松动岩体群洞围岩稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河黑山峡大柳树坝址区广泛分布着松动岩体,该松动岩体是中寒武统香山群本身所具有的软硬相间特性以及其所处的特殊区域稳定动力学背景共同作用的产物。作为洞室围岩的松动岩体,岩体内断裂发育,局部有架空现象;波速低,透水性强、地下水位深;岩体不均一和完整性差;绝大部分围岩属Ⅲ类和Ⅳ类,且以为Ⅳ类为主。
     本文在系统研究大量资料的基础上,以数值模拟为手段,视松动岩体为等效连续介质,以大柳树坝址Ⅲ线勘探剖面上分布的群洞为研究对象,首次系统地研究了重力场、地下水动力条件、地震动作用以及多场耦合作用下松动岩体群洞效应问题。得到了以下认识:(1)松动岩体群洞之间存在明显的相互影响和相互作用,特别是间距较小的5条引水发电洞两两洞室之间的围岩内,竖向应力的极值均在5~8MPa,为洞室开挖前原始应力的两倍左右,塑性区相互沟通,软弱带ji22与洞室交汇的部位位移超出1m,有塑性挤出的现象,其两侧洞室围岩中的应力分布明显受到ji22存在的影响;(2)因松动岩体具强透水性,地下水的渗流使群洞效应更加明显。地下水主要通过降低岩体中的有效应力而降低围岩强度,由此,群洞区域的剪切应变增量的量值和波及范围均较无地下水渗流时大为增加;洞壁围岩也由剪切屈服向拉张屈服转变;(3)通过对比单洞与群洞的地震响应,发现群洞区域观测点的加速度时程(特别是竖向加速度时程),其幅值明显较单洞时有所放大,群洞区域迫振后的自振幅值往往较高;(4)在重力场、地下水渗流场以及地震波动场的多场耦合作用下,地震使岩体进一步松动、扩容,因此岩体中不会出现超静水压力,有效应力有所上升。
     本文还首次基于非连续介质模型,研究了松动岩体单洞以及群洞的成洞条件,锚喷支护对松动岩体Ⅲ类特别是Ⅳ类围岩的适应性,锚喷支护后地震作用下的松动群洞围岩稳定性。结果表明:(1)松动岩体单洞稳定性较差,围岩将出现大范围破坏和塌方现象,因群洞效应,松动岩体群洞围岩稳定性比单洞围岩更差,且其最严重的破坏并不出现在洞顶,而是偏向邻近洞室一侧;(2)对松动岩体围岩需采用锚杆+钢筋网+喷砼联合方式进行支护,但对于其中的Ⅳ类围岩,这种支护方式的支护效果并不理想,需对松动岩体进行超前灌浆处理;(3)基于弹粘性模型理论,采用锚喷支护的松动岩体Ⅲ类围岩,预测其最终流变变形量为16.8mm,Ⅳ类围岩最终流变变形量为22.7mm;(4)在地震作用下,采用锚喷支护的群洞围岩,其位移和切向应力并不随振动持时而单调增加或减小,在振动2s后,即保持在一定值附近往返波动;静力条件下稳定性好的锚喷支护围岩,在地震作用下其稳定性依然较好,相反,静力条件下稳定性差的锚喷支护围岩(如
There is plenty of Relaxed Rock Mass in Huanghe Heisanxia Daliushu dam site, which results from itself soft-rigid nature acting with the special area stability dynamics condition. In Relaxed Rock Mass, plenty of faults and holes can be found, the wave is slow, the permeability is high, and the groundwater level is deep. As cavities' surrounding rock, Relaxed Rock Mass is cracked, much of which belong to Ⅲ and Ⅳ rank surrounding rock, and the Ⅳ rank rock is majority. In this thesis, large numbers of data have been studied. Daliushu dam site cavities distributed along the 3th exploration line are the research objective, the Relaxed Rock Mass Multi-cavity effect, under gravity、 groundwater seepage、 dynamic and multi field coupling acting condition, has been systematically researched firstly, by using numerical method, based on equivalent continuum theory. The result shows: (1)The Multi-cavity effect is sharp, especially In the surrounding rock between the five close diversion cavities, the stress is twice larger then before, and the local area in which the rock is in plastic intercommunicates each other. The distributing character of the stress in surrounding rock is affected by the existence of weak zone ji22; (2) The seepage of groundwater results in the effect sharper then before, owe to the high permeability of Relaxed Rock Mass. The groundwater reduces the strength of surrounding rock by reducing the effective stress of the rock, as the result, the shear strain increment in the area of cavities is larger then before, and the surrounding rock on cavity wall changes its plastic form from shear to tensile; (3) By comparing the earthquake response of single cavity with which of cavities, it is be observed that the acceleration of cavities is higher then which of single cavity; (4) Under multi-filed coupling acting condition, the earthquake makes the rock more relaxed and more expansion then before, so the effective stress become higher and the exceed hydraulic pressure can not be found.In this thesis, the status of cavitation of single cavity and cavities in Relaxed Rock Mass, the adaptability of bolt-reinforcement to the Ⅲ and Ⅳ rank surrounding rock and the stability of bolt-reinforcement surrounding rock under earthquake condition has been researched based on non-equivalent continuum theory. The result says: (1) The stability of single cavity surrounding rock in Relaxed Rock Mass is poor, large scope of wreck and collapse rock can be found. As for Multi-cavity effect, the stability of multi-cavity surrounding rock is more bad then the single's, and the
    worst is not on the tip of the cavity wall, but on the side of surrounding rock lean to the other cavity; (2) The adaptability of bolt-reinforcement to IV rank surrounding rock is bad, and the IV rank surrounding rock need to be grouted; (3) Based on elastic-creep model theory, the long-time strain of bolt-reinforcement surrounding rock has been forecasted, and the long-time displacement of Illrank rock is 16.8mm and which of IV rank rock is 22.7mm; (4) Under earthquake condition, the bolt-reinforcement surrounding rock with good stability is also stable, but the one with bad stability becomes worse then before; (5) The bolt-reinforcement strengths the surrounding rock to withstand earthquake by enhancing the shear strength and tensile strength of which.
引文
1.白明洲,黄国明.大型地下洞室围岩稳定的三维有限元分析.西部探矿工程.2000,62(1):63~65.
    2.常士骠.洞室围岩稳定性评价中有关一些问题的讨论.地下工程,1982,3:1~3.
    3.曹东盛,韩文峰,李树德.黄河黑山峡大柳树坝址区软弱层带渗透变形分析.水土保持研究,2003,10(3):21~25.
    4.曹东盛,韩文峰,李树德.黄河黑山峡大柳树松动岩体渗透特性研究.水土保持研究,2003,10(3):30~32.
    5.陈健云,胡志强,林皋.超大型地下洞室群的三维地震响应分析.岩土工程学报.2001,23(4):494~498.
    6.陈健云,胡志强,林皋.超大型地下洞室群的随机地震响应分析.水利学报 2002.1:71~75.
    7.陈剑平,张倬元,肖树芳.松动岩体工程地质研究.工程地质研究进展.西安:西安交通大学出版社,1993,6.
    8.陈伟,李世海.允许变形及断裂的三维离散元计算方法.岩石力学与工程学报.2004,23(4):545~549.
    9.陈征宙,储同庆,潘刚,王勇强.黄河大柳树坝址岩体结构模拟及边坡稳定性评价.南京大学学报(自然科学),1998,35(3):303~307.
    10.陈霞龄,韩伯鲤.地下洞群围岩稳定的试验研究.武汉水利电力大学学报,1994,27(1):17~23.
    11.陈卫忠,朱维申,王宝林,任伟中.节理岩体中洞室围岩大变形数值模拟及模型试验研究.岩石力学与工程学报,1998,17(3):223~229.
    12.陈祖墀.偏微分方程.合肥:中国科学技术大学出版社.1993.
    13.程良奎,范景伦,韩军,许建平.岩土锚固.北京:中国建筑工业出版社.2003,1.
    14.崔之久,伍永秋,刘耕年等.关于“昆仑-黄河运动”.中国科学,D辑,1998,28(1):53~59.
    15.邓起东,陈社发,赵小磷.龙门山及其邻区的构造和地震活动及动力学.地震地质,1994,16(4):389~403.
    16.董津城.发震断裂上覆土层厚度对工程影响研究报告.北京市勘察设计研究,1996.
    17.范文,俞茂宏,孙萍,吉领山充俊.硐室形变围岩压力弹塑性分析的统一解.长安大学学报(自然科学版).2003,23(3):1~4.
    18.樊大钧.数学弹性力学.北京:新时代出版社,1983,7
    19.冯元祯著,吴云鹏译.连续介质导论(第三版).重庆:重庆大学出版社.1997,10.
    20.国家地震局.中国地震烈度区划图(比例尺1:4000000)及说明书.北京:地震出版社,1992.
    21.国家地震局地质研究所,宁夏地震局.海源活动断裂带.北京:地震出版社.1990.
    22.国家地震局地质研究所.黄河黑山峡大柳树坝址地震基本烈度复核报告.1987.
    23.国家地震局《鄂尔多斯周缘活动断裂系课题组》.鄂尔多斯周缘活动断裂系.地震出版社.1988.
    24.国家地震局分析预报中心.黄河大柳树主要断裂活动及大柳树坝址地震危险性分析报告.1991.
    25.国家地震局兰州地震研究所.黄河黑山峡小观音坝址地震基本烈度复核及地震危险性分析报告.1989.
    26.顾金才.均质材料中几种洞室的破坏形态.防护工程,1979,2:9~14.
    27.韩文峰,等.黄河黑三峡大柳树松动岩体工程地质研究.兰州:甘肃科学技术出版社,1993.
    28.胡聿贤.地震工程学.北京:地震出版社.1988.
    29.胡海淘,罗国煜,许兵.黄河黑三峡河段大柳树坝工程地质专题研究.北京:地震出版社,1993,3.
    30.胡斌,深切峡谷区大型地下洞室群围岩稳定性的动态数值仿.[成都理工学院博士论文],2001,7.
    31.黄润秋等.长江三峡工程大跨度地下厂房围岩稳定性研究报告.成都理工学院,1999.
    32.黄由玲,张广健,张思俊.随机块体理论及其在地下工程中的应用.河海大学学报,1993,21(3):106~111.
    33.洪海涛.黄河大柳树水利枢纽主要工程地质问题及评价.水利水电工程设计,2002,21(2):16~19.
    34.黄河黑山峡重大工程地质问题研究课题组.黄河黑山峡重大工程地质问题勘测研究报告(四):大柳树坝址松动岩体渗透与渗透稳定性研究.2002,5.
    35.《黄河黑三峡河段开发重大工程地质问题研究》课题组.黄河黑三峡河段开发重大工程地质问题研究.2003,8.
    36.焦玉勇,葛修润,谷先荣.三维离散元法中的数据结构.岩土力学.1998,19(2):74~79.
    37.孔祥言.高等渗流力学.合肥:中国科学技术大学出版社,1999,7.
    38.兰州地震工程研究院.黄河黑山峡大柳树坝址及小观音坝址区域构造稳定性研究报告.2002.
    39.雷谦荣,重庆地区地下洞室围岩变形破坏及围岩压力特点分析.地下空间,1997,17(1):26~30.
    40.柳新喜,曾庆良.乌江渡水电站扩机工程地下硐室围岩稳定分析.红水河,1998,19(3):31~35.
    41.刘国昌.中国区域工程地质学.北京:中国工业出版社.1965.
    42.刘国昌.地质力学及其在水文地质工程地质方面的应用.北京:地质出版社.1979.
    43.刘国昌.区域稳定性与地震.水文地质工程地质,1979,6(2):1~7.
    44.刘国昌.区域稳定工程地质.西安:西安地质学院.1983.
    45.刘国昌.区域稳定性工程地质.长春:吉林大学出版社.1993.
    46.刘锦华,吕祖珩.块体理论在工程岩体稳定性分析中的应用.北京:水利电力出版社,1986.
    47.刘军.地下工程围岩块体稳定性研究.[成都理工学院博士论文],2001,4.
    48.刘凯欣,高凌天.离散元法研究的评述.力学进展.2003,33(4):483~490.
    49.李起彤.活断层及其工程评价.北京:地震出版社.1991.
    50.李华晔.地下洞室围岩稳定性分析.北京:中国水利水电出版社,1999.
    51.李宁,陈飞熊,崔政权.江垭水电站地下洞群三维变形块体稳定性分析.岩石力学与工程学报,1997,20(4):51~53.
    52.李斯海.厦门市仙岳山隧道围岩稳定性三维有限元计算分析.岩石力学与工程 学报,2000,19(2):211~214.
    53.李正刚.二滩水电站地下厂房系统洞室围岩破坏性研究.水力发电.1997,8:50~53.
    54.李夕兵,冯涛.岩石地下建筑工程.长沙:中南工业大学出版社,2000.
    55.李攀峰,王银梅,张倬元.某大型地下洞室群整体稳定性评价.太原理工大学学报,2002,33(4):422~425.
    56.李攀峰.金沙江溪洛渡水电站坝区地应力场及地下洞群围岩稳定性数值模拟.[硕士学位论文]成都:成都理工大学,2001.
    57.李素华,朱维申.优化方法在弹性、横观各向同性以及弹塑性围岩变形观测反分析中的应用.岩石力学与工程学报.1993,12(2):105~114.
    58.李仲春.论大柳树高坝方案地质环境.水利水电工程设计.1995,(1):1~7.
    59.李同录,李萍.岩土工程数值分析.西安:陕西人民教育出版社.2004,2.
    60.凌建明,刘尧军.卸荷条件下地下洞室围岩稳定的损伤力学分析方法.石家庄铁道学院学报,1998,11(4):10~15.
    61.刘佑荣,唐辉明.岩体力学.中国地质大学出版社,1999.
    62.刘世煌.拉西瓦水电站工程高地应力地区大型地下厂房洞群围岩稳定性研究.西北水电,1994,4:39~42.
    63.陆晓敏,任青文、基于有限元与块体元法的地下洞室变形及稳定分析.工程力学.2001,18(4):60~66.
    64.马润勇,彭建兵,周立新,等.黑山峡大柳树坝址区断裂构造格局与F_(201)断层活动性研究,工程地质学报,2002(增刊),97~103.
    65.马润勇,彭建兵,门玉明.黑山峡大柳树坝址区断裂构造格局与工程抗断问题研究.地质灾害与环境保护.2002,13(4):46~50.
    66.马润勇,彭建兵,门玉明,等.逆冲断层发育的力学机制研究.西北大学学报(自然科学版),2003,143(2):196~200.
    67.马润勇.青藏高原东北缘构造活动及其工程灾害效应.[长安大学博士论文],2003.
    68.蒙立军,胡杏保,地下硐室节理化顶板稳定性研究.中国矿业.2002,11(3):55~58.
    69.门福录.波在饱含流体的孔隙介质中的传播问题.地球物理学报,1981,24(1):65~75.
    70.潘家铮,何璟,等.中国水力发电工程(工程地质卷).北京:中国电力出版社.2000.
    71.潘裕生,孔祥儒主编.青藏高原岩石圈结构演化和动力学.广州:广东科技出版社.1998.
    72.潘别桐,黄润秋.工程地质数值法.北京:地质出版社,1993.3.
    73.裴觉民,石根华.水电站地下厂房洞室的关键块体分析.岩石力学与工程学报,1990,9(1).
    74.彭建兵,毛彦龙,范文,等.区域稳定性动力学研究.北京:科学出版社,2001.
    75.彭建兵,张俊,苏生瑞等.渭河盆地活动断裂与地质灾害.西安:西北大学出版社.1992.
    76.彭建兵.黄河积石峡水电站水库滑坡工程地质研究.西安:陕西科技出版社.1997.
    77.彭建兵.工程场地稳定性系统研究.西安地图出版社.1997.
    78.彭建兵.工程地质学报区域稳定动力学研究(一).工程地质学报.2001,9(1):3~11.
    79.彭建兵.工程地质学报区域稳定动力学研究(二).工程地质学报.2001,9(1):12~16.
    80.彭建兵,马润勇,卢全中.青藏高原隆升的地质灾害效应.地球科学进展.2004,19(3),457~465.
    81.彭建兵,马润勇,邵铁全.构造地质与工程地质的基本关系.地学前缘.2004,11(4),535~549.
    82.钱向东,任青文,姜弘道.简论岩体的两类力学模型.河海大学学报.1999,27(2):110~112.
    83.邵国建,蒋永兴,卓家寿.地下洞室群的弹粘塑性有限元分析.河海大学学报.2001,29(6):112~115.
    84.邵国建,王东升.岩体初始地应力场对地下洞室围岩变形及应力的影响.河海大学学报,1999,2(6):82~85.
    85.孙广忠.岩体结构力学.北京:科技出版社,1988.
    86.孙钧,等.地下结构有限元法解析.上海:同济大学出版社,1988.
    87.任青文,余天堂.弹塑性块体单元法的理论及计算模型.工程力学,1991,7(1):67~77.
    88.孙鸿烈.青藏高原的形成演化.上海:上海科技出版社.1996.
    89.孙玉科.赤平投影在岩体工程地质力学中的应用.科学出版社.
    90.苏永华,方祖烈,高谦.大跨度地下硐室开挖的模拟分析.矿业研究与开发.1998,18(4):1~3.
    91.苏金明,阮沈勇.MTALAB 6.1实用指南.北京:电子工业出版社.2002,1.
    92.石根华著,裴觉民译.数流形法与非连续变形分析.北京:清华大学出版社,1997.
    93.谭云亮,姜福兴,范炜林,徐恩虎,刘传孝.锚杆对节理围岩稳定性影响的离散元研究.工程地质学报.1999,7(4):361~365.
    94.汤淼鑫.电力工程活动断裂安全距离的研究.电力勘测.1999,(2):28~31.
    95.唐辉明,晏鄂川,胡新丽.工程地质数值模拟的理论与方法.武汉:中国地质大学出版社.2001,10.
    96.陶连金,张悼元,王泳嘉.复杂工程岩体稳定性评价的方法与实践.成都:成都科技大学出版社,1998.
    97.陶连金,张倬元,傅小敏.在地震载荷作用下的节理岩体地下洞室围岩稳定性分析.中国地质灾害与防治学报,1998,9(1):32~40.
    98.陶振宇.岩石力学的理论与实践.北京:煤炭工业出版社,1981.
    99.滕吉文.西藏高原地区地壳与上地幔地球物理研究概论.地球物理学报.1985,28(增刊1):1~15.
    100.汪易森,李小群.地下洞室群围岩弹塑性有限元分析及施工优化.水力发电.2001年,6:35~38.
    101.王思敬,杨志法,刘竹华.地下工程岩体稳定性分析.北京:科学出版社,1984.
    102.王思敬.坝基岩体工程地质力学分析.科学出版社,1990.
    103.王思敬,等.地下工程岩体稳定分析.科学出版社,1984.
    104.王毅才.隧道工程.北京:人民交通出版社,2001.
    105.王剑波,原丕业.地下硐室的围岩分类与稳定性评价.金属矿 山.2000,286(4):29~31.
    106.王钟琦,谢君斐,石兆吉.地震工程地质导论.北京:地震出版社.1983.
    107.王泳嘉,刑纪波.离散单元法及其在岩土力学中的应用.沈阳:东北工学院出版社,1991,10.
    108.王泳嘉.离散元法—一种适用于节理岩石力学分析的数值方法.自:陈祖煜编.第一届全国岩石力学数值计算及模型试讨论会文集.江西吉安,1986年6月20~27日.成都:西南交通大学出版社,1986:32~37.
    109.王祥秋,杨林德,高文华.含软弱夹层层状围岩地下洞室平面非线性有限元分析.岩土工程学报.2002,24(6):729~732.
    110.吴洪词,张小彬,包太.岩石力学连锁咬合岩块结构稳定性分析.岩土力学,1998,19(4):36~40.
    111.邬爱清,任放,董学晟.DDA数值模型及其在岩体工程上的初步应用研究.岩石力学与工程学报,1997,16(5):411~417.
    112.邬爱清,徐平,徐春敏,喻勇.三峡工程地下厂房围岩稳定性研究.岩石力学与工程学报,2001,20(5):690~695.
    113.仵彦卿,张倬元.岩体水力学导论.成都:西南交通大学出版社,1995,3.
    114.肖万春.洪家渡水电站左岸地下洞室进口边坡稳定初步分析.贵州水力发电 2001,15(1):25~29.
    115.肖明.地下洞室施工开挖三维动态过程数值模拟分析.岩土工程学报.2000,22(4):411~425.
    116.邢纪波,俞良群,张瑞丰,王泳嘉.离散单元法的计算参数和求解方法选择.计算力学学报.1999,16(1):47~51.
    117.徐光黎.岩体结构模型与应用.武汉:中国地质大学出版社,1993.
    118.徐干成,白洪才,郑颖人,刘朝.地下工程支护结构.北京:中国水利水电出版社,2002.
    119.徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,2002,9.
    120.徐芝纶.弹性力学简明教程(第二版).北京:高等教育出版社,1996,4.
    121.薛定义.论连续介质概念与岩体的连续介质模型.岩石力学与工程学报.1999,18(2):230~232。
    122.熊绍柏,滕吉文,尹周勋.西藏高原地区的地壳厚度和莫霍界面的起伏.地球物理学报.1985,28(增刊1):16~27.
    123.薛玺成,孙湄,薛乾印.黄河大柳树水利枢纽非均质岩体初始地应力场反分析与应用.水利水电工程设计,1993,3:3~6.
    124.姚瑞卿.松动岩体单硐室围岩稳定性评价-以大柳树坝址为例.[长安大学硕士论文],2002,4.
    125.杨德全,赵忠生.边界元理论及应用.北京:北京理工大学出版社,2002,9.
    126.杨明举,常艄东.超大型地下洞室群施工开挖程序及围岩稳定分析.西南交通大学学报.2000,35(1):32~35.
    127.杨明举,关宝树,王民寿.岩体参数影响大型地下洞室群围岩稳定的灵敏度分析.西南交通大学学报,2000,35(5):488~491.
    128.杨柯,张立翔,李仲奎.地下洞室群有限元分析的地应力场计算方法.岩石力学与工程学报,2002,21(11):1639~1644.
    129.杨志河,王永生.黄河大柳树水利枢纽工程地下洞群围岩稳定性.水利水电工程设计,2002,21(2):25~28.
    130.杨志法,尚彦军,刘英.关于岩土工程类比法的研究.工程地质学报,1997,5(4):299~305.
    131.叶文华.震源断裂规模与震级的定量关系.地震地质.1987,9(2):17~25.
    132.叶文华,徐锡伟,汪良谋.中国西部强震的地表破裂规模与震级、复发时间间隔关系的研究.地震地质.1996,18(1):37~44.
    133.于学馥,郑颖人,刘怀恒,方正昌.地下工程围岩稳定分析.北京:煤炭工业出版社,1983.
    134.张玉军,唐仪兴.层状岩体强度异向性地下洞室的有限元分析.地下空间.1999,19(1):30~34.
    135.张玉军,唐仪兴.考虑层状岩体强度异向性的地下洞室平面有限元分析.岩土工程学报,1999,21(3):307~310.
    136.张玉祥,包四根.复杂地质体中地下硐室的施工优化与稳定性评价.岩石力学与工程学报.2000,19(6):722~725.
    137.张允真,曹富新.弹性力学及其有限元解法.北京:中国铁道出版社,1983.
    138.张晓春,缪协兴.层状岩体中洞室围岩层裂及破坏的数值模拟研究.岩石力学与工程学报.2002,21(11):1645~1650.
    139.张倬元,王士天,王兰生.工程地质分析原理.北京:地质出版社,1993.383~418.
    140.张丽华,陶连金,李晓霖.节理岩体地下洞室群的地震动力响应分析.世界地震工程,2002,18(2):158~162.
    141.赵琪.李家峡水电站地下洞室围岩稳定探讨.西北水力发电,2002,18(3):28~53.
    142.赵震英,叶勇.大型群洞开挖围岩稳定研究.人民珠江,1996,2:14~20.
    143.赵震英.群洞开挖围岩破坏过程试验.水利学报,1995,23(12),24~28.
    144.赵宗棣,大柳树水利枢纽硐群施工围岩分类及施工新技术应用研究.地下工程技术,1994(3):132~140.
    145.赵成刚,杜修力,崔杰.固体流体多相孔隙介质中的波动理论及其数值模拟的进展.力学进展,1998,28(1):83~92.
    146.郑雨天.岩石力学的弹塑粘性理论基础.北京:煤炭工业出版社.1988,8。
    147.中华人民共和国国家标准 GB50287-99《水利水电工程地质勘察规范》.北京:中国计划出版社.1999.
    148.《中国岩石圈动力学地图集》编委会.中国岩石圈动力学概论.北京:地震出版社.1991.539~548.
    149.朱维申.复杂条件下围岩稳定性与岩体动态施工力学.北京:科学出版社,1996.56~66.
    150.周立新.岩体松动类型与松动变形模式研究-以黄河黑三峡大柳树坝址为例.[长安大学硕士论文],2002,5.
    151.朱永全,刘勇,张素敏.洞室大小和形状对极限位移的影响.岩石力学与工程学报.1998,17(5):527~533.
    152.卓家寿.非线性固体力学.北京:中国水利水电出版社,1996.65~79.
    153.B.E.勃奥尼可夫.巷道周围破坏区大小的确定.地下工程,1984,2:56~57.
    154.Hoek E,Brown E T.岩石地下工程.北京:冶金工业出版社,1986.
    155. A. Varadarajan, K. G. Sharma, C. S. Desai, M. Hashemi. Analysis of a Powerhouse Cavern in the Himalaya. International Journal of Geomechanics, 2001, 1(1), 109~127.
    156. Bardet J P, Scott R F. Seismic stability of fracture rock masses with the distinct element method. 26th U. S. Symp. Rock Mech, Rapid City, 1985. 139~149.
    157. Bonilla M G. Historic Surface Faulting in Continental United States and Adjacent Parts of Mexico. U S Geological Survey Open-File Report. 1967.
    158. Bomblakis G. G. Study of the brittle fracture process under uniaxial compression. Tectonophysics. 1973, 18: 231~248.
    159. Best B S. An investigation into the use of finite element method for analyzing stress distributions in block jointed masses. [Ph. D. thesis] Townsville, James Cook University of North Oueenstand, 1970.
    160. Brown E T, Bray J W, Ladanyi B, Hoek E. Ground response curves for rock tunnels. Journal of geotechnicaI Engineering, 1983, 109: 15~39.
    161. C. H. Dowding, T. B. Belytschko, H. J. Yen. Dynamic Computational Analysis of Openings In Jointed Rock. Journal of Geotechnical Engineering, 1983, 109(12), 1551~1566.
    162. Chan L-Y. Application of Block Theory and Simulation Techniques to Optimum Design of Rock Excavation. [Ph. D. Thesis] Michigan Technological University, 1986.
    163. Cundall P A. Distinct element models of rock and soil structures. In: Brown E Ted. Analytical and Computational Methods in Engineering Rock Mechanics. London: 1987.
    164. Cundall P A. Numerical experiments on localization in frictional material. Ingenieur-Archiv, 1989, 59: 148~159.
    165. Cundall P A. Computer model for simulating progressive large scale movement in block system. Symposium ISRM, 1971, Proc 2: 129~136.
    166. Cundatl P A. Formation of a three-dimensional discrete element model-part Ⅰ, a Scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. f Rock Mech. Min. Sci. & Geomech. Abstr., 1988, 25(3): 107~116.
    167. Dowding C H, Roten A. Damage to rock tunnels from earthquake shaking. Proc ASCE, 1978, 104: 175~191.
    168. Deai C S, Zaman M M, Lighter L G, et al. Thin layer element for interfaces and journal for numerical and analytical methods in geotechnics. International Journal for Numerical and Analytical Methods in Goetechnics, 1984, 8(1): 19~43.
    169. G H Shi. Discontinuous deformation analysis: a new numerical model for the statics and dynamics deformable block structures. Engineering computations, 1992, 9(2): 157~168.
    170. Ghabousai J, Wilson E L, Isenberg J. Finite element for rock joints and interfaces. ASCE Journal of the Soil Mechanics and Foundation Division, 1973, 99: 833~848.
    171. Goodman R. E., Shi Genhua. Block Theory and Its Application to Rock Engineering. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985.
    172. Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock. ASCE Journal of the Soil Mechanics and Foundations Division, 1968, 14: 637~659.
    173. Goodman R E. Methods of geological engineering in discontinuous rocks. West Publish Company, 1976.
    174. Herrmann H J, Luding S. Modeling granular media on the computer. Continuum Mech. Thermodyn. 1998, 10: 189~231.
    175. Heuze F E and Barbour T G. New models for rock joints and interfaces ASCE Journal of the 6eotechnic Engineering Division, 1982, 108: 757~776.
    176. Itasca. FLAC (Fast Lagrangian Analysis of Continua) Theory and Background(First Revision). March, 1999.
    177. lwashita K, Oda M. Micro-deformatiom mechanism of shear banding process based on modified distinct element method. Poeder Technology, 2000, 109: 192~205.
    178. Jaeger J C, Cook N G W. Foundamentals of Rock Mechanics(Third Edition). Chapman and Hall, Lodon, 1979.
    179. Jiang Y, Yoneda H, Tanabashi Y. Theoretical estimation of loosing pressure on tunnels in soft rocks. Tunnelling and Underground Space Technology, 2001, 16: 99~105.
    180. Kawai T, Kikuchi A and Takeuchi N. Analysis of a three dimensional crack problem by a new discrete model, In: Brown E Ted. Proceedings of Advances in Inelastic Analysis.
    181. KOO C. Y., CHERN J. C.. Modification of the DDA Method for Rigid Block Problems. Intern. J. Rock Mech. MAn. Sci., 1998, 35: 683~693.
    182. Lorig L J. A hybrid computational model for excavation and support design in jointed media. [Ph. D. thesis]. Minnesota: University of Minnesota, 1984.
    183. Matstuda T. Estimation of future destructive earthquakes from active faults on land in Japan. J. Phys. Earth. 1977, 25(Suppl): 251~260.
    184. Molnar P., Deng Qidong. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia. Journal of Geophysical Research. 1984, 89(B7): 6203~6227.
    185. Nagai T. Behavior of jointed rock mass around an underground opening under excavation using large scale physical model test. In: Kawai T ed. Proc. of 27th Symposium on Rock Mechanics of Japan. Tokyo: 1996.
    186. Otter j R H, Cassell A C, Hobbs R E. Dynamic relaxation. Proc Int Civ Engrs, 1966, 35: 633~665.
    187. Plesa M E. Numerical methods for jointed media and structures. [Ph. D. thesis]. Evanston: Northwestern University, 1983.
    188. Sakurai S. Approximate time-dependent analysis of tunnel face. Int J Numer Analyt Mech. Geomech., 1978, (2): 159~178.
    189. Sawamoto Y, Ysubota H, Kasai Y, Koshika N, MorikawaH. Analytical studies on local damage to reinforce concrete structures under impact loading by discrete element method. Nuclear Engineeriong and Design, 1998, 179: 157~177.
    190. Shi Genhua, Goodman R. E.. The key block of joint traces in developed maps of tunnel wall. Joural. Num. And Analy. Method in Geomechanics.
    191. Segall P., Polland D. Mechanics of discontinuous faults. J Geophys Res. 1980, 85: 4337~4350.
    192. Stewart I J, Brown E T. A static relaxation method for the analysis of excavation. Cambridge 1984. 149~155.
    193. Sun Jun, Ling Jiangming. Time and space effect and analytical theories of damage and failure of block mass. Proe 8th Int Cong on Rock Mech, Tokyo, Janpan, published by A A Balkema Publishers, 1995: 193~196.
    194. Tanaka H, Momozu M, Oida A, Yamazaki M. Simulation of soil deformation an resistance at bar penetration by the distinct element method. Journal of terramechanics, 2000, 37: 41~56.
    195. Terry R. Howard. Seismic Design of Embankments and Caverns. New York: ASCE, 1983.
    196. T. Esakiu, Y. J. Jiang, Y. Kimura. Stability analysis of a deep tunnel with the elasto-plastic strain softening behavior. Proceedings of the seventh international conference Cairns, May, 1991, 2: 1467~1473.
    197. Tsuji Y. Activities in discrete particle simulation in Japan. Powder Technology, 2000, 113: 278~286.
    198. Vinok G, Wang B. A numerical method for modeling large displacements of jointed rocks(Ⅱ). Can. Geotech. J. 1991, 30: 109~123.
    199. Wang B, Vinok G. A numerical method for modeling large displacements of jointed rocks(Ⅰ). Can. Geoteeh. J. 1991, 30: 96~108
    200. Wang Sijing(Chief-in Editor). Engineering Geological Problems in Asia. Science Press. 1986.
    201. Well D. L., Coppersmith K. J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. BSSA. 1994, 84(4): 974~1002.
    202. Y. M. Cheng, Y. H. Zhang. Coupling of FEM and DDA Methods. International Journal of Geomechanics, 2002, 2(4), 503~521.
    203. Zhu W. Finite element analysis of jointed rock mass and engineering application. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1993, 30(5): 537~544.
    204. Zienkiewicz O C, Valliappan S and King I P. Stress analysis of rock as a non-tension material. Geotechnique, 1968, 18: 56~66.
    205. Zienkiewicz O C, Shiomi T. Dynamic behavior of saturated porous media: The generalized Blot formulation and its numerical solution. Int J Numer Anal Methods Geomech, 1984, 8(4): 71~96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700