催化裂化用旋风分离器减阻节能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着重油催化裂化技术的发展,在要求旋风分离器保证分离效率的同时,还要尽量的降低其阻力损失,已达到减阻节能的目的。本课题采用实验的方法,对不同结构参数下的导叶式旋风分离器的阻力特性和内部流场进行了测量和分析。得出导流锥的侧缝能够有利于分离效率的提高,但是导流锥在一定程度上也增加了系统压降。只有加装合适开缝面积比的导流锥结构,能够在保证系统压降不提高的同时,还能够增加分离效率。实验同时还印证了提高分离空间能够提高效率降低压降。通过对内部流场的分析得出,加装导流锥后,切向速度峰值随着开缝面积比的减小而变小,动能损失也变少,系统产生湍能的几率变小。但是开缝面积比的少到一定程度后,动能损失又会变大,实验得出这个比值在3左右系统的动能损失最少,压降最小。
     通过对切流式旋风分离器入口加装挡板结构的阻力特性、流场研究和性能试验,分析出了挡板结构提高效率的因素和造成阻力损失升高的原因,性能试验得到的分离因数也验证了单一的挡板结构带来的压降损失远远大于升高的效率。但是为今后对切流式旋风分离器改变入口结构进行减阻的实验研究提供了依据。
As heavy oil FCC technologies, when asked to cyclone separator separation efficiency at the same time, guaranteed to try to reduce its resistance losses, has reached the purpose of energy-saving friction reduction. This subject adopts experimental method of different structural parameters, under the guide vane cyclone separator resistance character and the internal flow field measurement and analysis. Draw the side seam can guide cone to enhance the efficiency of separation, but diversion cone to a certain extent it would increase the system pressure drop. Only add appropriate seam the diversion area is open, can guarantee cone structure doesn't improve system pressure drop at the same time, still can increase the separation efficiency. Experiments also confirm the separation space can improve efficiency increase reduced pressure drop. Through the analysis of the internal flow field obtained after the diversion cone, tangential velocity peak as open and decrease of seam area than smaller, kinetic energy loss has also changed little, system to produce turbulent can chance to smaller. But the less than open seams area to a certain degree, kinetic energy loss and get bigger, experimental concluded that the ratio of three or so in the least, kinetic energy loss system minimal pressure.
     Through to cut streaming cyclone separator entrance of adding baffle structure resistance character, flow field research and performance test, analyze the structure of the paddle efficiency factors and cause increased resistance losses of reason, performance testing get separation factor it also proves a single paddle structure bring pressure drop is far greater than rising efficiency loss. But for future cut streaming cyclone separator entrance structure change friction reduction of experimental research provides a basis.
引文
[1]时均,汪家鼎,余国琮.化学工程手册.第二版.北京.化学工业出版社,1996.(23):11~13.
    [2]岑可法,倪明江等.气固分离理论及技术.杭州:浙江大学出版社,1999:328~329.
    [3]陈明绍等.除尘技术的基本理论与应用.北京:中国建筑工业出版社,1981:175~179.
    [4]王连泽,彦启森,叶龙.旋风分离器压力损失及减阻杆的研究[J].力学与实践,1998,20(4):32-36.
    [5]王连泽,彦启森,王建军等.旋风除尘器减阻节能技术的研究与应用[J].硫酸工业,2005,(2) :22-26.
    [6]王建军,王连泽,刘成文.旋风分离器排气管内流动分析及减阻机理[J].过程工程学报,2005,5 (3) :251-254.
    [7]张从智,金有海.PV型旋风分离器减阻杆减阻性能的试验研究[J].流体机械,2007, 35(7) :6-9.
    [8]祝立萍,李太全,倪大光.旋风除尘器减阻措施的模型实验研究[J] .华东冶金学院学报, 1996, 13 (4) :314-317.
    [9]祝立萍,孟庆新,梁洪.降低旋风除尘器阻力的实验研究[J].冶金能源,1997,16 (3) :46-50.
    [10]刘文欢,陈延信,赵峰等.旋风分离器新型减阻疏导器的实验研究[J].冶金能源,2006, 25 (6) :27-30.
    [11]赵萍,段鹏文,肖德光.旋风除尘器的压力损失及减阻措施[J].工业安全与环保,2003, 29 (1) :11-12.
    [12]钱付平,黄星玮,纪国富.不同入口截面角旋风分离器的分离特性[J].锅炉技术,2010,41(4):14-18.
    [13]田坪,李双跃,任朝富等.SLK型离效低阻分离器研究及测试分析[J].矿山机械,2009, 37 (19) :102-106.
    [14]白崇功,陆雷,韩立发.螺旋型减阻器对旋风分离器减阻作用的研究[J].水泥技术,1994, 6:6-9.
    [15]王建军,郭颖,金有海.结构参数对导叶式旋风管内流场分布的影响[J].石油炼制与化工,2004, 35(11) :20-23.
    [16]马艳杰,王建军,王兆风.PSC-100型导叶式旋风管内的气相流动分析[J].流体机械,2010, 38(1) :5-7.
    [17]刘金红.旋风分离器减阻的实验研究[J].化学世界,1995, 36 (8) :438-443.
    [18]彭雷,李军,王国鸿.排气管偏置对CFB锅炉旋风分离器性能的影响[J].热能动力工程,2004,19(2):153-156.
    [19]李双权,孙国刚,时铭显.排气管偏置对PV型旋风分离器效率及压降的影响[J].中国粉体技术,2004,10:100-104.
    [20]陈丽君.七孔探针测试系统研究[D].南京航空航天大学,2006.
    [21] Hoffmann,A.C.,Stein L.E.,Gas Cyclones and Swirl Tubes-Principles,Design and Operation[M].Berlin:Springer-Verlag.2002.
    [22]马艳杰,王建军,王胜潮,等.PSC型旋风管组合结构参数对分离性能的影响[J].化工机械,2010,37(3):259-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700