. Detection of FH signals based on sliced instantaneous higher-order moments. ICSP'04 Proceedings,2004:89-92.
    [58]高宪军,李德鑫,李娜.基于功率谱对消的跳频信号检测算法.吉林大学学报(信息科学版),2008,26(3):238-243.
    [59]John Weber, Kyle Kowalske, Clark Robertson, et al. Detection of frequency-hopped waveforms embedded in interference waveforms with noise. ICC'07. IEEE International Conference on Communications.2007:2973-2978.
    [60]Luan Haiyan, Jiang Hua. Blind detection of frequency hopping signal using time-frequency analysis.2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM),2010:1-4.
    [61]Luo Sheng'en, Luo Laiyuan. Detection of an unknown frequency hopping signal based on image features. CISP'09.2nd International Congress on Image and Signal Processing,2009.
    [62]徐银,周文江,王伦文.一种适合于复杂电磁环境下短波跳频信号的检测方法.小型微型计算机系统,2008,29(9):1750-1754.
    [63]陈新宁,张文明,李小宁等.STFT在跳频信号参数盲估计中的应用.2006军事电子信息学术会议论文集,2006:339-341.
    [64]张曦,杜兴民.基于短时哈特莱变换的跳频信号时频分析.信号处理,2007,23(2):192-194.
    [65]张曦,王星,杜兴民.基于小波变换的跳频信号参数盲估计.电路与系统学报.2009,14(4):60-65.
    [66]张曦,杜兴民,王星.基于S变换的跳频信号特征参数盲估计.现代雷达,2008,30(2):94-99.
    [67]Barbarossa S, Scaglione A. Parameter estimation of spread spectrum frequency-hopping signals using time-frequency distributions. First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications. 1997:213-216.
    [68]赵俊,张朝阳,赖利峰等.一种基于时频分析的跳频信号参数盲估计方法.电路与系统学报,2003,8(3):46-50.
    [69]郭艺,张尔扬,沈荣骏.跳频信号时-频域分析与参数盲估计方法.信号处理,2007,23(2):210-213.
    [70]郭建涛,随机跳频信号的模糊函数与时频分析.计算机工程与应用.2008,44(18):121-123.
    [71]武开有,徐以涛,沈良.基于Butterworth分布的跳频信号参数估计.军事通信技术.2009,30(1):11-15.
    [72]Guo Jiantao, Wang Hongyuan. Optimal kernel design and time-frequency analysis for frequency hopping signal using entropy measure. Proceedings of the 2008 IEEE International Conference on Information and Automation.2008:1168-1171.
    [73]Chen T C. Joint signal parameter estimation of frequency hopping communications, IET Communications.2012,6(4):381-389.
    [74]Lei Yingke, Zhong Zifa, Wu Yanhua. A parameter estimation algorithm for high-speed frequency-hopping signals based on RSPWVD. Proceedings of 2007 International Symposium on Intelligent Signal Processing and Communication Systems,2007: 392-395.
    [75]张曦,杜兴民,朱礼亚.基于Gabor谱方法的跳频信号时频分析.数据采集与处理,2007,22(2):150-154.
    [76]Fan Haining, Guo Ying, Feng Xin. Blind parameter estimation of frequency hopping signals based on matching pursuit. WiCOM'08.4th International Conference on Wireless Communications, Networking and Mobile Computing,2008:1-5.
    [77]Guo Jiantao.Adaptive time-frequency parameterization of frequency-hopping signals based on evolutionary algorithm.2010 Third International Joint Conference on Computational Science and Optimization,2010:279-282.
    [78]陈超,郝雁中,高宪军等.基于WVD改进算法的跳频信号参数估计.吉林大学学报(信息科学版),2010,28(2),124-130.
    [79]陈利虎,张尔扬.一种多分量跳频信号参数盲估计方法.信号处理,2009,25(2):194-198.
    [80]李琰,王露,李天昀等.短波复杂信道下跳频信号的参数估计.信息工程大学学报,2011,12(2):168-173.
    [81]Zhi Wanjun, Ko C C, Francois Chin. ML-based frequency and frequency transition time estimation of frequency hopping signals. IEEE Trans, on Signal Processing,2003 IEEE Workshop,2003:78-81.
    [82]Chung Char-Dir, Polydoros Andreas. Parameter estimation of random FH signals using auto correlation techniques. IEEE Trans on Communications,1995,43(234): 1097-1106.
    [83]Jabir Salman Aziz, Abbas Ahmed AL-Shalchi,et al. Parameter estimation of frequency-hopping(FH-SS) signals using modified autocorrelation techniques. International Conference on Communication Technology,2006:1-4.
    [84]Aydin Levent, Polydoros Andreas. Hop-timing estimation for FH signals using a coarsely channelized receiver. IEEE Trans, on Communications,1996,44(4):516-526.
    [85]Aydin Levert, Polydoros Andreas. Joint hop-timing estimation for FH signals using a coarsely channelized receiver. MILCOM95,1995,2:769-773.
    [86]Aydin Levent, Polydoros Andreas. Joint epoch estimation for multiple FH signals. IEEE 4th international Symposium on Spread Spectrum Techniques and Applications Proceedings,1996,2:746-750.
    [87]Eric M, Dukic M L, Obradovic M. Frequency hopping signal separation by spatio-frequency analysis based on music method. Spread Spectrum Techniques and Applications,2000:78-82.
    [88]邝育军,史庆波,毛自灿.跳频通信网台信号分选算法的研究.中国电子学会电 子对抗分会第十一届学术年会论文集,2006,736-742.
    [89]冯富强,刘德树.一种对跳频信号截获和分类识别的新方法.电子工程学院学报,1995,14(4):1-5.
    [90]陈鹏举,武传华,郑立敏.非正交跳频网台信号的截获与识别技术.电子对抗,1996,(3):8-16.
    [91]雷迎科,钟子发,郑大炜.一种短波非正交跳频网台信号分选方法研究.舰船电子工程,2006,26(5):135-139.
    [92]陈旗,宋士琼,金嘉旺.低速短波非正交跳频网台信号分选技术研究.电子对抗技术,2005,20(3):7-9.
    [93]吴凡,姚富强,李玉生.跳频同步正交网台信号分选关键技术研究.通信与信号处理新进展——2005通信与信号处理年会论文集.北京:电子工业出版社,2005:581-585.
    [94]吴凡,姚富强,李玉生.跳频网台信号分选技术研究.通信对抗,2005,(1):11-14.
    [95]吴凡,姚富强,李永贵等.跳频高密度异步网台信号的分选.电讯技术,2006,5:45-49.
    [96]王玉虹,刘丽格.复杂环境下跳频信号网台模糊分选.无线电工程,2006,36(4):52-54.
    [97]陈利虎,张尔扬,沈荣骏.基于优化初始聚类中心K-Means算法的跳频信号分选.国防科技大学学报,2009,31(2):70-75.
    [98]王斌,陈秋华,王翠柏.基于聚类的跳频信号分选.北京邮电大学学报,2009,32(2):80-84.
    [99]陈超,高宪军,李德鑫.基于独立分量分析的混叠跳频信号分离算法.吉林大学学报(信息科学版),2008,26(4):347-351.
    [100]翟海莹,杨小牛,王文勇.基于盲源分离的跳频网台分选.中国电子科学研究院学报,2008,3(4):398-402.
    [101]张朝阳,曹千芊,陈文正.多跳频信号的盲分离与参数盲估计.浙江大学学报,2005,39(4):465-470.
    [102]Hlawatsch F, Boudreaux-Bartels G F. Linear and quadratic time-frequency signal representations. IEEE signal processing magazine,1992,4:21-67.
    [103]Cohen L. Time-frequency distribution—a review. Proc. IEEE,1989,77(7): 941-981.
    [104]Ahmad Zuri Sha'ameri. Parameters definition for the windowed and smooth windowed Wigner-Ville distribution of time-varying signals. IEEE ISSPA,2001: 573-576.
    [105]Victor Sucic. A separable kernel filter design procedure for signal time-frequency analysis. IEEE CSNDSP08,2008:234-238.
    [106]Katkovnik V, Stankovic L. Instantaneous frequeney estimation using the Wigner distribution with varying and data-driven window length. IEEE Trans. Signal Process, 1998,46:2315-2325.
    [107]Stankovic L, Katkovic V. Algorithm for the instantaneous frequency estimation using time-frequency distributions with adaptive window width. IEEE Signal Processing Letters (S1070-9908),1998,5(9):207-223.
    [108]Williams W J, Brown M L, Hero A O. Uncertainity, information and time-frequency distributions, in SPIE Adv. Signal Process. Algebra Arch. ImP.1991, 1566:144-156.
    [109]Shannon C E, A mathematical theory of communication—Part I. Bell Syst. Tech J, 1948, (27):379-423.
    [110]Flandrin P, Baraniuk R G, Michel O, Time-frequency complexity and information. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing—ICAS SP'94,1994, Ⅲ:329-332.
    [111]Renyi A, On measures of entropy and information, Proc.4th Berkeley Symp. Mathematics of Statistics and Probability,1961,1:547-561.
    [112]Baraniuk R G, Flandrin P, et al. Measuring time-frequency information content using the Renyi entropies. IEEE Transactions on information theory.2001,47(4): 1391-1409.
    [113]Stankovic L. Analysis of noise in time-frequency distributions. IEEE Signal Processing Letters.2002,9(9):286-289.
    [114]宗孔德.多抽样率信号处理.北京:清华大学出版社,1996.
    [115]Behrouz F B. Filter bank spectrumsensing for cognitive radios. IEEE Trans, on Signal Processing,2008,56(5):1801-1811.
    [116]丁玉美,高西全,彭学愚.数字信号处理.西安:西安电子科技大学出版社,2000.
    [117]Stankovic L, Katkovnik V. The Wigner distribution of noisy signals with adaptive time-frequency varying window. IEEE Transactions on signal processing,1999,47(4): 1099-1108.
    [118]沈凤麟,叶中付,钱玉美.信号统计分析与处理.合肥:中国科学技术大学出版社.2003:439-472;214-216.
    [119]Herault J, Jutten C. Space or time adaptive signal processing by neural network models. Neural Networks for Computing:AIP Conference Proceedings 151, New York, 1986.
    [120]Cardoso J F. Blind identification of independent components with higher-order statistics. Proc. Workshop on Higher-order Spect. Anal., Vail, Colorado,1989: 174-179.
    [121]Comon P. Separation of stochastic processes. Workshop on Higher-order Spect. Anal., Vail, Colorado,1989:157-160.
    [122]Jutten C, Herault J. Blind separation of sources, Part I:an adaptive algorithm based on neuromimetic architecture. Signal Processing,1991,24(1):1-10.
    [123]Cardoso J F. Blind beamforming for non-Gaussian Signals. IEE Proceedings-F, 1993,140(6):362-370.
    [124]Comon P. Independent component analysis, a new concept?. Signal Processing, Elsevier,1994,36(3):287-314.
    [125]Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural computation,1995,7(6):1129-1159.
    [126]Yang H H, Amari S. Adaptive on-line learning algorithms for blind separation—maximum entropy and minimum mutual information. Neural computation. 1997,9(7):1457-1482.
    [127]Pham D T, Garat P. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE trans. on Signal Processing.1997,45(7): 1712-1725.
    [128]Segio C A, Cichocki A, Luis C R. An Iterative inversion approach to blind source separation. IEEE Trans. on Neural Networks,2000,11(6):1423-1437.
    [129]Nikias C L, Mendel J M. Signal processing with high-order spectra. IEEE Signal Processing Magazine,1993,10(3):10-37.
    [130]Moreau E, Nadege T M. Nonsymmetrical contrasts for sources separation. IEEE Trans. on Siganl Processing,1999,47(8):2241-2252.
    [131]Pesquet J C, Moreau E. Cumulant-based independence measures for linear mixtures. IEEE Trans. on Information Theory,2001,47(5):1947-1956.
    [132]Cichocki A, Thawonmas R, Amari S. Sequential blind signal extraction in order specified by stochastic properties. Electronics Letters,1997,33(1):64-65.
    [133]Mansour A, Ohnishi N. Multichannel blind separation of sources algorithm based on cross-cumulant and the Levenberg-Marquart method. IEEE Trans. on Signal Processing,1999,47(11):3172-3175.
    [134]汪军,何振亚.瞬时混叠信号盲分离.电子学报,1997,25(4):1-5.
    [135]Cardoso J F. Source separation using higher order moments. ICASSP-89,1989,4: 2109-2112.
    [136]Belouchrani A, Abed-Meraim K, Cardoso J F, Moulines E. A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing,1997,45(2):434-444.
    [137]Tong L, Liu R W, Huang Y F. Indeterminacy and identifiability of blind identification. IEEE Trans. on Circuits and Systems,1991,38(5):499-509.
    [138]Matsuoka K, Ohya M, Kawamoto M. A neural net for blind separation of nonstationary signals. Neural Networks,1995,8(3):411-419.
    [139]Choi S, Cichocki A. Algebraic differential decorrelation for nonstationary Electronics Letters,2001,37(23):1414-1415.
    [140]Choi S, Cichocki, Belouchrani A. Second order nonstationary source separation. Journal of VLSI Signal Processing,2002,32(1-2):93-104.
    [141]Pham D T, Cardoso J F. Blind separation of instantaneous mixture of non stationary sources.2nd International Workshop on ICA and BSS,2000, Helsinki, Finland,187-192.
    [142]Durrani T, Morison G SPSA for noisy non-stationary blind source separation. ICASSP-2003,5:285-288.
    [143]Hyvarrinen A. Blind source separation by nonstationarity of variance:A cumulant-based approach. IEEE Trans. on Nueral Networks,2001,12(6):1471-1474.
    [144]Amari S, Cichocki A, Yang H H. A new learning algorithm for blind signals separation. Advances in Neural Information Processing System. Cambridge, MA:MIT Press,1996,8:657-663.
    [145]Cardoso J F. Blind beamforming for non-Gaussian Signals. IEE Proceedings-F, 1993,140(6):362-370.
    [146]Belouchrani A, Amin M G. Blind source separation based on time-frequency signal representation. IEEE Transactions on Signal Processing,1998,46:2888-2897.
    [147]Golub G H, Van Loan C F. Matrix computations. Baltimore, MD:Johns Hopkins Univ. Press,1989.
    [148]Rai C S, Singh Y. Source distribution model for blind source separation. Neurocomputing,2004,57:501-505.
    [149]Kay S M. Statistically/computationally efficient frequency estimation. IEEE Proc. ICASSP'88,1988:2292-2295.
    [150]Lovell B C, Williamson R C, Boashash B. The relationship between instantaneous frequency and time-frequency representations. IEEE Trans. Signal Processing,1993, 41:1458-1461.
    [151]Cohen L. Distributions concentrated along the instantaneous frequeney. Advanced signal proeessing algorithms, Architeetures, and Implementations,1990, 1348:149-157.
    [152]Boashash B. Estimating and interpreting the instantaneous frequency of a signal—Part 1:Fundamentals. Proc. IEEE,1992,80:520-538.
    [153]Boashash B. Estimating and interpreting the instantaneous frequency of a signal—Part 2:Algorithms and Applications. Proc. IEEE,1992,80:540-568.
    [154]Veselin N. Ivanovic, Milos Dakovic, LJubisa Stankovic. Performance of quadratic time-frequency distributions as instantaneous frequency estimators. IEEE Trans, on Signal Processing,2003,51(1):77-89.
    [155]杨福生.小波变换的工程分析与应用.北京:科学出版社,2000.
    [156]赵树杰.信号检测与估值理论.西安:西安电子科技大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700