元胞遗传算法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于科技发展的需要,人们不得不面对科学研究和工程领域中的愈来愈复杂的寻优问题,元胞遗传算法提供了一种解决复杂优化问题的途径。元胞遗传算法将遗传操作限制在邻域内进行,减缓了优势个体在群体中的扩散速度,具有更好的全局探索能力,在求解复杂、多极值点优化问题中显示出优越性。然而,邻域内的遗传操作也带来元胞遗传算法收敛速度慢、局部搜索能力弱的问题。目前,元胞遗传算法大多注重元胞自动机邻域结构,缺乏对元胞自动机模拟自然现象的系统研究。为此,本文对元胞遗传算法进行了较为系统完整地研究分析,从不同角度提出几种改进算法,提高了算法全局收敛率及收敛速度,并在工程应用领域做出了新探索。本文研究内容和成果如下:
     (1)以选择压力作为分析手段,对标准元胞遗传算法进行定性分析。通过测试具有代表性的函数,从进化过程与计算性能两方面,对元胞遗传算法与标准遗传算法进行对比分析,并分析总结了邻域结构对算法性能的影响。研究表明,在进化过程中,标准元胞遗传算法具有较好的维持群体多样性能力。
     (2)对灾变机制元胞遗传算法进行研究,提出基于个体差异的灾变元胞遗传算法。研究不同移民方式下,灾变规模和灾变周期对灾变机制元胞遗传算法选择压力的影响。以精英移民策略为基础,将具有差异的优秀个体植入灾难区域,提高了进化过程中的群体多样性。这种方法在处理多峰、存在局部极值点的优化问题时,提高了算法跳出局部极值点的能力,亦使优化问题的收敛速度和收敛率得到提高。
     (3)研究生态密度对生态系统进化的影响规律,提出两种不同演化行为机制的元胞遗传算法。为了进一步维持群体的多样性,从自然界的渐进演化行为出发,提出具有演化规则的元胞遗传算法,以便提高全局搜索能力。基于个体的适应度,以物种间的捕食策略替代自然演化行为,提出具有捕食机制的元胞遗传算法,从而提高局部探索能力。这两种算法的运行效率均优于基本元胞遗传算法。
     (4)结合粒子群算法与元胞遗传算法,借鉴粒子群优化中粒子信息交互模式,提出两种不同融合机制的混合元胞遗传算法。根据粒子群概念,构造一个元胞遗传算法的新算子,研究融合粒子群概念的混合元胞遗传算法。为了提高全局搜索能力,将多中心城市策略引入元胞遗传算法,结合粒子群算法,提出多中心城市策略的混合元胞遗传算法。这两种混合元胞遗传算法既能保证优化问题的优化结果,又能提高收敛速度。
     (5)考虑夹持元件的局部变形,推导出工件的位置误差分析模型。以最小的工件位置误差为目标,构建夹紧力的优化设计模型,并提出了基于灾变元胞遗传算法的夹紧力优化设计模型求解方法。
with the development of technology, people have to face the more and morecomplicated optimization problems constantly arising in science and engineering, to wichcellular genetic algorithm provides an effective solution. It is an algorithms model thatcombins celluar automata with genetic algorithm. In this algorithm, the genetic operate of acertain individuals is restricted within neighborhood, so it slows down the diffusion speed ofthe good individual. On the one hand, the cellular genetic algorithm can offer us an overallexploitation in sloving problems struck into local optimum, thus increase the globalconvergence, and shows great superiority in coping complexe problem. On the other hand, itsexploiation is poor; it has the poor speed of convering due to running genetic operate withinneighborhood. Apart from this, on the CGA study, great attention of current researchers hasbeen paid to the struct of neighborhood of cellular automata, yet the research of simulatingnatural phenomenon is lacking. This paper gives an overall and systematical research andanalysis on cellular genetic algorithms; several improved algorithms have been presented insolving the new engineering problems. The main content and innovation are as follows:
     (1)Based on the current cellular genetic algorithm, by mean of selection pressure,qualitative analysis is conducted. Addopting a number of function typical optium, CGA iscompared with SGA in the aspects of evaluation process and computation performance. CGAcan matains population diversity better than SGA throughout evolutionary process. A severalconclution is achived on neighborhood structure to the influence of the algorithmperformance.
     (2)In different way of migration on cellular genetic algorithm with disater, effect ofselection pressure, relevant to the size and period of disasters, is researched. According to theelastic migration strategy, different excellent individual are placed in disater region toimprove population diversity. The experiment results shows that the cellular geneticalgorithms with new migration strategy can improve the optimization accuracy andconvergence rate as well as harbors superiority of exploration and exploitation.
     (3)According to different mechanisms of evoluational behavior, two improved celluargentic algorithms are presented. One is cellular genetic algorithms with evlutionary rules,which moniative nature.the other one is cellular genetic algorithms with predator and preymechanism, which mimic the predator-prey model from natural ecology, the evolution rule of cellular genetic algorithm is replaced by predator and prey mechanism. These two algorithmscan be improved from exploitation and exploiration resepectly.
     (4)Two hybrid cellular genetic algorithms are present. They are the hybrid cellulargenetic algorithms with PSO and the hybrid cellular genetic algorithms with polycentric cityand PSO. They include comunication that is adopted by PSO, so except the result is moresatisfactory, convergence speed is also increased. Polycentric stagey can play a role inmaintain population diversity.
     (5)Considering local fixel deformation, after workpcece position error is determined,optimal model of clamping forces is built. And then, aiming at minimizing the workpceceposition error, a cellular genetic algorithm with disasters is investigated to solve the proposedmodel so that the global optimal clamping forces can be efficiently obtained. This result ofstudy is better than the result of nolinear programming.
引文
[1]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,2005.
    [2] Holland J H. Adaption in Nature and Artificial System [M]. MIT Press,1991.
    [3] Goldberg D E. Genetic algorithms in search, optimization and machine learning [M].Addison-Wesley Publishing Company,1989.
    [4]陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京:人民邮电出版社,1999
    [5] Fogel D B, Back T. Evolutionary Computation [M]. CRC Press,2000.
    [6]王宇平.进化计算理论和方法[M].北京:科学出版社,2011.
    [7]周明,树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [8]张晓绩,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,24(10):27-31.
    [9]徐宗本,陈志平.遗传算法基础理论研究的新发展[J].数学进展,2000,29(2):97-114.
    [10]张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2003.
    [11] Mendel G J等著,梁宏等编译.遗传学经典论文选集[C].北京:科学出版社,1984.
    [12]张昀.生物进化[M].北京:北京大学出版社,1998.
    [13] Cavalli-Sforza L L, Menozzi P. The History and Geography of Human Genes [M]. Princeton:Princeton University Press,1994.
    [14] MacArthur R H, Wilson E O. The Theory of Island Biogeography [M]. Princeton: PrincetonUniversity Press,1967.
    [15]常杰,葛滢.生物多样性的自组织、起源和演化[J].生态学报,2001,21(7):1180-1185.
    [16] Neumann V. Theory of self-reproducing automata [M]. University of Illinois Press,1966.
    [17]张永安,白学志.复杂系统的重要研究工具-细胞自动机及其应用[J].自然杂志,1998,20(4):192-196.
    [18] Tomassini M. Spatially structured evolutionary algorithms [M]. Spring,2005.
    [19] Alba E, Dorronsoro B. Cellular Genetic Algorithms [M]. Springer,2008.
    [20] Wolfram S. Cellular automata as models of complexity [J], Nature,1984,31(4):419-424.
    [21]陈国宏,蔡彬清,李美娟.元胞自动机:一种探索管理系统复杂性的有效工具[J].中国工程科学,2007,9(1):28-32,39.
    [22] Hofbauer J, Sigmund K. The Theory of Evolution and Dynamical Systems [M], CambridgeUniversity Press,1988.
    [23] Wolfram S. A new kind of science [M]. Us: Wolfram Media,2002.
    [24] Bukr A W. Eassay on cellular automata[C]. Technical Report, Urbana: Univ.of Illinois,1970.
    [25] Bandini S. Guest editorial-cellular automata. Future generation computer systems,2002,18(8):2012-2031.
    [26] Jarkko Kari. Theory of cellular automata: A survey [J]. Theoretical Computer Science,2005,334:2-33.
    [27] Gardner M.The fantastic combination of john conway’s new solitatire game’life’. Sci.Am,1970,223:120-123.
    [28] Wolfram S. Theory and applications of cellular automata [M].singaprol World scientific publishcompany,1997.
    [29] Chowdhury D R, Sengupta I,. Chaudhuri P P. A class of twodimensional cellular automata andtheir applications in random testing [J], Electron. Testing: Theory Application,1994,5(1):67–82.
    [30]郝柏林.混沌与分形一郝柏林科普文集[M].上海:上海科学技术出版社,2004.
    [31](英)欧阳莹之著,田宝国等译.复杂系统理论基础[M].上海:上海科技教育出版社,2002.
    [32] Tomita K T, kurokaw H, murata S. Graph automata: natural expression of selfe-reporduction [J].Physiac D,2002,171:197-210.
    [33] G.Langton. ArtificialLife[M].VolumVI of SFI Studies of complexity,Addison-wesley,1989
    [34] Chopard, B., Masselot, A. Cellular automata and lattice Boltzmann methods: a new approach tocomputational fluid dynamics and particle transport,Future Generation Computer Systems,1999,16(2~3):249-257
    [35] Ahmed, E., Elgazzar, A.S.. On some applications of cellular automata. Physica A,2001,296(3-4):529-538.
    [36][英]肖帕德,德罗斯著,祝玉学,赵学龙译.物理系统的元胞自动机模拟[M],北京:清华大学出版社,2003.
    [37]李元香,康立山,陈硫屏.格子气自动机[M].北京:清华大学出版社,1994.
    [38] Li Yuanxiang, Xiong Shengwu. A class of Lattice Boltzmann models with Energy Equations [J],Lecture Notes in Physics, Vlarge Spinger XXI,2000,552:208~215.
    [39] Baochang Shi, Zhaoli Guo. Thermal Lattice BGK Simulation of Turbulent Natural ConvectionDue to Internal Heat Generation [J], International Journal of Modern Physics B: CondensedMatter Physics,2003,17(1/2):173~77.
    [40] Baochang Shi, Zhaoli Guo, Nengchao Wang, LBGK Simulations of Turbulent NaturalConvection in a Cavity, Chinese Phys.Lett.2002,19(4):515~17.
    [41]王琴,方绿频.动态再结晶过程的定量化可视化元胞自动机模拟[J].机械工程学报,2011.47(22):80-86.
    [42] Syphard A D, Clarke K C., Franklin J. Using a cellular automaton model to forecast the effects ofurban growth on habitat pattern in southern California[J]. Ecological Complexity,2005(2):185-203
    [43]周成虎,孙战利,谢一春.地理元胞自动机研究[M],科学出版社,1999
    [44]黎夏,叶嘉安,刘小平,杨青.地理模拟系统:元胞自动机与多智能体[M].北京:科学出版社,2006.
    [45] Shi Baochang, Guo Zhaoli. Thermal Lattice BGK Simulation of Turbulent Natural ConvectionDue to Internal Heat Generation[J], International Journal of Modern Physics B: CondensedMatter Physics,2003,17(1/2):173~77
    [46] Shi Baochang, Guo Zhaoli, Wang Nengchao, LBGK. Simulations of Turbulent NaturalConvection in a Cavity[J], Chinese Phys.Lett.,2002,19(4):515~17.
    [47] Schreckenberg M. Traffic and granular flow′97[J]. world scientific,1998,19(11):943-951.
    [48] Nagel K, Schreckenberg M. Acelluar automaton model for freeway traffic. J.Physique,1992,I2:2221-2229.
    [49] Lawniczak T, Stefano N D. Development of CA model of highway traffic Automata [J]. Theoryand application of cellularautamata,2008:527-541.
    [50]顾国庆,许伯铭,戴世强.自动机网格和交通的模拟研究[J].自然杂志,1997,19:91-98.
    [51]靳文舟,张杰.基于元胞自动机理论的交通流模拟模型[J].华南理工大学学报,自然科学版,2001,29(8):93-96.
    [52] Schonfisch B,.Kinder M. A Fish Migration Model[C]. In Proceedings of Fifth InternationalConference on Cellular Automata for Research and Industry, Switzerland: ACRI,2002:210-219.
    [53] Baltzer H, Brau W P, Kohler W. Cellular Automata Model for Vegetable Dynamics [J].Ecological Modelling,1998,107:113-125.
    [54] Q Zeng, X Zeng. An Analytical Dynamic Model for Grass Field Ecosystem [J]. EcologicalModelling,1996,85:187-196.
    [55]贺明峰,邓成瑞.基于元胞自动机的SARS传播模型[J].数学的实践与认识,2008,38(3):41-46.
    [56]李璐,宣慧玉,高宝俊.基于元胞自动机的异质个体HIV/AIDS传播模型[J].系统管理学报,2008,17(6):704-7l0.
    [57]平萍.元胞自动机原理及其在密码学的应用研究[D].南京:南京理工大学,2001.
    [58]张芳,丁永生,耿兆丰.基于模糊元胞自动机的复杂图案、纹理生成实现[J].中国纺织大学学报,1999,25(5):32-35.
    [59] Rosin P L. Image processing using3-state cellular automata [J]. Computer Vision and ImageUnderstanding,2010,114(7):790-802.
    [60]王安麟,姜涛.基于进化元胞自动机的结构拓扑优化[J].机械工程学报,2005,12(24):38-39.
    [61]苏凤环,姚令侃,李洪波.基于元胞自动机的沙堆模型并行计算[J].四川大学学报(工程科学版),2007,39(4):40-43.
    [62]邓黎,王仲君.扩展奇偶规则的元胞自动机模型和分析[J].武汉理工大学报,2004,12(6):935-938.
    [63]郭彤城,慕春棣.并行遗传算法的新进展[J].系统工程理论与实践,2002,2:15-24.
    [64] Alba E. Parallel evolutionary algorithms can achieve superlinear performance [J]. InformationProcessing Letters,2002,82(1):7-13.
    [65] Flynn M J. Very high speed computing systems[C]. Proc. IEEE,1986,54:1901-1909.
    [66] Bethke A. Comparison of genetic algorithms and gradient based optimizers on parallel processors:Efficiency of use of precessing capacity [J]. Technical Report,1976,276:2315-2326.
    [67] Folino G, Pizzuti C, Spezzano G. A cellular genetic programming approach to classification[C].Proc. of the Genetic and Evolutionary Computation Conference (GECCO-99), MorganKaufmann,1999:1015-1020.
    [68] Whitley D. Cellular genetic algorithms[C]. Proc. of the Fifth International Conference on GeneticAlgorithms (ICGA), Morgan Kaufmann,1993:658-659.
    [69] Nguyen Q H, Ong Y S, Lim M H. Adaptive Cellular Memetic Algorithms. EvolutionaryComputation [J].2009,17(2):231-256.
    [70] Dorronsoro B, Bouvry P. Differential evolution algorithms with cellular populations[J]. ParallelProblem Solving from Nature,2010,6239(LNCS):320-330.
    [71]王羽,杨转运,刘会,肖盛燮.基于元胞蚂蚁算法边坡安全系数计算[J].武汉理工大学学报(交通科学与工程版),2009,22(6):1164-1166
    [72]朱刚,马良.多目标函数优化的元胞蚂蚁算法.控制与决策[J].2007,22(11):1576-1579.
    [73]朱刚,马良.元胞蚂蚁算法的收敛性分析[J].系统仿真学报.2007,19(2):159-264.
    [74]曹春红,王利民,赵大哲.基于离散元胞蚂蚁算法的几何约束求解技术研究[J].电子学报,2011, l39(5):1127-1130.
    [75]夏小翔,曾建潮,高慧敏.基于元胞自动机的小生境微粒群算法[J].计算机工程与应用,2007,43(11):66-69.
    [76]马良,刘勇.元胞微粒群算法及其在多维背包问题中的应用[J].管理科学学报,2011,14(1):86-95.
    [77] Yu Fengxia, Li Gang.The Simulation and Improvement of Particle Swarm Optimization Based onCellular Automata [J]. Procedia Engineering,2012,29:1113-1118.
    [78] Liang Gao, Jida Huang, Xinyu Li. An effective cellular particle swarm optimization forparameters optimization of a multi-pass milling process[J]. Applied Soft Computing,2012,12(11):3490-3499.
    [79] Alba E, Troya J M. Asurvey of parallel distributed genetic algorithms[J]. Complexity,1994,8(4):31-32.
    [80] Grant D, Peter W. The behavior of genetic drift in a spatially-structured evolutionary[C]. IEEECongress on Evolutionary Computation,2005:1855-1860.
    [81] Rudolph G, Sprave J. A Cellular Genetic Algorithm with Self-Adjusting Acceptance Threshold[C].Genetic Algorithms in Engineering Systems: Innovations and Applications on IEE,1995:365-372.
    [82] Goldberg D, Deb K. A comparative analysis of selection schemes used in genetic algorithms[J].Evolutionary Computation,1994,4(4):361-394.
    [83] Sarma J, Jong D. An analysis of the effect of the neighborhood size and shape on local selectionalgorithms[C]. Proc. of the International Conferenceon Parallel Problem Solving from Nature IV,1996,1141(LNCS):236-244.
    [84] Sarma J, Jong D. An analysis of local selection algorithms in a spatially structured evolutionaryalgorithm[C]. Proc. of the Seventh International Conference on Genetic Algorithms,1997:181–186.
    [85] Sprave J. A unified model of non-panmictic population structures in evolutionary algorithms[C].Proc. IEEE International Conference on Evolutionary Computation,1999,2:1191-1202.
    [86] Gorges M S. An analysis of local selection in evolution strategies[C]. In Proc. of the Genetic andEvolutionary Computation Conference,1999,1:847-854.
    [87] Giacobini M, Tomassini M. Tettamanzi Modelling selection intensity for linear cellularevolutionary algorithms[C]. Proc of the International Conference on Artificial Evolution,2003,2936(LNCS):345-356.
    [88] Alba E, Giacobini M, Tomassini M, Romero S. Comparing synchronous and asynchronouscellular genetic algorithms[C]. Proc. of the International Conference on Parallel Problem Solvingfrom Nature VII,2002,2439(LNCS):601-610.
    [89] Giacobini M, Tomassini M, Tettamanzi A. Takeover time curves in random and small-worldstructured populations[C]. In Proc. of the Genetic and Evolutionary Computation conference,2005:1333-1340.
    [90] Simoncini D,.Verel S, Collard P, Clergue M. Anisotropic selection in cellular genetic algorithms.In Proc. of the Genetic and Evolutionary Computation conference,2006:559-566.
    [91] Alba E, Troya M. Cellular evolutionary algorithms:Evaluating the influence of ratio. Proc. of theInternational Conference on Parallel Problem Solving from Nature VI,2000,1917(LNCS):29-38.
    [92]段晓东,高红霞,张学东,刘向东.粒子群算法种群结构与种群多样性的关系研究[J].计算机科学,2007,34(11):164-167.
    [93] Capcarrere M. Tomassini M, Tettamanz A, Sipper M.A statistical study of a class of cellularevolutionary algorithms[J]. Evolutionary Computation,1999,7(3):255-274.
    [94] Collins J, Jefferson R. Selection in massively parallel genetic algorithms[C]. Proc of the FourthInternational Conference on Genetic Algorithms,1991:249–256.
    [95] Dick G. A comparison of localised and global niching methods[C]. In Annual Colloquium of theSpatial Information Research Centre,2005,10:91-101.
    [96] Davidor Y. A naturally occurring niche and species phenomenon: The model and first results[C].Proc. of the Fourth International Conference on Genetic Algorithms,1991:257-263.
    [97] Spiessens P. Manderick B. A massively parallel genetic algorithm: Implementation and firstanalysis[C]. Proc.of the Fourth International Conference on Genetic Algorithms,1991:279-286.
    [98] Bernabe D, Enrique A. A Simple Cellular Genetic Algorithm for Continuous Optimization[C].IEEE Congress on Evolutionary Computation,2006:2838-2844.
    [99] Gordon V, Mathias K, Whitley D. Cellular genetic algorithms as function optimizers: Localityeffects[C].In ACM Symposium on Applied Computing,1994:237–241.
    [100] Eklund E. Empirical studies of neighborhood shapes in the massively parallel diffusionmodel.Brazilian Symposium on Artificial Intelligence (SBIA),2002,2507(LNAI):185-194.
    [101] Ishibuchi H, Doi T, Nojima Y. Effects of using two neighborhood structures in cellular geneticalgorithms for function optimization[C]. Proc.of the9th internatiional Conference on PPSN,2006:949-958.
    [102] Alba E, Dorronsoro B. The Exploration/Exploitation Tradeoff in Dynamic Cellular GeneticAlgorithms [J], IEEE Trans. on Evolutionary Computation,2005,9(2):126-142.
    [103] Alba E., Troya J. Cellular Evolutionary Algorithms: Evaluating the Influence of Ratio[C].Proceedings of the6th International Conference on Parallel Problem Solving from Nature,2000:29–38.
    [104] Cin L Y, Antonsson K. Reinforcement learning in steady-state cellular gengetic algorithms[C].Proc of the8th annual conference on genetic algorithms in engineering systems: innovations andapplications,1995:365-372.
    [105] Kim W,.Man W, Chi S. Adding learning to cellular genetic algorithms for training recurrentneural networks[J]. IEEE Transactions on Neural Networks,1999,10(2):239-252
    [106] Tadahiko M, Hiroyuki N, Yasuhiro T. Effect of local search on the performance of cellulargmulti-objective enetic algorithms for designing fuzzy rule-based classification systems[C].Proceedings of the2002Conference on evolutionary computation,2002:663-668.
    [107] Folino G, Pizzuti C, Spezzano G. Parallel hybrid method for SAT that couples genetic algorithmsand local search[J]. Evolutionary Computation,2001,5(4):323–334.
    [108] Luo Z, Liu H. Cellular genetic algorithms and local search for3-SAT problem on graphichardware[C]. Proc.of the IEEE Conference on Evolutionary Computation,2006:10345-10349.
    [109] Grant D, Peter A. Spatially-structured evolutionary algorithms and sharing:do they mix?[C]Simulated Evolution and Learning,2006,4247(LNCS):457-464.
    [110] Dorronsoro B, Alba E, Luque G, Bouvry P. A Self-Adaptive Cellular Memetic Algorithm for theDNA Fragment Assembly Problem[C].2008IEEE Congress on Evolutionary Computation.2008:2651-2658.
    [111] Kirley M, Li X D, Green G. Investigation of a cellular genetic algorithm that mimics landscapeecology[C]. The Second Asia-Pacific Conference on Simulated Evolution and Learning onSimulated Evolution and Learning,1999:90–97.
    [112] Kirley M. A Cellular Genetic Algorithm with Disturbance: Optimization Using Dynamic SpatialInteractions[J]. Journal of Heuristics,2002,8(3):321-342.
    [113] Rickers P, Thomsen R, Krink T. Applying self-organized criticality to the diffusion model[C].Proc. of the Genetic and Evolutionary Computation Conference,2000:325-330.
    [114] Krink T, Thomsen R. Self-organized criticality and mass extinction in evolutionary algorithms[C].In Proc. IEEE International Conference on Evolutionary Computation,2001:1155-1161.
    [115] Nakashima T,.Ariyama T, Yoshida T, Ishibuchi H. Performance evaluation of combined cellulargenetic algorinthms for function optimization problems[C]. IEEE Proceeding of the internationalsymposium on computation intelligence in robotics and automation,2003:295-299.
    [116] Janson S, Alba E, Dorronsoro B, Middendorf M. Hierarchical cellular genetic algorithm[C].Evolutionary Computation in Combinatorial Optimization,2006,3906(LNCS):111-122.
    [117] Li X, Sutherland S. A cellular genetic algorithm simulating predatorprey interactions[C]. In Proc.of the Third International Conference on Genetic Algorithms,2002:416-421.
    [118] Folino G, Pizzuti C, Spezzano G. Combining cellular genetic algorithms and local search forsolving satisfiabilityproblems[C]. Proceedings of the Int. Conf. on Tools with ArtificialIntelligence1998:192-198.
    [119] Selman B, Levesque H, Mitchell D. A New Method for Solving Hard Satisfiability Problems[C].Proc of the12th National Conference on Artificial Intelligence,1992:440-446.
    [120] Alba E, Dorronsoro B, Luna F, Nebro J. A Cellular Multi-Objective Genetic Algorithm forOptimal Broadcasting Strategy in Metropolitan MANETs [J]. Computer Communications,2007,30(4):685-697.
    [121] Alba E, Dorronsoro B. Solving the vehicle routing problem by using cellular geneticalgorithms[C]. Proc. of Evolutionary Computation in Combinatorial Optimization,2004,3004(LNCS):11-20.
    [122] Kamkar I, Poostchi M, Reza M, Totonchi A. A Cellular Genetic Algorithm for Solving theVehicle Routing Problem with Time Windows.Advances in Intelligent and Soft Computing,2010,75(SCIA):263-270.
    [123] Morales R A, Stefatos F, Erdogan T, Arslan T. Towards fault-tolerant system based on adaptiveCellular Genetic Algorithms[C]. NASA/ESA Conference on adapitive hardware and systems,2008:398-405.
    [124] M.Orozco-Monteagudo,A.Taboada-Crispí,A.Toro-Almenares.Training of Multilayer PerceptronNeural Networks by Using Cellular Genetic Algorithms,11th Iberoamerican Congress in PatternRecognition,2006,4225(LNCS):389-398.
    [125]陈昊.动态环境下进化计算的研究[D].南京:南京航空航天大学,2011.
    [126] Green D G. Connectivity and the evolution of biological systems [J]. Journal of BiologicalSystems,1994,2(1):91-103.
    [127] Enrique A, Gabriel L. Theoretical Models of Selection Pressure for dEAs: Topology Influence[C].The2005IEEE Congress on Evolutionary Computation,2005,1:214-221.
    [128]郭东伟,周春光,刘大有.遗传算法取代时间的分析.计算机研究与发展,2001,38(10):1211-1216.
    [129]孙瑞祥,屈梁生.遗传算法进化截止代数分布规律的研究.计算机研究与发展,2000,37(2):188-193.
    [130] Jong D K. Evolving in a Changing World[C]. Foundation of Intelligent Systems,1999,1609(LNAI):513–519.
    [131]常杰,葛滢.生物多样性的自组织、起源和演化.生态学报,2001,21(7):1180-1186.
    [132]廖美英,张勇军.灾变算子在遗传算法中的作用研究[J].计算机工程与应用,2005,41(13):54-56.
    [133]程俊,顾幸生.灾变合作型协同进化遗传算法及其在Job Shop调度中的应用.华东理工大学学报(自然科学版),2007,33(7):704-708.
    [134]周鹏.一种基于灾变的单亲遗传算法湖北汽车工业学院学报,2007,21(2):19-21.
    [135]王春雷,钱勇生.基于双向并行灾变粒子群算法的区域交通控制.计算机工程与应用,2007,43(34):229-333.
    [136]王秀坤,赫然,张晓峰.一种改进的最优保存遗传算法[J].小型微型计算机系统,2005,26(4):833-835.
    [137]陆青,梁昌勇,杨善林等.面向多模态函数优化自适应小生境遗传算法[J].模式识别与人工智能,2009,22(1):91-100.
    [138] Ishibuchi H, Ohara K, Nojima Y. Examing the effect of elitism in cellular genetic algorithmsusing two eighorhood structure[C]. Parallel problem solving from nature,2008,5199(LNCS):459-467.
    [139] Taiji S, Yoshiki M, Kanya T and Koichi N. A two-level life system with predator [J]. Electronicsand Communications.2004,87(8):53-60.
    [140] Gesu V, Lenzitti B, Bosco G and Tegolo D. Comparison of different cooperation strategies in theprey-predator problem[C]. Proceedings of the IEEE International Conference onApplication-Specific Systems, Architectures and Processor.2007:108-112.
    [141]张顶学,关治洪,刘新芝.基于捕食搜索策略的遗传算法研究[J].计算机应用研究,2008,25(4):1017-1012.
    [142]王仲君,王能超,冯飞,田武峰,元胞自动机的演化行为研究[J].计算机应用研究,2007,24(8):38-41.
    [143] Grimaldi E A, Grimacia F, Mussetta M, Pirinoli P. A New Hybrid Genetical–Swarm Algorithmfor Electromagnetic Optimization[C]. Proceedings of International Conf on ComputationalElectromagnetics and Its Applications,2004:157-160.
    [144] Grosan C, Abraham A, Nicoara M. Search Optimization Using Hybrid Particle Sub-swarms andEvolutionary Algorithms [J]. International Journal of Simulation Systems, Science andTechnology,2005,6(10):60-79.
    [145] Bilchev G A, Parmee I C. The Ant Colony Metaphor for Searching Continuous Spaces. LectureNotes in Computer Science.1995,25-39.
    [146]高德芳,赵勇,郭杨.基于混合鱼群-蚁群算法的模块化产品配置设计[J].设计与研究,2007,34(1):631-635.
    [147] Chu Y, Mi H, Liao H, Ji Z, Wu Q H. A Fast Bacterial Swarming Algorithm for High-dimensionalFunction Optimization[C]. IEEE Congress on Evolutionary Computation.2008:3135-3140.
    [148] Biswas A, Dasgupta S, Das S, Abraham A. Synergy of PSO and Bacterial Foraging Optimization-A Comparative Study on Numerical Benchmarks[J]. Advances in Soft Computing in Innovationsin Hybrid Intelligent Systems.2007,4:255-263
    [149]谢菲.洛杉矶模式:大都市区多中心模式的经济效用分析[J],东北师大学报,2008,5:82-86.
    [150]任子晖,王坚,高岳林.马尔科夫链的粒子群优化算法全局收敛性分析[J].控制理论与应用,2011,28(4):462-466.
    [151]金欣磊,马龙华,吴铁军,钱积新.基于随机过程的PSO收敛性分析.自动化学报,2007,33(12):1263-1268.
    [152] R. C. Eberhart, J. Kennedy. A New Optimizer Usi.ng Particle Swarm Theory[C]. In Proceedingsof the Sixth International symposium on Micro Machine and Human Science.1995,39-43.
    [153]张树森主编.机械制造工程学[M].沈阳:东北大学出版社,2001。
    [154]秦国华,张卫红,万敏.基于线性规划的工件稳定性建模及其应用[J].机械工程学报.2005,12(09):254-264.
    [155] Raghu A, Melkote S N. Analysis of the effects of fixture clamping sequence on part locationerrors[J]. International Journal of Machine Tools and Manufacture,2003,44(4):373-382.
    [156] Chou Y C, Chandru V, Barash M M. A mathematical approach to automatic configuration ofmachining fixtures: analysis and synthesis [J]. ASME Journal of Engineering for Industry.1989,111(4):299-306
    [157] Xiong C H, Wang M Y, Xiong Y L. On prediction of passive contact forces in workpiece-fixturesystems [J]. Journal of Engineering Manufacture March1,2005,219(3):309-324..
    [158] Wang Y, Chen X, Liu Q, Gindy N. Optimisation of machining fixture layout undermulti-constraints[J]. International Journal of Machine Tools and Manufacture,2006,46(12-13):1291-1300.
    [159] Qin G H, Lu Y M. Determination of multiple clamping forces using the rigid body model [J].Advanced Materials Research,2010,139-141:1164-1168.
    [160] Liu S G, Zheng L, Zhang Z H, Li Z Z, Liu D C. Optimization of the number and positions offixture locators in the peripheral milling of a low-rigidity workpiece[J]. International Journal ofAdvanced Manufacturing Technology,2007,3(7-8):668-676.
    [161] Kaya N. Machining fixture locating and clamping position optimization using geneticalgorithms[J]. Computer in Industry,2006,57(2):112-120.
    [162] Chen W F, Ni L J, Xue J B. Deformation control through fixture layout design and clampingforce optimization[J]. International Journal of Advanced Manufacturing Technology,2008,38(9-10):860-867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700