时间分数阶偏微分方程的解及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分数阶微积分是专门研究任意阶积分和微分的数学性质及其应用的领域,是传统的整数阶微积分的推广,分数阶微分方程是含有非整数阶导数的方程。近几十年里,研究者们发现分数阶微分方程非常适合用来描述现实生活中具有记忆和遗传特性的问题,如:分形和多孔介质中的弥散,电容理论,电解化学,半导体物理、湍流、凝聚态物理,粘弹性系统,生物数学及统计力学等等,因此研究这类方程的性质和数值解法有现实的理论和应用意义。
     本文主要讨论一类时间分数阶空间二阶偏微分方程,讨论其解析解,数值解。
     第一章,给出本论文的研究背景和意义,总结了前人所做的工作,并叙述分数阶微积分的概念和分数阶微积分一些基本定义和性质,详列本论文的研究内容和结构。
     第二章,从随机游走和一种随机过程的稳定分布推导出第三章所讨论的反常次扩散方程和第四章所讨论的时间分数阶扩散方程。
     第三章,讨论非齐次时间分数阶反常次扩散方程的解析解,利用分离变量方法和Laplace变换分别导出在Dirichlet,Neumann和Robin三种边界条件下的非齐次反常次扩散方程的解析解,这些解析解以Mittag-Lettter函数的形式给出。本章最后说明这个技巧可以推广到其它类型的反常次扩散方程中。
     第四章,考虑时间分数阶扩散方程的数值解。利用关于时间的有限差分格式及空间的Legendre谱方法构造了一种高阶稳定格式,并给出了此方法的稳定性与收敛性分析,证明了该全离散格式是无条件稳定的,其收敛阶为O(△t~(2-α)-N~(-m)),这里△t,N和m分别为时间步长,多项式阶数和精确解的正则度。这是目前已知的最好估计。最后的数值实验结果说明了理论分析的正确性。
     在第五章,我们将第四章中数值求解时间分数阶扩散方程的方法推广到生物细胞学中研究离子运动的时间分数阶Cable方程,同样利用关于时间的有限差分格式及空间的谱方法构造一种高阶格式,利用测试的数值例子说明了我们方法的可行性。并用具体例子说明其应用。
     第六章,讨论有限区间上具有初边值条件的非线性时间分数阶Fokker-Plabck方程,利用隐式差分方法构造离散格式,并用能量方法证明了所提出的差分格式的收敛性和稳定性。最后给出数值例子。
Fractional calculus is a branch of studying the property of any order integral or derivative.Fractional order differential equation is the equation containing the noninteger order derivative,raising from the standard differential equations by replacing the integer-order derivatives with fractional-order derivatives.Its application is very broad, many researchers find that the fractional differential equations more precisely describe the property of some materials with memory and heredity.Fractional order differential equations are playing an increasingly important role in engineering,physics and other fields,such as the fractal theory and the diffusion in porous media,fractional capacitance theory,electrolysis chemical,fractional biological neurons,condensate physics,vibration control of viscoelastic system,statistical mechanics and so on.
     In this paper,we mainly consider the time-fractional anomalous diffusion equation, discuss its analytic solution,numerical solution and its application.
     In Chapter 1,the developmental history of fractional calculus and the existing work about fractional calculus are reviewed.We also recall some definitions and properties of the fractional derivatives used in this paper.
     In Chapter 2,two time-fractional anomalous diffusion equations are deduced from the random walk and a stable law.These two equations will be investigated numerically in the next two chapters.
     In Chapter 3,the solution of time fractional anomalous diffusion equation is discussed. Using separation of variable methods and Laplace transform,the analytical solutions of a non-homogeneous anomalous sub-diffusion equation with Dirichlet,Neumann and Robin boundary conditions are derived respectively.The solution is expressed in terms of the Mittag-Leffler function.These techniques can be applied to solve other kinds of anomalous diffusion problems.
     In Chapter 4,we consider a time fractional anomalous diffusion equation on a finite domain.We propose an efficient finite difference/spectral method to solve the time fractional diffusion equation.Stability and convergence of the method are rigourously established.We prove that the full discretization is unconditionally stable,and the numerical solution converges to the exact one with order O(△t~(2-α)+N~(-m)),where△t,N and m are the time step size,polynomial degree,and regularity of the exact solution respectively.Numerical experiments are carried out to support the theoretical claims.
     In Chapter 5,we generalize the method that we have proposed in the Chapter 4 to the time fractional Cable equation for modeling neuronal dynamics.Numerical results are presented to show the applicability of the method.
     In Chapter 6,we discuss one class of nonlinear time fractional Fokker-Planck equation with initial-boundary value on a finite domain.The stability and convergence of a finite difference method are discussed by energy methods.A numerical example is presented to compare with the exact analytical solution.
引文
[1]Nutting P G.A new general law of deformation[J].Journal of the Franklin Institute,1921,191:679-685.
    [2]Gemant A.A method of Analyzing Experimental Obtained from Elasto viscous Bodies[J].J.Physics,7:311-317.
    [3]Gemant A.On fractional differentials[J].The Philosophical Magazine,1938,25:540-549.
    [4]Scott-Blair G,Caffyn J E.An application of the theory of quasi-properties to the treatment of anomalous strain-stress relations[J].The PhilosophicalMagazine,1949,40:80-94.
    [5]Rabotnov Y.Equilibrium of an elastic medium with after effect[J].Prikl.Matem.I Mekh,1948,12:81-91.
    [6]N.Rabotnov Y.Elements of Hereditary Solid Mechanics[J].1980.
    [7]M.Gaputo.Linear models of dissipation whose Q is almost frequency independent[J].Annali di Geofisica,1966,19:383-393.
    [8]Gaputo M,Mainardi F.A new dissipation model based on memory mechanism[J].Pure and Applied Geophysics,1971,91:134-147.
    [9]Gaputoand M,F.Mainardi.Linear medels of dissipation in anelastic solids[J].Rivista del Nuovo Cimento,,1971,1(2):161-198.
    [10]B.B.Mandelbrot.The Fractal Geometry of Nature[J].1983.
    [11]Schumer R,Benson D,Meerschaert M,et al.Eulerian derivation of the fractional advection-dispersion equation[J].J.Contam.Hydrol,2001,48(1-2):69-88.
    [12]Lu S,f.J.Molzand,Fix G.Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media[J].Water Resour.Res,2002,38(9):1165.
    [13]B.Elli.CTRW pathways to the fractional diffusion equation[J].Chemical Physics,2002,284:13-27.
    [14]汪富泉,曹叔尤,刘兴年.悬移颗粒运动特征值的分形分布[J].水利学报,2000,09:65-69.
    [15]Vasily E,M.Z.George.Fractional Ginzburg-Landau equation for fractal media[J].Physica A,2005,354:249-261.
    [16]J.V.Francisco,Alverto J,A.Jose.Effective medium equation for fractional Cattaneo's diffusion and heterogeneous reaction in disordered porous medis[J].Physica A,2006,369:318-328.
    [17]Wyss W.The fractional diffusion equation[J].J.Math.Phys,1986,27:2782-2785.
    [18]W.R.Schneide,Wyss W.Fractional Diffusion and Wave Equations[J].J.Math.Phys.,1989,30:134-144.
    [19]Yu.F.Luchko,H.M.Srivastava.The exact solution of certain differential equations of fractional order by using operational calculus[J].Computers Math.Applic.,1995,29(8):73-85.
    [20]Y.Luchko,R.Gorenflo.An operational method for solving fractional differential equations with the Caputo derivatives[J].Acta Mathematica Vietnamica,1999,24(2):207-233.
    [21]R.Gorenflo,F.Mainardi,D.Moretti.Time Fractional Diffusion:A Discrete Random Walk Approach[J].Journal of Nonlinear Dynamics,2000,29:129-143.
    [22]Mainardi F,Y.Luchko,Pagnini G.The fundamental solution of the space-time fractional diffusion equation[J].Fractional Calculus and Applied Analysis,4(2):153-192.
    [23]F.Liu,et.al.Time fractional advection-dispersion equation[J].J.Appl.Math.Comp.,2003,126:233-246.
    [24]F.Huang,F.Liu.The time fractional diffusion and advection-dispersion equation[J].ANZIAM J.,2005,46:317-330.
    [25]F.Huang,F.Liu.The fundamental solution of the space-time fractional advectiondispersion equation[J].Journal of applied mathematics and computing,2005,18:339-350.
    [26]Agrawal O.Solution for a fractional diffusion-wave equation defined in a bounded domain[J].J.Nonlinear Dynamics,2002,29(4):145-155.
    [27]Chert J,Liu F,Anh V,et al.Methods of separating variables for the time-fractional telegraph equation[J].J.Math.Anal.And Appl.
    [28]I.Podlubny.Fractional Differential Equations[M].Academic Press,1999.
    [29]CH.Lubich.Discretized fractional calculus[J].SIAM J.Math.Anal,1986,17(3):704-719.
    [30]K.Diethelm,G.Walz.Numerical solution of fractional order differential equations by extrapolation[J].Numer.Algorithms,1997,16:231-253.
    [31]K.Diethelm,N.J.Ford,A.D.Freed.A predictor-corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics,2002,29:3-22.
    [32]沈淑君,刘发旺.解分数阶Bagley-Torvik方程的一种计算有效的数值方法[J].厦门大学学报(自然科学版),2004,3:306-311.
    [33]K.Diethelm,Neville J,A.D.Freed.Detailed Error Analysis for A Fractional Adams Method[J].Journal of Numerical Algorithms,Kluwer Academic Publishers,2004,36(1):31-52.
    [34]杨晨航,刘发旺.分数阶Relaxation-Oscillation方程的一种分数阶预估-校正方法[J].厦门大学学报(自然科学版),2006,44(6):761-765.
    [35]Lin R,Liu F.Fractional high order methods for the nonlinear fractional ordinary differential equation[J].Nonlinear Analysis,2007,66:856-869.
    [36]T.A.M.Langlands,B.I.Henry,S.L.Wearne.Solution of a Fractional Cable Equation:Finite case[J],submitted to Elsevier Science,2006.
    [37]Gorenflo R,Mainardi.F.Random walk models for space-fractional diffusion processes[J].Fract.Cal.Appl.Anal.,1998,30:167-191.
    [38]Gorenflo R,Mainardi.F.Feller fractional diffusion and Levy stable motions[J].Conference on Levy Processes:Theory and Applications,1999.18-22.
    [39]Gorenflo R,Fabritiis G,Mainardi F.Discrete random walk models for symmetric Levy-Feller diffusion process[J].Physica A,1999,269:79-89.
    [40]Gorenflo,Mainardi F.Approximation of Levy-Feller diffusion by random walk[J].Journal for Analysis and its Applications,1999,18:231-246.
    [41]Gorenflo R,Mainardi F,Moretti D,et al.Time fractional diffusion:a discrete random walk approach[J].Nonlinear Dynamics,2002,29:129-143.
    [42]F.Liu,I.Turner,V.Anh.An Unstructured Mesh Finite Volume Method for Modelling Saltwater Intrusion into Coastal Aquifers[J].Korean J.Comput.and Appl.Math,2002,9(2):391-407.
    [43]F.Liu,V.Anh,I.Turner.Numerical Solution of the Fractional-order Advection-Dispersion Equation[J].The Procceding of An International Conference on Boundary and Interior Layers,Computational and Asymptotic Methods,Perth,Australia,,2002.159-164.
    [44]F.Liu,et.al.Numerical simulation for solute transport in fractal porous media[J].ANZIAM J.,2004,45(E):461-473.
    [45]V.E.Lynch,et.al.Numerical methods for the solution of partial differential equations of fractional order[J].Journal of Computational Physics,2003,192:406-421.
    [46]M.M.Meerschaert,C.Tadjeran.Finite difference approximations for fractional advectiondispersion flow equations[J].J.Comp.Appl.Math,2004,172:65-77.
    [47]M.M.Meerschaert,C.Tadjeran.Finite difference approximations for two-sided spacefractional partial differential equations[J].Applied Numerical Mathematics,2006,56:80-90.
    [48]M.M.Meerschaert,H.Scheffter,C.Tadjeran.Finite difference methods for two-dimensional fractional dispersion equation[J].J.Comp.Phys,2006,211:249-261.
    [49] Yuste S, Acedo L. An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations[J]. SIAM J. Numer. Anal., 2005, 42(5): 1862-1874.
    
    [50] Langlands T, Henry B. The accuracy and stability of an implicit solution method for the fractional diffusion equation[J]. J. Comp. Phys, 2005, 205.
    
    [51] Q.Liu, et.al. Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method[J]. J. Phys. Comp., 2007, 222:57-70.
    
    [52] Zhuang P, Liu F, Anh V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous sub-diffusion equation [J]. SIAM on Numerical Analysis, 2008, 46(2): 1079-1095.
    
    [53] Chen C M, Liu F, Turner I, et al. Fourier method for the fractional diffusion equation describing sub-diffusion [J]. J. Comp. Phys, 2007, 227:886-897.
    
    [54] Fix G, Roop J P. Least squares finite element solution of a fractional order two-point boundary value problem[J]. Comput.Math. Appl., 2004, 48:1017-1033.
    
    [55] J.P.Roop. Variational solution of the fractiona advection dispersion equations[J]. the Graduate School of Clemson University.
    
    [56] B.Baeumer, M.K.Mark, M.Meerschaert. Fractional reaction-diffusion equation for species growth and dispersal[J]. Journal of Mathematical Biology, in press.
    
    [57] K.B.Oldham, J.Spanier. The fractional calculus[M]. New York: Academic Press, 1999.
    
    [58] K.S.Miller, B.Ross. An introduction to the fractional calculus and fractional differential equations[M]. New York: John Wiley, 1993.
    
    [59] Samko S, Kilbas A, O.I.Marichev. Fractional integrals and derivatives:theiry and applications[M]. USA: Gordon and Breach Science Publishers, 1993.
    
    [60] R.Metzler, J.Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach[J]. Phys.Rep, 2000, 339:1-77.
    
    [61] G.Kaniadakis, A.Lavagno, P.Quaratt. Stochastic foundations of fractional dynamics[J]. Phys. Rev. E, 1996, 53(4):4191-4193.
    
    [62] P.Grigolini, L.Palatella, G.Raffaelli. Asymmetric anomalous diffusion an efficient way to detect memory in time series[J]. Fractals, 2001, 9:439-449.
    
    [63] W. F. An introduction to probability theory and its applications [M]. New York: SJohn Wiley & Sons, Inc., 1971.
    
    [64] E. C. Introduction to stochastic processes [M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1975.
    [65]Luchko Y,Gorenflo R.An Operational Method for Solving Fractional Differential Equations with the Caputo Derivatives[J].Acta Math.Vietnamica,1999,24:207-233.
    [66]Meerschaert M,Tadjeran C.Finite difference approximations for fractional advectiondispersion flow equations[J].J.Compo Appl.Math,2004,172:65-77.
    [67]Bernardi C,Maday Y.Approximations Spectrales de Problems aux Limites Elliptiques[M].Berlin:Springer-Verlag,1992.
    [68]A.Quarteroni,Valli A.Numerical Approximation of Partial Differential Equations[M].1999.
    [69]Xu C,Lin Y.Analysis of iterative methods for the viscous/inviscid coupled problem via a spectral element approximation[J].Inter.J.Numer.Meth.Fluids,2000,32:619-646.
    [70]I.B.莱维坦,L.K.卡茨玛克.神经元;细胞和分子生物学[M].北京:科学出版社,2001.
    [71]R.Ghosh.Mobility and clustering of individual low density lipoprotein receptor molecules on the surface of human skin fibroblasts[J].Ph.D.thesis,,1991,Cornell University.
    [72]R.Ghosh,W.Webb.Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules[J].Biophysical Journal,1994,66:1301-1318.
    [73]T.feder,I.Brust-Mascher,J.Slattery,et al.Constrained diffusion or immobile fraction on cell surface:A new interpretation[J].Biophysical Journal,1996,70:2767-2773.
    [74]Sheets E,G.Lee,R.Simson,et al.Transient confinement of a glycyl phosphatidyl innositolanchored protein in the plasma membrance[J].,Biochemistry,1997,36:12449-12458.
    [75]P.Smith,I.Morrison,K.Wilson,et al.Anomalous diffusion of major histocompatability complex class I molecules on Hela cells determinded by single particle tracking[J].Biophysical Jounal,1999,76:3331-3344.
    [76]E.Brow,E.Wu,W.Zipfel,et al.Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery[J].Biophysical Journal,1999,77:2837-2849.
    [77]Slattery J.Lateral mobility of FceRI on rat basophilic leukaemia cells as measured by single particle tracking using a novel bright fluorescent probe[J].Ph.D.thesis,1991,Cornell University.
    [78]M.Saxton.Anomalous diffusion due to obstacles:Amonte carlo study[J].Biophysical Journal,1994,66:394-401.
    [79]M.Saxton.Anomalous subdiffusion in fluorescence photobleaching recovery:Amonte carlo study[J].Biophysical Journal,2001,81:2226-2240.
    [80]M.Wachsmuth,et.al.Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching[J].Biophysical Journal,2003,84:3353-3363.
    [81] Qian N, T.J.Sejnowski. An Electro-Diffusion Model for Computing Membrance Potentials and Ionic concentrations in Branching Dendrites,Spine and Axon[J]. Biol. Cybern, 1989, 62:1-15.
    
    [82] J.Jack, D.Noble, R.Tsien. Electrical current flow in excitable cells[M]. Oxford: Oxford University Press, 1975.
    
    [83] E.Barkai, R.Metzler, J.Klafter. From continuous time random walks to the factional Fokker-Planck equation[J]. Physical Review, 2000, E61:132-138.
    
    [84] R.Metzler, J.Klafter, I.Sokolov. Anomalous transport in external fields:Continuous time random walks and fractional diffusion equations extended[J]. Physical Review, 1998, E58(2):1621-1633.
    [85] F.Liu, et.al. Numerical solution of the Frctional Fokker-Plank equation[J]. J. Comp. and Appl.Math., 2004, 166:209-219.
    [86] Zhuang P, Liu F, Anh V, et al. Numerical Treatment for the Fractional Fokker-Planck Equation[J]. ANZIAM J., 2007, 48(CTAC2006):C759-774.
    [87] Deng W. Numerical algorithm for the time fractional Fokker - Planck equation[J]. Journal of Computational Physics, 2007, 227(2):1510-1522.
    [88] S.Chen, F.Liu, P.Zhuang. Finite difference approximations for fractional Fokker-Planck equation[J]. Applied Mathematical Modelling, 2008. in press.
    [89] E.Heinsalu, M.Patriarca, Goychuk I, et al. Fractional Fokker-Planck dynamics: Numerical algorithm and simulations[J]. Physical Review, 2006, E75:l-9.
    [90] J.Hu, Tang H. Numerical method of Differential Equation[M]. Sciential Press, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700