计及半月板的人体膝关节动力学仿真及三维有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体膝关节是人体最大、最复杂的关节之一,也是一个发病率较高的关节。研究膝关节的生物力学问题,分析各组成部分的应力载荷分布,建立符合人体解剖结构的膝关节生物力学模型,得到符合真实结构的力学、动力学参数,一直以来都是生物力学研究领域的重点。自从有限元分析技术在计算生物力学领域得到广泛应用以来,已经渗透到生物力学研究的各个领域,如何建立符合人体解剖结构的膝关节生物力学有限元模型,并对其结构进行有效的力学分析和准确的预测,得到可靠的数据,应用于临床治疗、医学研究、生物机械设计的应用、假肢设计、矫正手术以及医学快速成型等领域,仍然是迫切需要解决的问题。本文针对建立完整步态周期内膝关节的生物力学模型的方法和分析结果,总结如下:
     1.通过ADAMS软件建立膝关节的动力学模型,模型包括骨骼、肌肉、韧带和半月板,模型更加符合真实的膝关节解剖结构。通过对一个完整周期内膝关节运动的模拟仿真计算,得到了膝关节在有、无半月板时,胫骨—股骨的接触力、主要韧带和肌肉的拉力随时间变化的规律,为进一步的有限元分析提供了动态数据参数。
     2.利用从医学影响中得到的膝关节CT断层扫描数据,通过医学三维重建,建立膝关节的股骨--胫骨—腓骨的三维实体模型,通过有限元软件进行了面网格和体网格的转化,根据骨骼成份和密度的不同,给模型辅材料属性,建立符合真实膝关节结构的有限元模型。
     3.利用胫骨—股骨接触力随时间变化的动态参数,对半月板模型进行了有限元分析,主要分析了半月板在步态周期内动态的应力应变及其在相应步态周期中的位移和变形情况,从而得到了整个膝关节模型实际受力状态和规律,为以后进一步研究人体膝关节的生物力学特性提供了参考。
The largest and most complex joint of the human body is knee joint, which is the higher incidence. Studying knee biomechanics, analyzing the various components of the stress and load distribution, establishing knee joint model with corresponding the human body and obtaining the mechanical parameters of the real biomechanics structure, people has always been focusing on biomechanical research. Since the technique of finite element analysis has been widely used in the calculation of the field of bio-mechanics, the method has penetrated into all fields of bio-mechanics research. Many things are still an urgent need to solve the problem, such as, how to create a biomechanical model of knee with accordant anatomy and the effective analysis and accurate forecasts of its structure, how to make reliable data used in clinical treatment, medical research, bio-mechanical design applications, prosthetic design, corrective surgery and rapid prototyping, and so on. In this paper, what methods to create a completely biomechanical model of the knee joint and analytical methods to analyze, my main tasks are as following:
     1. Through the ADAMS software, knee joint model will be added the major muscles, ligaments and menisci to improve the perfect structure, which makes the model more realistic and reliable. Simulation of normal gait is carried out in the software, I obtained the contact force of tibia-femur, the main ligaments and muscle tension with corresponding time with meniscus or not, so reliable parameters will prepare for further finite element analysis.
     2. I establish the femur-tibia-fibula three-dimensional solid model of the knee through the knee CT and the medical three-dimensional reconstruction. The surface mesh is exchanged into the body mesh, the material properties is assigned to the model according to the difference of the bone composition and density, It is in accordance with the real knee.
     3. The model of the meniscus will be analyzed through the effect of dynamic parameters about tibial-femoral contact force with time-varying, analyzes mainly contain the dynamic stress-strain and the corresponding displacement and deformation with the meniscus in the gait cycle, Thus the actual state and the regular force of the entire knee joint model will be gained, which will be prepared for analyzing biomechanical properties of knee joint any further.
引文
[1]张培玉,金德闻.多轴膝关节假体稳定性的分析[J].康复医学工程,1998,13(1):18-20.
    [2]云大真,于万明.动物膝关节损伤与破坏机理的力学基础性能研究[J],实验力学,1996,11(4):512-516.
    [3]陈舒华,黄展鹏,赵洁.基于医学断层轮廓的三维可视化研究[J].广东:医学信息学,2008,21(7):1023-1025.
    [4]潘慧矩,马楚虹,沈水富.膝关节运动的生物力学特性研究[J].北京体育大学学报,1998,21(4):33-35.
    [5] Wismans J. A Three2dimensional mathematical model of the knee joint[J]. PhD Thesis. The Netherlands: Eindhoven University of Technology,1980.
    [6]王西十,白瑞蒲.股骨-胫骨-髌骨三体人膝关节啮合运动数学模型[J].生物医学工程学, 1998,18(4):23-26.
    [7] Xishi Wang, Nuri Akkas. Two dimensional bio-dynamic model of the human femur knee joint tibia system. French:The 14th International Conference on Biomechanics, 1993.
    [8] Xishi Wang. Two dimensional biodynamic model of the human lower extremity[J]. Ph D Thesis, Ankara, Turkey:Middle East Technical University, 1994.
    [9]于频,新编人体解剖图谱[M].河北:辽宁科学技术出版社.1988.4.
    [10]徐峰主编,人体断面解剖学图谱[M],北京:人民卫生出版社.1989.
    [11] Moeinzadeh M H, Engin A E, Akkas N. Two-dimensional dynamic modeling of human knee joint[J]. Journal of Biomechanics, 1983, 1(6):253-264.
    [12] Paul M H, Crowning shield R, Miller R, Johnson R. The eseatic and dynamic behavior of the human knee in vito[J]. Journal of Biomechanics, 1976, 9 (6):449-452.
    [13] Taylor C D, Hennings CE. Pathomechanics of the pivot shift maneuver:An instant center analysis[J]. Americal Journal Sports Medicine, 1981, 9(8):31-37.
    [14] Costigan R, Pope M H, Johnson R J. An analytical model of the knee[J]. Journal of Biomechanics, 1976, 9(4):397-405.
    [15] Bendjaballah P A, Somerset J H, Murray D G. A three dimensional study of the kinematics of the human knee[J]. Jour2nal of Biomechanics, 1975, 8(6):375-384.
    [16] Goldstein S T, Volz A E. Three body segment dynamic model of the human knee[J]. Journal of Biomechanical Engineering, 1993, 11(5):350-356.
    [17] Jason P H, Paul J R. Development of an explicit-element-based total knee replacement model[J]. Bioengineering conference, 2003,10(6):550-551.
    [18] Watanabe J A, Schauer D A, Gardiner J C. Modeling contact in biological joints using penaltyand augmented lagrangian methods[J]. Advances in Bioengineering,1996,BED-23(6):347-348.
    [19] Martelli J B. Bio-engineering analysis of force actions transmitted by the knee joint[J]. Bio-Medical Engineering ,1968, 3(10):164-170.
    [20] Matsuda R J. Forces at the knee joint:anatomical considerations[J]. Journal of Biomechanics, 1981, 1(4):633-643.
    [21] Tomaso V, Francesco M, Dario G. Contact stresses and fatigue life in a knee prosthesis:comparison between in vitro measurements and computational simulations[J]. Journal of Biomechanics. 2004,37:45-53.
    [22] Winson C C L, Zhang M, Jia X H. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket[J]. Medical Engineering And phusics. 2004,26:655-662
    [23] ia X H, Zhang M, Li X B. A quasi-dynamic nonlinear finite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees[J]. Clinical Biomechanics. 2005, 20:630-635.
    [24] Yang R S, Lin H J. Contact stress on polyethylene components of a new rotaing hinge with a spherical contact surface[J]. Clinical Biomechanics. 2001,16:540-546.
    [25] Jiang Y, Jose G. Finite element modeling of in vivo knee joint contact under axial loading. 2003.
    [26] Chen E, Ellis R E, Bryant J T. A computational model of postoperative knee kinematics. Medical Image Analysis. 2001,5(4):317-330.
    [27]潘哲尔,欧宗瑛,纪凤欣,等.三维医学图像MT表面重建的相关性处理及模型简化[J].北京:中国生物医学工程学报,2001,20(5):992-993.
    [28]李福耀主编,人体解剖学[M],北京:人民卫生出版社.1994.
    [29]杨桂通,吴文周.骨力学[M].北京:科学出版社,1989.
    [30]孟和,顾志华.骨伤科生物力学[M].人民卫生出版社,2004:242-250.
    [31]单大卯,魏文仪.人体下肢解剖基准位肌肉功能参数的定量研究[J].中国实用新医学, 2005,2(6): 1-4.
    [32]李江.膝关节韧带的生物力学研究进展[J].医用生物力学,2005,20(1):59-64.
    [33]郑亦华,叶永延.人体运动学[M].北京:人民体育出版社,1979.
    [34]郑秀瑗.现代运动生物力学[M].北京:国防工业出版社,2006.
    [35]王以进.膝关节半月板的运动创伤分析[M].体育数学与体育系统工程,1992.
    [36]于长隆,敖英芳.半月板全切对膝关节软骨影响的实验病理研究[J].运动医学,2000,20(2):50-54.
    [37] LindbeckGL. Biomechanical analysis of knee flexion and extension[J]. Journal of Biomechanics, 1973,6(6):79-92.
    [38] Grood E S, Hefzy M S. An analytical technique for modeling knee joint stiffness[J], part I:ligamentous forces[J]. Journal of Biomechanical Engineering , 1982, 10(4):330-337.
    [39] Freudenstein F, WooSL. Kinematics of the human knee joint[J]. Bull Math Biophys, 1969, 3(1):25-43.
    [40] Hennings M A, Tamea HJ, Olson D G, Erdman A G. The use of screw/ axis surfaces in the three-dimensional analysis of the human knee joint: Lantz S A, King A I, eds. 1986 Advances in Bioengineering. ASME, WAM, Anaheim CA, 1986:105-106.
    [41] Hartfel B, Frankel J P. The forces and moments in the leg during level walking[J]. Trans ASME, 1950:27-30.
    [42] Suntay WJ, Grood E S, Hefzy M S, Butler D L, Noyes F R. Error analysis of a system for measuring three dimensional joint motion[J]. Journal of Biomechanical Engineering, 1983, 10(5):127-135.
    [43] Blacharski A, Arvikar R J. Amathematical model for evaluation of forces in lower extremities of the muscular skeletal system[J]. Journal of Biomechanics ,1973, 6:313-319.
    [44] Crowninshield i T P, Mikosz R P, Hampton S J, Galante J O. A statically indeterminate model of the human knee joint[J]. Proceedings Biomechanics Symposium AMV223, 1977:227-229
    [45] Moeinzadeh C, Hemami H, Buchner H J. Control of sliding and rolling at natural joints[J]. ASME, Journal of Biomechanical Engineering, 1984, 10(6):368-375.
    [46]王国强,张进平,马著丁.虚拟样机技术及其在ADAMS上的实践,西安:西北工业大学出版社,2002.
    [47]陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005.
    [48]李军,邢俊文,覃文洁,等.ADAMS实例教程.北京:北京理工大学出版社,2002.
    [49] GB10000《中国成年人人体尺寸》国家标准.
    [50]柯显信.仿人形机器人双足动态步行研究[J].上海大学学位论文.2005.05.
    [51]窦瑞军.类人型机器人稳定步态设计及动态步行研究[M].上海交通大学,2002.
    [52]包志军,《仿人型机器人的系统特性、步态规划及运动稳定性研究》,上海交通大学博士学位论文,2000.3.
    [53]孙明举,王岩.国人正常膝关节几何学及其参数的测量[J].解放军医学杂志,2002,27(12):1050-1052.
    [54] Shunji H, Reiji T. Three dimensional deformation and stress distribution in an analytical/computational model of the anterior ligament[J]. Journal of Biomechanics, 2000,33(9):1069-1077.
    [55] NEMA, Digital imaging and communication in medicine[J]. Draft standard,2000.
    [56]黄孝敏,姚振强,王成焘.同时利用X光片和CT片进行股骨假体三维设计的构思[J].上海交通大学学报.1997:46-50.
    [57] Wang Xu, Gui Yue-ying. The Direct display algorithm of the medical multi-slices images[J]. Journal of biomedicalengineering,1999,16(3):324-329.
    [58] Lorensen S, Xishi Wang, Nuri Akkas. A planar dynamic anatomical model of the human lower limb[J]. Biomedical Engineering , 1995, 7(10):365-378.
    [59] DelaunayT M G J, Kouwenhoven E, Verburg J, Weijs W A. A mathematical model of the patello-femoral joint[J]. Journal of biomechanics, 1986, 1(9):219-229.
    [60]叶铭,王成焘.目标组织轮廓的三次非均匀B样条逼近[J].上海交通大学学报,2003,5(6):102-123.
    [61]缪斌和,邓元木,黄斐增.基于对应点匹配断层图像三维插值方法[J].中华医学物理学杂志,2000,17(1):14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700