氨(铵)在支撑液膜中的质量传递
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作采用的支撑液膜体系,是以 D2EHPA(二(2-乙基己基)膦酸)为载体,正庚烷、煤油和癸醇三种物质作为膜溶剂,聚丙烯为支撑体材料。本研究探讨了氨(铵)在支撑液膜中传质机理,考察各因素对渗透系数的影响,建立氨(铵)在中空纤维型支撑液膜的传质模型,并对传质渗透过程进行模拟。
    首先,测定包括分配系数、水相传质扩散系数和反应平衡常数等基础参数,并分析了各操作条件对其影响。分配系数的研究结果表明,分配系数Kp随着料液氨(铵)浓度和pH值增大而增大,以正庚烷为膜相的Kp比煤油和癸醇的相对较大;采用多孔板法测定水相中NH4+和NH3扩散系数,并将测定值与经验公式估算值进行对比,结果表明,测定结果是可靠的;反应常数Kr随着载体浓度升高而增大,正庚烷为载体溶剂时Kr最大,pH值对Kr的影响较大,Kr随料液pH值减小而增大。
    其次,采用间歇平板支撑液膜,简化操作条件,使总传质阻力的变化只与膜相阻力有关,而与料液相和反萃相阻力无关的前提下,研究膜内传质过程,并归结出氨(铵)在支撑液膜内传质模型,求解膜内扩散系数等模型参数,为中空纤维连续传质数学模拟打下基础。实验结果表明,搅拌速率达到800rpm以上时,总传质阻力的变化与料液相阻力无关;膜相中无载体和含有载体的情况,反萃相pH值分别小于2和3时,总传质阻力的变化与反萃相阻力无关。
    最后,考察操作条件例如膜溶剂种类、载体浓度、料液和反萃相pH值、以及进料速度等对氨(铵)对k值的影响;建立中空纤维连续传质数学模型,利用模型模拟分析几何尺寸、支撑体性能参数以及操作条件对体系传质过程的影响。实验结果表明,所建立的数学模型与实验值比较吻合。
    以上的研究为支撑液膜法处理氨氮废水技术中液膜体系的选择、工艺过程优化等提供了理论指导和依据,为实际应用奠定一定的基础。
In the present dissertation, a system of supported liquid membrane has been selected: D2EHPA used as carrier; decanol, kerosene and hexylmethane respectively used as the diluents; and polypropylene as membrane support material. The mechanism of ammonia (ammonium) transporting through the SLM and the factors affecting the permeability coefficient are investigated. At last, model of mass transfer across the supported liquid membrane is established, by which the mass transfer is simulated.
    Firstly, allocation coefficient, diffusion coefficient and reversible reaction equilibrium const are determined, and the operation factors affecting these parameters also investigated. The results obtained show that Kp value increases with the increasing of the initial concentration and pH value of the feed phase, using hexylmethane as diluent has higher Kp value than decanal and kerosene; the determined diffusion coefficients show little difference with the values that are calculated by the experiential equation given by Reid-Sherwood and Wilke-Chang; Kr increases as the carrier concentration increases, using hexylmethane as dilute has larger Kr value than the other two, Kr value increases with the decreasing of pH value in the feed phase, and is varied with pH value sharply.
    Secondly, relatively more ideal condition is investigated under which the total transport resistance is independent of the feed and strip resistance, that is, the main resistance is concentrated in the membrane. Under these conditions, the permeation process in the flat-sheet-supported liquid membrane is investigated, the model of the transport of NH3-N in membrane is established, and the parameters of the model are solved. The results show that when the stirring speed reaches 800 rpm, the total transport resistance is independent of the feed resistance; when there is no carrier in the membrane, or there is some proportion of carrier in the membrane, if the pH value is less than 2 or 3 respectively, the total transport resistance is independent of the strip resistance.
    
    
    
    Lastly, the factors affecting slope k such as the type of solvent, proportion of D2EHPA in the membrane, pH value of the feed and the strip, and the feed speed, are investigated. The model of the transport of NH3-N through hollow fiber liquid membrane is established. Using this model, the effects of the geometry dimension and property parameters of membrane support material and operation conditions on mass transport are analyzed. The results show that the model is consistent to the experiment date.
    The present research provide the theoretic guidance and foundation for the selection of SLM system and the optical of operation condition, and it lay some foundation for the practical application of the removal of ammonia nitrogen from waste water using SLM technology.
引文
[1]钱易,等.环境保护与可持续发展.北京:高等教育出版社,2000.50-51.
    [2]钟理,谭春伟,胡孙林.氨氮废水降解技术进展.化工科技,2002,10(2):59-62.
    [3]Yingjie, Joaquin, M. S. Cabral.Hollow Fiber Supported Liquid Membrane Process for the Separation of NH3 from Aqueous Media Containing NH3 and CO2.J. Chem. Tech. Biotechnol., 1996, 65:137-148.
    [4]刘柒变,孙亚玲.A/O生物法脱除焦化废水中氨氮的工艺及影响因素.煤化工,1994(3):52-57.
    [5]茂名石化公司炼油厂.生化法处理炼油废水中氨氮降解的工业试验.化工环保,2000,20(5):64-67.
    [6]蔡木林,江跃林,等.二级SBR法处理高浓度氨氮化工废水研究.应用与环境生物学报,2000,6(6):581-585.
    [7]徐庆臻,刘新峰,任广涛.污水处理氨氮降解机理探讨.工业水处理,2002,22(3):55-56.
    [8]李谷,黄正,龙华,等.养殖水体氨氮去除的固定化微生物技术.大连水产学院学报,2001,16(4):262-268.
    [9]吕锡武,李峰,等.氨氮废水处理过程中的好氧反硝化研究.给水排水,2000,26(4):80-85.
    [10]方建章,黄少斌.化学沉淀法去除水中氨氮的试验研究.环境科学与技术,2002,25(5):34-36.
    [11]尹先清,伍家忠,等.合成氨废水氨氮处理技术研究.湖北化工,               2002(2):10-11.
    [12]谢炜平.废水中氨氮的去除与利用.环境导报,1999(1):14-15.
    [13]李才辉,冯晓西,乌锡康.MAP法处理氨氮废水最佳条件的研究.化学世界,2002,66-69.
    [14]Yutaka S, Joseph RVF, Makram T S, etaL.Modeling of ELecdtrochemically ctiviated Denitrifying BiofiLms.WaterResearch, 1994, 28(5):1077-1086.
    [15]蔡秀珍,李吉生,温俨.吹脱法处理高浓度氨氮废水试验. 环境科学动态,1998(4):21-23.
    [16]王有乐,翟钧,谢刚.超声波吹脱技术处理高浓度氨氮废水试验研究.环境污染治理技术与设备,2001,2(2):59-63.
    [17]胡允良,张振成,等.制药废水的氨氮吹脱试验.工业水处理,1999,19(4):19-22.
    [18]郑林树,徐雪峰.A/C废水的氨氮脱除.化工生产与技术,2001,8(6):34-36.
    [19]李武,等.城市垃圾渗滤液中氨氮脱除的试验研究.工业安全与环保,2002,28(2):42-48.
    [20]宁平,曾凡勇,胡学伟.中高浓度氨氮废水综合处理.有色金属,2003,55(3):130-133.
    
    [21]徐丽花,周琪.沸石去除废水中氨氮及其再生.中国给水排水,2003,1(19):24-26.          
    [22]韩建华,崔峰,铵离子交换工艺处理炼油废水中的氨氮.石油化工环境保护,2002,25(3):33-37.
    [23]王冠平,方喜玲,施汉昌.膜吸收法处理高氨氮废水的研究.环境污染治理技术与设备,2002,3(7):56-60.
    [24]陈强,赵连彪,王小雄.炼油厂氨氮废水的乳状液膜法处理研究.甘肃农业大学学报,2002, 37(4):481-485.
    [25] 李可彬,金士道.液膜法去除废水中的氨氮污染.膜科学与技术,1996,16(3):40-45.
    [26]卢平,曾丽璇,张秋云,杨桓.高浓度氨氮垃圾渗滤液处理方法研究.中国给水排水,2003(19):5-7.
    [27]J. Douglas Way, Richard D. Noble, Thomas M. Flynn and E. Dendy Sloah.Liquid Membrane Transport: A survey.J. Sci. Mem., 1982:12,239-259.
    [28]朱国斌,李标国.支撑液膜分离技术原理及展望.稀土,1988(1):5-13.
    [29]王俊九,箸立强.支撑液膜分离技术.水处理,2001,27:187-191.
    [30]蒋维均.新型传质分离技术.北京:化学工业出版社,1992.53-56.
    [31]N. N. Li.Separation of Hydrocarbons by Liquid Membrane Permeation.Ind. Eng. Chem. Procc. Des. Develop., 1971 (10):215.
    [32]顾忠茂.液膜分离过程研究的新进展.膜科学与技术,1999(6):5-8.
    [39]G. O. Yahaya, B. J. Brisdon, R. England.Facilitated transport of lactic acid and its ethyl ester by supported liquid membranes containing functionalized polyorganosiloxanes as carriers.J. Mem. Sci., 2000(168):187-201.
    [41]S. Sriram, P.K. Mohapatra, A.K. Pandey, V.K.Manchanda.Facilitated transport of americium from nitric acid media using dimethyldibutyltetrdecyl-1,3-malonamide.J. Mem. Sci., 2000(177):163-175.
    [33]T.P Martine, G.A. Davies.The extraction of copper form dilute aqueous solution using a liquid membrane process.Hydrometallurgy, 1977, 2:315.
    [34]F. Valenzuela, C. Basualto.Application of hollow fiber supported liquid membranes technique to the selective recovery of a low content of copper from a Chilean mine water.J. Mem. Sci., 1999, 155:163-168.
    [35]葛道才.支撑液膜分离和浓缩金属的研究-铜、锌及其混合物的分离.膜分离科学与技术,1983(3):1-9.
    [37]A.M. Sastre, A. Madi, F.J. Alguacil.Facilitated supported liquid membrane transport of gold using LIX79 in cumene.Journal of Membrane Science, 2000 (166):213-219.
    [38]易涛,严纯华,李国标.平板夹心型支撑液膜萃取体系中La3+的迁移行为.中国稀土学报,1995(9):197-200.
    [36]Marr, R.Plilot plant studies of liquid membrane separations.presented at Eng. Found. Conf., On New Directions in Separation Technology, Davos Switzerland, 1984.( Oct).
    [40]J.K. Kim., J.S. Kim, Y.G. Shul, K.W. Lee, W.Z. Oh.Selective extraction of cesium ion with calyx arene crown ether through thin sheet supported liquid membranes.Journal of Membrane Science, 2001 (187): 3-11.
    
    [41]S. Sriram, P.K. Mohapatra.Facilitated transport of americium(III) from nitric acid media using dimethyldibutyltetradecyl-1,3-malonamide.Journal of Membrane Science, 2000 (177) :163-175.
    [42]Wang.C.C., Bung.A.L.Multisloute extraction of organic acids by emulsion liquid membranes.J. Mem. Sci., 1990, 53(1-2):71-103.
    [43]Wang.W-L, Hu K-H..Mass transfer of sulfuric acid by trioctylamine through a supported liquid membrane.Chem. Eng. Commun., 1995,(137):69-84.
    [44]Cocheci V., Masu Su Smarads.Acetic acid recovery from wastewater using liquid surfactant memvranes.Chem. Bull. Tech. Univ. Timisoara, 1991, 36(50):31-35.
    [45]Sang-Wook Park, Kun-Woo Kim, In-Joe Sohn.Facilitated transport of sodium phenolate through supported liquid membrane.Separation and Purification Technology, 2000 (19) :43–54.
    [49]A. Figoli, W.F. C. Ssger.Facilitated oxygen transport in liquid membranes: review and new concepts.J. Mem. Sci., 2001(181):97-110.
    [48]Masaaki Teramoto, Qingfa Huang.Facilitated transport of SO2 through supported liquid membrane using water as a carrier.Separation and Purification Tech., 1999(16):109-108.
    [46]S.L. Maton, C.S. Herrick.Progress on the selective removal of H2S from gasified coal using an immobilized liquid membrane.Ind. Eng. Chem. Proc. Des. Deve, 1977(16):370.
    [47]W.J. Ward.Analytical and experimental studies of facilitated transport.AICHE J., 1970a (16):405.
    [50] Nackiva J, Mikulej V, Rajec P..Transport of Ca, Sr, Ba, Na and Cr through hollow fiber supported liquid membranes.J. Radional. Nucl. Chem., 1994, 83(1):85-91.
    [51] Beffer.S., Binmen.S.Immobilized extractants: selective transport of magnesium and calcium from a mixed chloride solution via a hollow fiber membrane module.J. Appl. Polym. Sci., 1990(40):11-12.
    [52]韩伟,严忠,吴子生.液膜法提取浓缩氨基酸.水处理技术,1995,21(2):77-80.
    [53]Thordarson E, Palmarsdottir S, Mathiasson L.Sample preparation using miniaturized supported liquid membrane device connected on-line to packed capillary liquid chromatography.Anal Chem., 1996, 68:2559-2563.
    [54]F. Krenzer, L. Hoofd.Facilited Diffuse of Oxgen in the Presence of Hemoglobin.Respir. Physiol., 1970(8):280.
    [55]J.D.G Goddard, J.S.Schultz, R.J.Bassett.On Membrane Diffusion with Near Equilibrium.Chem. Eng. Sci., 1970, 25:665.
    [56]K.A. Smith, J.H. Meldon.An Analysis of Carrier-Facilitated Transport.AIChE J, 1973, 19(1):102.
    [57]D. Yung, R.L. Probstein.Similarity Considerations in Facilitated Transport.J. Phy. Chem., 1973, 77(18):2201.
    [58]T.L. Donaldson and J.A. Quinn.Carbon Dioxide Transport through Enzymatically Active Synthetic Membranes.Chem. Eng. Sci., 1975, 30:103.
    [59]L. Hoofd and F. Krenzer.A New Mathematical Approach for Solving Carrier Facilitated Steady-state Diffusion Problems.Math. Biol., 1979, 8:1.
    
    [60]D.R. Olander.Simultaneous Mass Transfer and Equilibrium Chemical.AIChE J, 1960, 6(2):405.
    [61]S.K. Friedlander and K. H. Keller.Mass Transfer in reacting systems near equilibrium using the affinity function.Chem. Eng. Sci., 1965(20):121-221.
    [62]R.D. Noble.Shape factors in facilitated transport through membranes. Ind. Eng. Chem. Fundam., 1983 (22):139.
    [63]R.D. Noble.Two-dimensional permeates with facilitated transport membranes.Sep. Sci. Technol., 1984 (19):469.
    [64]邱立勤,马少峰,陈洪钫.促进传递液膜分离丙稀(数学模型).化工学报,1996,47(3):319-323.
    [65]P.R. Danesi.A simplified model for the coupled transport of metal ions through hollow-fiber supported liquid membranes.J. Mem. Sci., 1984 (20): 231.
    [66]N.S. Rathore, J.V. Sonawane.Hollow fiber supported liquid membrane:a novel technique for separation and recovery of plutonium from aqueous acidic wastes.Journal of Membrane Science, 20011 (89):119-128.
    [67]T.M. Dreherd and G.W. Stevens.Instability mechanisms of supported liquid membranes.Separation Scienece and Technology, 1998, 33(6): 835-853.
    [68]X.J. Yang, A.G. Fane, J. Bi, H.J. Griesser.Stabilization of supported liquid membranes by plasma polymerization surface coating.Journal of Membrane Science, 2000 (168):29-37.
    [69]金美方.复合支撑液膜.水处理技术,2000,26(1):18-21.
    [70]陆九芳,李总成,包铁竹.分离过程化学.北京:清华大学出版社,1993,43-45.
    [71]贾绍义,柴诚敬.化工传质与分离过程.北京:化学工业出版社,2001.
    [72]冯伯华,等.化学工程手册:第14篇.北京:化学工业出版社,1980.236-284.
    [73]Patricia D. Mackenzie and C. Judson King.Combined solvent extraction and strip for removal and isolation of ammonia from sour water.Ind. Eng. Process Des. Dev. 1985(24): 1192-1200.
    [74] 周春明.纳氏比色法测定总氨氮时NH3、NH4+含量的计算.渔业现代化,2000,12(6):2-3.
    [75]王绍亭,陈涛.化工传递过程基础.北京:化学工业出版社,1998.224-225.
    [76]]冯伯华,等.化学工程手册:第1篇.北京:化学工业出版社,1980.408-409.
    [77]段香芝,等.纳氏试剂比色法测定水中氨氮适宜条件探讨.信阳师范学院学报(自然科学版),1998(11):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700