蛋膜固相萃取在环境水样微量金属元素分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,各种无机物和有机物不断向环境排放,造成水体严重污染,其中无机重金属元素对人类的生存环境构成严重的威胁,年初中央电视台曾报道我国有30%的大米被重金属污染,因此研究快速准确的测定环境样品中重金属元素显得尤为重要。目前,尽管仪器分析技术和方法已有较大发展,但分析对象越来越复杂,待检测组分含量越来越低,特别是基体效应和干扰物质的存在,直接影响着分析方法的灵敏度和准确度。现代仪器分析方法的发展要求分析工作者不断改进分析方法,提高测试方法的准确性、缩短分析时间、降低检测限、建立更加经济有效的检测手段。
     由于环境水样中的分析对象含量很低,甚至于接近仪器的检出限,直接进行测定比较困难,往往需要进行分离富集。目前采用的分离富集的方法有沉淀法、活性碳吸附法、离子交换树脂法、有机溶剂萃取、浊点萃取法以及固相萃取法。其中固相萃取分离富集技术由于具有操作简单、耗时短、试剂和样品用量少、不使用有机溶剂、对环境友好且易于与不同的检测仪器联用等特点,在样品前处理中得到了广泛的应用。而固相萃取吸附材料的选择直接影响着分析方法的灵敏度和选择性,目前使用的固相萃取吸附材料有树脂、活性碳、硅胶、泡沫塑料、碳纳米管、纳米二氧化钛、分子(离子)印迹材料以及一些生物材料,由于上述材料中有些比较昂贵,有些合成出来比较麻烦,甚至有些材料还对环境有污染,因此探讨环境友好型资源节约型的固相萃取吸附剂已经引起分析工作者的关注,由于生物材料如树皮、茶叶、海带、稻壳、壳聚糖等对重金属离子具有吸附性能,除了价格低廉、易于获取外,本身还能得到生物降解,不会对环境造成污染,因而生物材料在环境金属离子富集领域具有广阔的前景和潜力。
     近年来,生物材料在生物医学和污水处理领域受到广泛关注,尤其是生物材料对污染物的去除是国内外研究者感兴趣的课题,其在环境污染与防治、污水及工业污水中有毒金属离子的吸附、去除等中发挥着重要作用。由于生物材料中富含糖类、蛋白质、纤维素以及其它的生物高聚物,可能含氨基、酰胺基、酞胺基、羟基、羧基、磺酸基及巯基等多种官能团,这些官能团能够与金属离子进行络合及配位,与金属离子形成离子键或者共价键达到吸附的目的,因此,生物材料对金属离子表现出独特的选择性和吸附性能。
     鸡蛋膜为厚约70μm的双层结构,是一种半透性亲水生物活性膜,具有良好的透气性、保湿性以及吸附性。半透膜试验证明,鸡蛋膜能够选择性地通过乙酸、水等小分子物质,不能通过葡萄糖等大分子物质。其主要组成成分为蛋白质,近年来蛋膜(ESM)作为一种生物材料,广泛应用于如医药、食品、化妆品等领域。
     本文的研究目的:在文献已报道的研究基础上,主要研究了蛋膜对微量金属元素银、铜、锰的吸附性能,以及吸附条件对固相萃取效果的影响。在此基础上,将其应用于环境水样中微量金属离子的分离富集与测定。主要研究内容分为四部分,概括如下:
     第一章:主要综述了各种分离富集技术、固相萃取吸附材料的特点及应用。简要介绍了生物材料及其在分离富集领域应用,重点介绍了蛋膜生物材料的结构、性能以及在分离富集方面的最新研究进展,本文的立题思想及研究意义。
     第二章:研究了以蛋膜生物材料为固相萃取吸附剂,考察了蛋膜对微量银的吸附,利用扫描电镜和红外光谱对蛋膜进行结构表征,探讨其吸附机理,在优化的实验条件下,建立了蛋膜微柱固相萃取-石墨炉原子吸收光谱法测定微量银的方法,并将该方法成功应用于环境水样中微量银的测定。
     第三章:研究用蛋膜固相萃取微柱分离预富集水中的微量铜,并与原子吸收光谱法联用,实验考查了pH、流速、洗脱剂、电解质、共存离子等因素对回收率的影响。将该方法应用于环境水中,取得满意效果。
     第四章:在微酸性条件下,将蛋膜分离富集与电感耦合等离子体质谱法(ICP-MS)联用研究Mn(II)和Mn(VII)的吸附行为,实验探讨了影响吸附和洗脱的一些因素,并将各种影响因素进行优化,该方法成功应用于环境水样中Mn(II)和Mn(VII)的测定。
The human livings standards increased substantially with the rapid development of science and technology. However, the resulting environmental pollution problems have a serious threat to the human’s circumstance. Therefore, it is very important to monitor the environmental via fast and accurately technology. Although there has greatly developed techniques and methods of instrumental analysis, the direct analysis is often very difficult even impossible for the analysis object has become more complex and the content become more and more low, in particular, the matrix effect and the presence of interfering substances. So analysts must be construct a more cost-effective detection method, such as, improve the analytic accuracy, shorten the analysis time and lower the detection limit.
     A variety of sample pretreatment is essential before analyzing. Solid phase extraction enrichment technology has been widely used in sample Processing for simple for its facile operation, high enrichment factor, low sample and reagent consumption, no emulsification, easy collection, environmental friendly and easy combined with different detection techniques, etc.,. The selective of solid phase adsorption material is very important to sensitivity and selectivity. Therefore, finding the right superior performance of adsorption materials has been a hot area of scientific research problem.
     In recent years, biological materials received extensive attention in biomedical and wastewater treatment, especially in the removal of pollutants, which has become the interest to domestic and foreign researchers. Moreover, biological materials played an important role in controlling the environmental pollution, removing the adsorption of toxic metal ions in sewage and industrial waste water. The biological materials exhibited a exciting selectivity and adsorption performance to metals ions for biosorbents cnotaining polysaccharides, lignin, protein and other biological polymers, which may be rich in amino acids, phthalic amino, hydroxyl, carboxyl, sulfonic acid groups and thiol and other functional groups. And other functional groups which could contact with the metal ions and coordination with metal ions to form ionic bonds or covalent bonds.
     Eggshell membrane (ESM) is a biologically active hydrophilic semipermeable double layers membrane with a thickness about 70μm. And it has a good air permeability, moisture retention and absorption. Semipermeable test proved that the acetic acid, water and other small molecules could selectively through the eggshell membrane (ESM) but glucose and other macromolecules can not. The major components of the eggshell membrane(ESM) is protein and is widely used in medicine, food, cosmetics and other fields as a biological membrane material.
     According to the research reported in the literature, we mainly studied on the effect of adsorption and adsorption conditions of eggshell membrane (ESM) to the metal ions silver, copper, and manganese on solid phase extraction. And applied the eggshell membrane (ESM) to separate and detect the enrichment of trace metal ions in environmental water samples. The main contents are divided into four parts, summarized as follows:
     Chapter I: this section introduces the characteristics of the various separation and enrichment technologies and their applications. And also Brief introduced the biological materials and their application in separation and enrichment field, the structure and performance of eggshell membrane (ESM) and the latest research progress in separation and enrichment. The idea and the meaningful of this study were also introduced in this section.
     Chapter II: this section we established a new method to separate and enrich silver with eggshell membrane (ESM). The solid phase extraction sorbent eggshell membrane (ESM) was coupled with graphite furnace atomic absorption spectrometry (GFAAS) and applied to analysis of actual samples. The structure of the eggshell membrane (ESM) was characterized by scanning electron microscopy(SEM) and fourier transform infrared spectroscopy(FT-IR),and their adsorption performances to silver were also studied.
     Chapter III: the micro-column preconcentration was coupled with the flame atomic absorption spectrometry in this section. And we also studied their adsorption behavior to copper. A new method of eggshell membrane (ESM) to enrich copper was established and applied to the actual water samples.
     Chapter IV: the separation and enrichment of the eggshell membrane(ESM) coupled with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) to adsorb Mn (II) and Mn (VII) in the slightly acidic environmental was investigated and used to detect trace Manganese ions in water samples.
引文
[1]曹斌,何松洁,夏建新.重金属污染现状分析及其对策研究[J].中央民族大学学报(自然科学版), 2009,18(1):29-33.
    [2]徐继刚,王雷,肖海洋,高明,等.我国水环境重金属污染现状及检测技术进展[J].环境科学导刊,2010,29(5):104-108.
    [3]谷学新,邹洪,朱若华.分析化学中的分离技术[J].分析试验室,2001,20(3):96-98.
    [4] Cao J. Y., Zhang G. J., Mao Z. S., et al. Precipitation of valuable metals from bioleaching solution by biogenic sulfides[J]. Minerals Engineering, 2009, 22(3): 289-295.
    [5]唐华应,方艳,刘惠丽.铍盐沉淀分离电感耦合等离子体原子发射光谱法定钨铁合金中磷和砷[J].理化检验-化学分册,2009,45(3):367-374.
    [6]彭善堂,雷家珩,陈永熙,等.(NH4)2S直接沉淀法分离Li+-Mn2+中的锂和锰[J].武汉理工大学学报,2002,22(14):15-17.
    [7] Fathi A., Mohamed T., Claude G., Maurin G., et al. Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate [J]. Water Research, 2006, 40(10): 1941-1950.
    [8] Wang X. W., Chen Q. Y., Yin Z. L., et al. Homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte during electrorefining[J]. Hydrometallurgy, 2011, 105(3-4): 355-358.
    [9] Mustafa T., Mustafa S.. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations[J]. Journal of Hazardous Materials, 2009, 162(2-3): 724-729.
    [10] Mustafa T., Demirhan C., Mustafa S.. 5-Chloro-2-hydroxyaniline–copper (II) coprecipitation system for preconcentration and separation of lead(II) and chromium(III) at trace levels[J]. Journal of Hazardous Materials, 2008, 158, (1): 137-141.
    [11]周保新.原子吸收光谱共沉淀法测水中Pb、Cu、Fe、Mn元素的探讨[J].中国卫生检验杂志,2002,12(1):62-63.
    [12] Wang X. W., Wang M. Y., Shi L. H., Qiao P.. Recovery of vanadium during ammonium molybdate production using ion exchange[J]. Hydrometallurgy, 2010, 104(2): 317-321.
    [13] Pehlivan E., Cetin S.. Sorption of Cr(VI) ions on two Lewatit-ion exchange resins and their quantitative determination using UV-visible spectrophotometer[J]. Journal of Hazardous Materials, 2009, 163(1): 448-453.
    [14]谢芳琴.液液萃取新技术在贵金属分离中的应用[J].中国资源综合利用,2008,26 (1):31-33.
    [15] Liu J. F., Chao J. B., Jiang G. B.. Continuous flow liquid membrane extraction a novel automatic trace-enrichment technique based on continuous flow liquid-liquid extraction combined with supported liquid membrane[J]. Analytica Chimica Acta, 2002, 455(1): 93-101.
    [16] Diniz M. C. T., Filho O.F., Rohwedder J. J. R.. An automated system for liquid–liquid extraction based on a new micro-batch extraction chamber with on-line detection Preconcentration and determination of copper(Ⅱ)[J]. Anal Chim Acta, 2004, 525 (2): 281-287.
    [17] Xia L. B., Hu B., Jiang Z.C., et al. Hollow fiber liquid phase microextraction combined with electrother malvaporization ICP-MS for the speciation of inorganic selenium in natural waters[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(3): 362-365.
    [18] Li L., Hu B.. Hollow-fibre liquid phase microextraction for separation and preconcentration of vanadium species in natural waters and their determination by electrothermal vaporization ICP-OES[J]. Talanta, 2007, 72(2): 472-479.
    [19] Masoumeh S., Yadollah Y., Mohammad Z., Khalili R., et al. Liquid-phase microextraction and gas-chromatographic determination of selenium(IV) in aqueous samples[J]. International Journal of Environmental Analytical Chemistry, 2007, 87(8): 603-614.
    [20]周庆祥,白画画,代文华,等.浊点萃取-火焰原子吸收光谱法测定环境水样中痕量铅[J].河南师范大学学报(自然科学版),2007, 35(2):115-118.
    [21]李静,梁沛,施踏青.浊点萃取预富集火焰原子吸收光谱法测定水样中痕量钴[J].分析科学学报,2005,21(2):164-166.
    [22] Wu C. C., Liu H. M.. Determination of gallium in human urine by supercritical carbon dioxide extraction and graphite furnace atomic absorption spectrometry [J]. Journal of Hazardous Materials, 2009, 163(2-3): 1239-1245.
    [23] Kumar P., Pal A., Saxena M. K, et al. Supercritical fluid extraction of uranium and thorium from solid matrices[J]. Desalination, 2008, 232(1-3): 71-79.
    [24]张荔,吴也,肖兵,等.超临界流体萃取技术研究新进展[J].福建分析测试,2009,18(2):49-50.
    [25] Steven H. P., Bruce A., Benner J., John A. S., et al. Restrictor plugging in off-line supercritical fluid extraction of environmental samples: Microscopic, chemical, and spectroscopic evaluations[J]. Journal of Supercritical Fluids, 1999, 14(3): 257-270.
    [26] Peng J. F., Liu R., Liu J. F., et al. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 65(5): 499-503.
    [27]付新梅,戴树桂,傅学起.液膜萃取技术在环境样品前处理中的应用[J].分析测试学报,2006,25(2):126-131.
    [28]于惠芬,孙桂清.痕量银的液膜富集与原子吸收法测定[J].分析试验室,2000,19(3):28-30.
    [29] Zeng C. J., Yang F. W., Zhou N.. Hollow fiber supported liquid membrane extraction coupled with thermospray flame furnace atomic absorption spectrometry for thespeciation of Sb(III) and Sb(V) in environmental and biological samples[J]. Microchemical Journal, 2011, 98(2): 307-311.
    [30] Absalan G., Ayatollahi M. M.. Separation and preconcentration of silver ion using 2-mercaptobenzothiazole immobilized on surfactant-coated alumina [J].Separation and Purification Technology, 2003, 33(7): 95-101.
    [31] Pourreza N., Parham H., Kiasat A. R., et al. Solid phase extraction of mercury on sulfur loaded with N-(2-chloro benzoyl)-N-phenylthiourea as a new adsorbent and determination by cold vapor atomic absorption spectrometry [J]. Talanta, 2009, 78 (11): 1293-1297.
    [32] Mustafa T., Kadriye O. S., Mustafa S.. Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2008, 152(2): 632-639
    [33] Selin G. O., Nuray S., Mustafa S.. Column solid phase extraction of iron (III), copper(II), manganese(II) and lead(II) ions food and water samples on multiwalled carbon nanotubes[J]. Food and Chemical Toxicology, 2010, 29(5): 1-30.
    [34] Celal D., Ali G., Volkan N. B., Mustafa S.. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry(FAAS)[J]. Journal of Hazardous Materials, 2007, 146(1): 347-355.
    [35] Feng Q.Z., Zhao L.X., Yan W., et al. Molecularly imprinted solid-phase extraction combined with high performance liquid chromatography for analysis of phenolic compounds from environmental water samples[J]. Journal of Hazardous Materials, 2009, 167(2): 282-288.
    [36] Chen S. Z., Liu C., Yang M., et al. Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry[J]. Journal of Hazardous Materials, 2009, 170(5): 247-251.
    [37] Demirhan C., Mustafa T., Mustafa S.. Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation–atomic absorption spectrometry combination[J]. Journal of Hazardous Materials, 2010, 173(5): 773-777.
    [38] Bulut V. N., Duran C., Tufekci M.. Speciation of Cr(III) and Cr(VI) aftercolumn solid phase extraction on Amberlite XAD-2010[J]. Journal of Hazardous Materials, 2007, 143 (4): 112-117.
    [39] Ghaedi M., Niknam K., Taheri K.. Flame atomic absorption spectrometric determination of copper, zinc and manganese after solid-phase extraction using 2,6-dichlorophenyl-3, 3-bis(indolyl)methane loaded on Amberlite XAD-16[J]. Food and Chemical toxicology, 2010, 48(3): 891-897.
    [40]胡秋芬,黄章杰,杨光宇,等.固相萃取光度法测定水样中的银[J].分析化学,2004,32(4):551.
    [41] Xiong H. C., Liao Z. H., Jiang Z. C., et al. ICP-AES Determination of Cu(II) and Mn(II) after Separation by Adsorption of Its Oxine Complex onto Microcrystalline Naphthalene[J]. Jouranl of Analytical Science, 1998, 3 (14): 215-217.
    [42] Mester Z., Sturgeon R.. Trace element speciation using solid phase microextraction[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(9-10): 1243-1269.
    [43] Kaur V., Aulakh J. S., Malik A. K.. A new approach for simultaneous determination of Co(II), Ni(II), Cu(II) and Pd(II) using 2-thiophenaldehyde -3- thiose micarbazone as reagent by solid phase microe- xtraction-high performance liquid chromatography[J]. Analytica Chimica Acta, 2007, 603(1): 44-50.
    [44] Diez S., Bayona J. M.. Determination of Hg and organic mercury species following SPM E: A review[J]. Talanta, 2008, 77(1): 21-27.
    [45]胡国栋.固相微萃取技术的进展及其在食品分析中的应用现状[J].色谱,2009,27(1):1-8.
    [46]周绍其.离子交换纤维制备和应用的研究进展[J].北京服装学院学报,2004,24(4):9-16.
    [47]伍娟,龚琦,杨黄,等.Mn(III)和Mn(VI)的离子交换纤维柱分离和电感耦合等离子体原子发射光谱法测定[J].冶金分析,2010,30(2):23-29.
    [48] Vuorio M., Manzanares J. A., Murtom?ki L.. Ion-exchange fibers and drugs: atransient study[J]. Journal of Controlled Release, 2003, 91(3): 439-448.
    [49]涂椿滟,陈权,杨其武,等.多配位基螯合纤维对Ag+的吸附性能研究[J].合成纤维工业,2009,32(2):27-30.
    [50]杨秀政.多胺螯合纤维预富集-FAAS对水体中铅的形态分析[J].分析试验室,2007,26(1):102-104.
    [51] Liu R. X., Tang H. X., Zhang B. W.. Removal of Cu(II), Zn(II), Cd(III) and Hg(II) from waste water by poly(acrylamino -phosphonic)-type chelating fiber [J]. Chemosphere, 1999, 38(13): 3169-3179.
    [52]曹丽华,闫永胜,赵干卿,等.离子交换树脂预浓集薄层树脂相分光光度法测定水中铬(Ⅵ)和铬(Ⅲ)[J].冶金分析,2006,26(5):72-74.
    [53] Lemos V. A., Baliza P. X.,Yamaki R. T., et al. Synthesis and application of a functionalized resin in on-line system for copper preconcentration and determination in foods by flame atomic absorption spectrometry[J]. Talanta, 2003, 61 (5): 675-682.
    [54]峰山,石东辉.离子交换树脂相光度法测定蒙药中微量铁[J].光谱实验室,2010,27(2):477-480.
    [55] Wayne E. M., Lynda H. W.. Chromate (CrO42?) and copper (Cu2+) adsorption by dual-functional ion exchange resins made from agricultural by-products[J]. Water Research, 2006, 40(13): 2541-2548.
    [56]鲍长利,赵淑杰,刘广民,等.对磺基苯偶氮变色酸螯合形成树脂分离富集微量铂和钯[J].分析化学,2002,30(2):198-201.
    [57]王琳,刘国宏,张新荣.纳米材料吸附剂的研究进展[J].分析化学,2005,33(22):1787-1793.
    [58] Curulli A., Valentini F., Padeletti G., et al. Smart (Nano)materials: TiO2 na- nostructured filmost modify electrodes for assembling of new electrochemical probes[J]. Sensors and Actuators B: Chemical, 2005, (111-112): 441-449.
    [59]王玲玲,闫永胜,邓月华,等.纳米材料在金属离子分析中的应用[J].冶金分析,2009,29(2):37-44.
    [60]施踏青,梁沛,李静,等.纳米二氧化钛分离富集ICP-AES测定镉、钴、锌的研究[J].光谱学与光谱分析,2005,25(3):444-446.
    [61] Hu J., Chen C. L., Zhu X. X., et al. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2009, 162(4): 1542-1550.
    [62]张耀君,李聚源,李文震,等.碳纳米管负载的铂催化剂对柠檬醛选择加氢及CO微分吸附热研究[J].高等学校化学学报,2005,26(7):1345-1347.
    [63]李志,巩前明,王野,等.定向碳纳米管/炭纳米复合材料形貌和显微结构[J].新型炭材料,2010,25(5):335-342.
    [64]陈俊良,方方,张晶,等.纳米贮氢材料及其发展[J].稀有金属材料与工程,2007,36(6):1119-1123.
    [65]陈其往,赵渺,朱燕娟.纳米添加剂对镍氢电池正极电化学性能的影响[J].电源技术,2010,34(8):832-834.
    [66]王宗花,罗国安.碳纳米管在分析化学领域的研究进展[J].分析化学,2003,31(8):1004-1009.
    [67] Mustafa T., Kadriye O. S., Canan U., et al. Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ion[J]. Bioresource Technology, 2008, 99 (6): 1563-1570.
    [68] Chen S. Z., Liu C., Yang M., et al. Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry[J]. Journal of Hazardous Materials, 2009, 170 (4): 247-251.
    [69] Di N. F., Erto A., Lancia A., et al. A descriptive model for metal ions adsorption from aqueous solutions onto activated carbons[J]. Journal of Hazardous Materials, 2009, 84(3): 1024-1029.
    [70]冯传玲.活性炭分离富集环境中痕量金属离子的研究[D].河南新乡:河南师范大学,2009:3-9.
    [71] Jaramillo J., Gómez-Serrano V.,álvarez P. M. Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherrystones[J]. Journal of Hazardous Materials, 2009, 161(2-3): 670-676.
    [72]姚淑华,贾永锋,汪国庆,等.活性炭负载Fe(III)吸附剂去除饮用水中的As(V)[J].过程工程学报,2009,9(2):250-256.
    [73] Barkat M., Nibou D., Chegrouche S., et al. Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 38-47.
    [74]申青峰,赵景联,鲁晓雯,等.膨胀石墨吸附剂的制备及其吸油性能研究[J].工业水处理,2010,30(8):57-60.
    [75]李冀辉,高元哲,刘淑芬,等.膨胀石墨对酸性染料废水的吸附脱色作用[J].四川大学学报,2007,44(2):399-402.
    [76]岳勇,杨学富,齐笑襗.生物活性炭吸附法去除酚类的研究[J].北京工商大学学报,2003,21(1):25-27.
    [77] Agrawal Y. K. Poly(β-styryl)-(1,2-methanofullerene-C60)-61-formo hydroxa mic acid for the solid phase extraction,separation and preconcentration of rare Earth elements[J]. Fullerenes Nanotubes and Carbon Nanostructures, 2007, 15(5): 353-365.
    [78] Lesniewska B. A., Iwona G.. The study of applicability of dithiocarbamate- coated fullerene C60 for preconcentration of palladium for graphite furnace atomic absorption spectrometric determinati on in environmental samples[J]. Spectrochimica Acta Part B. Atomic Spectroscopy, 2005, 60(3): 377-384.
    [79] Shahat M. F., Moawed E. A., Burham N.. Preparation, characterization and applications of novel iminodiacetic polyurethane foam(IDA-PUF) for determination and removal of some alkali metal ions from water[J]. Journal of Hazardous Materials, 2008, 160 (2-3): 629-633.
    [80]孙莹莹,邹海洋.泡沫塑料富集原子吸收法测定矿石中金的含量[J].分析试验室,2010,29(5):415-416.
    [81]李承元,李蓉,赵刚,等.负载泡沫塑料富集发射光谱测定化探样品中痕量金、铂、钯[J].黄金,2005,26(12):48-50.
    [82] Sadeghi S., Sheikhzadeh E.. Solid phase extraction using silica gel modified with murexide for preconcentration of uranium(VI) ions from water samples[J]. Journal of Hazardous Materials, 2009, 163(2-3): 861-868.
    [83] Huang X. P., Chang X. J., He Q., et al. Tris(2-aminoethyl) amine functionalized silica gel for solid-phase extraction and preconcentration of Cr(III), Cd(II) and Pb(II) from waters[J]. Journal of Hazardous Materials, 2008, 157 (1): 154-160.
    [84] Ekinci C., K?klüü.. Determination of vanadium, manganese, silver and lead by graphite furnace atomic absorption spectrometry after preconcentration on silica gel modified with 3-aminopropyltriethoxysilane[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(9): 1491-1495.
    [85] Chang X. J., Jiang N., Zheng H., et al. Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique[J]. Talanta, 2007, 71(1): 38-43.
    [86]丁向东,何秀娟,涂光忠,等.以可控孔径玻璃为基质的疏水作用固定相的研制[J].分析化学,1993,214(4):410-415.
    [87] Amauri A. M., Patricia S., Griselda P.. On-line preconcentration and speciation analysis of Cr(III) and Cr(VI) using baker's yeast cells immobilised on controlled pore glass[J]. Analytica Chimica Acta, 2005, 546(2): 244-250.
    [88]彭涛.分子印迹技术及其在痕量分析中的应用[J].农药学学报,2001,(3)4:34-36.
    [89]冯银巧,周如金,唐玉斌,等.分子印迹技术在固相萃取中的应用[J].理化检验(化学分册),2011,47(1):125-128.
    [90] Claudio B., Laura A., Cristina G.. Solid phase extraction of food contaminants using molecular imprinted polymers[J]. Analytica Chimica Acta, 2007, 591(1): 29-39.
    [91]孙寅静,罗文卿,潘俊.蛋白质分子印迹技术的研究进展及应用前景[J].药学学报,2011,46(2):132-137.
    [92] Liu Y., Liu Z. C., Gao J., Dai J. D., Han J., et al. Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique[J]. Journal of Hazardous Materials, 2011, 186(1): 197-205.
    [93]范洪涛,孙挺,董佳,等.离子印迹聚合物及其在分析化学中的应用[J].化学通报,2009,(1):10-14.
    [94]朱建华,李欣,强亮生.铜(Ⅱ)离子印迹聚合物的制备及性能[J].高等学校化学学报,2006,27(10):1853-1855.
    [95] Pan J. M.,Zou X. H., Li C. X., Liu Y., Yan Y. S., et al. Synthesis and applications of Ce(III)-imprinted polymer based on attapulgite as the sacrificial support material for selective separation of Cerium(III) ions[J]. Microchimica Acta, 2010, 171(1-2): 151-160.
    [96]王丽敏,周美华,景志娟,等.Pb(Ⅱ)离子印迹吸附剂的制备及固相萃取性能研究[J].分析测试学报,2009,28(2):199-202.
    [97]陶长元,曹渊,朱俊,等.农林生物质在含铬废水处理中的应用[J].环境污染治理技术与设备,2005,6(12):1-5.
    [98]韩润平,石杰,李建军,等.生物材料对重金属离子的吸附富集作用[J].化学通报,2000,(7):25-28.
    [98]石杰,刘晓岚.用固定化生物材料去除水体中的重金属离子[J].环境科学与技术,2001,98(6):30-31.
    [99]张力平,黄贞,刘晓燕.落叶松改性树皮对金属离子吸附性能的研究[J].北京林业大学学报,2004,26(4):69-72.
    [100] Miretzky P., Fernandez C.A.. Hg(II) removal from water by chitosan and chitosan derivatives:A review[J]. Journal of Hazardous Materials, 2009, 3(12): 68-71.
    [101]陈灿,周芸,胡翔,等.啤酒酵母对废水中Cu2+的生物吸附特性[J].清华大学学报-自然科学版,2008,48(12):2093-2095.
    [102] Liu Y.H., Cao Q.L., Luo F., et al. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae[J]. Journalof Ha zardous Materials, 2009, 163(2-3): 931-938.
    [103]斯钦,巴图,金梅,等.巯基羊毛对Zn2+、Cu2+、Pb2+等重金属离子的吸附特征[J].内蒙古石油化工,1998,24(6):32-33.
    [104]玄哲仙.生物吸附剂桔子皮的制备及对重金属Pb、Cu的吸附研究[D].吉林长春:东北师范大学,2006:15-30.
    [105] Nadeem R., Ansari T.M., Khalid A.M.. Fourier Transform Infrared Spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales[J]. Journal of Hazardous Materials, 2008, 156(1-3): 64-73.
    [106] Chen X.W., Huang L.L., He R.H.. Silk fibroin as a sorbent for on-line extraction and preconcentration of copper with detection by electrothermal atomic absorption spectrometry[J]. Talanta, 2009, 78(3): 71-75.
    [107] Zou A.M., Chen M.L., Chen X.W., Wang J.H.. Cell-sorption of paramagnetic metal ions on a cell-immobilized micro-column in the presence of an external magnetic field[J]. Analytica Chimica Acta , 2007, 598(5): 74-81.
    [108] Zou A.M., Chen M.L., Shu Y., Wang J.H.et al. Biological cell-sorption for separation/preconcentration of ultra-trace cadmium in a sequential injection system with detection by electrothermal atomic absorption spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(4): 392-398.
    [109] Maqulelra A., Elmahadl H.A.M., Puchades R.. Immobilized Cyanobacteria for On-Line Trace Metal Enrichment by Flow Injection Atomic Absorption Spectrometry[J]. Analytical Chemistry, 1994, 66(21): 3632-3638.
    [110]潘蓉,曹理想,张仁铎.青霉菌和镰刀菌对重金属Cd2+、Cu2+、Zn2+和Pb2+的吸附特性[J].环境科学学报,2010,30(3):477-484.
    [111] Ansari M. I., Malik A.. Biosorption of nickel and cadmiumby metal resistant bacterial isolates from agricultural soilirrigated with industrial wastewater[J]. Bioresour. Technol., 2007, 98(16) : 3149-3153 .
    [112]陈丽丹,王宪,徐鲁荣,等.海藻粉用量对重金属离子吸附率的影响[J].厦门大学学报(自然科学版),2004,43(2):229-232.
    [113] Chen X. C., Wang Y. P., Lin Q., et al. Biosorption of copper(Ⅱ) and zinc(Ⅱ) from aqueous solution by Pseudomonas putidacz[J]. Colloids and Surfaces B: Biointerfaces, 2005, 46(3): 101-107.
    [114]牛慧,许学书,王建华.非生长产黄青霉吸附铅的研究[J].徽生物学报,1992,30(7):112-115.
    [115]汤岳琴,牛慧,林军,等.产黄青霉废菌体对铅的吸附机理(II)[J].四川大学学报,2001,33(4):45-49.
    [116]谢丹丹,刘月英,吴成林.固定化啤酒酵母废菌体吸附Pt4+特性的研究[J].厦门大学学报,2003,42(3):800-804.
    [117]张小枝,罗上庚,杨群,等.满江红鱼腥藻吸附低浓度铀的研究[J].核化学与放射化学,1998,20(2):114-118.
    [118]李日强,王翠红,席玉英,等.钝顶螺旋藻对五种元素生物富集作用的研究[J].山西大学学报,2001,24 (2):167-169.
    [119]郑逢中,洪丽玉,郑文教.红树杆物落叶碎屑对水中重金属吸附的初步研究[J].厦门大学学报,1998,36(1):137-141.
    [120]谭晓,于永鲜,等.废茶枝叶对黏土中六价铬的吸附作用[J].环境工程,2008,26(2):61-63.
    [121]邱会东,唐黎琼.棕榈树皮对废水中铅的吸附性能研究[J].水处理技术,2007,21 (5):208-209.
    [122] Zhang L.Y., Ishikawa O., Takeuchi Y., et al. Influences of keratinocyte -fibroblast interaction on the expression of epimorphin by fibroblasts in vitro[J]. Journal of Dermatological Science, 1999, 20(3): 191-196.
    [123] Ishikama S., Sekine S., Miura N., et al. Removal of selenium and arsenic by animal biopolymers[J]. Biol Trace Element Res, 2004, 112(1-3): 113.
    [124] Tsai W.T., Yang J., Lai. M., C.W., et al. Characterization and adsorption properties of eggshells and eggshell membrane[J]. Bioresour Technology, 2006, 97(5): 488-493.
    [125] Suyama K.. Metal or metal compd ions are adsorbed with eggshell membraneproteins as adsorbents for selective sepn[P]. Japan, Kokai Tokkyo Koho, JP 07 2420[9524207] 27Jan. 1995. Appl 93/175.281, 15 Jul 1993, 6pp.
    [126] Zshikawa S., Sugama K.. Biosorption of Actinides from Dilute Waste Actinide[J]. Applied Biochemistry and Biotechnology, 1999, 11(77-79): 521-533.
    [127] Suyama K., Fukazawa Y., Umetsu Y.. A new biomaterial, hen egg shell membrane, to eliminate heavy metal ion from their dilute waste solution[J]. Applied Biochemistry and Biotechnology, 1994, 5(45-46): 871-897.
    [128] Koumanova B., Peeva P., Allen S.J., et al. Biosorption from aqueous solutions by eggshell membranes and Rhizopus oryzae: equilibrium and kinetic studies[J]. J. Chem. Technol. Biotechnol, 2002, 77(5): 539
    [129] Ishikawa S., Suyama K., Arihara K., et al. Uptake and recovery of gold ions from electroplating wastes using eggshell membrane[J]. Bioresource Technology, 2002, 81(3): 201-206.
    [130] Arami M., Limaee N.Y., Mahmoodi N.M.. Investigation on the adsorption capability of eggshell menibrane towards model textile dyes[J]. Chemosphere, 2006, 65(8): 1999-2008.
    [131] Golubkina N.A., Papazyan T.T.. Selenium distribution in eggs of avian species[J].Comparative Biochemistry and Physiology, 2006,3(145): 384-388.
    [132]盛绍基,戚文玲,杨祥,等.野外现场多元素快速分析方法的研究和应用(Ⅰ)[J].岩矿测试,2002,21(2):81-91.
    [133]罗有福,佟健,盛绍基.鸡蛋膜的最新研究进展[J],云南化工,2002,29(1):21-23.
    [134]聂珍媛,夏金,任凤莲.蛋壳膜性质及应用研究最新进展[J].材料导报网刊,2004,10(4):41-43.
    [135] Zou A.M., Chen X.W., Chen M.L. et al. Sequential injection reductive bio-sorption of Cr(VI) on the surface of egg-shell membrane and chromium speciation with detection by electrothermal atomic absorption spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, (23): 412-415.
    [136] Zhang Y.J., Wang W.D., Li L., et al. Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic(V) in environmental water samples[J]. Talanta, 2010, 12(80): 1907-1912.
    [136]王文华,冯咏梅.玉米芯对废水中铅的吸附研究[J].水处理技术,2004,30(2):95-98.
    [137]郑逢中,洪丽玉,郑文教.红树杆物落叶碎屑对水中重金属吸附的初步研究[J].厦门大学学报-自然科学版,1998,36(1):137-141.
    [138]赵素丽,李洪强.廉价重金属生物吸附剂的制备及吸附性能研究[J].西南给排水,2007, 29(5):18-20.
    [139]盛姣,吴同华,刘文英,等.超微粉碎米糠吸附水中镉的研究[J].环境科学导刊,2010,29(1):5-7.
    [140]叶林顺,莫测辉.改性稻草吸附铜离子过程的内扩散机理[J].环境化学,2007,26(3):323-326.
    [141] Pehlivan E., Altun T.. Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell[J]. Journal of Hazardous Materials, 2008, 155(1-2): 378-384.
    [142]王恩萱.花生壳活性炭对六价铬的吸附[J].环境科学导刊-增刊,2010,29(1):67-71.
    [143]吕慧峰,翟建平,李琴,等.酸性甲醛改性对花生壳吸附重金属离子的影响[J].环境污染与防治,2007,29(11):837-840.
    [144] Kim D.S.. Pb2+ removal from aqueous solution using crab shell treated by acid and lkali[J]. Bioresource Teehnology, 2004, 94(3): 345-348.
    [145]邱兆富,吕树光,洪丽云,等.蟹壳生物吸附剂对水中镍离子的吸附研究[J].净水技术,2008,27(1):50-53.
    [146]钱国勇,侯明,汪菊玲.绿茶对水溶液中Pb2+和Cd2+吸附性能初步研究[J].分析试验室,2008,27(1):63-66.
    [147] BeekerT., Schlaak M., Strasdeit H.. Adsorption of niekel, zine and cadmium by new chitosan derivatives[J]. Reaetive and Funetional Polymers, 2000,12(3): 289-298.
    [148] Chen D.H., Hu B., Huang C.Z.. Chitosan modified ordered mesoporous silica as micro-column packing materials for on-line flow injection-inductively coupled plasma optical emission spectrometry determination of trace heavy metals in environmental water samples [J]. Talanta, 2009, 13(78): 491-497.
    [149]熊佰炼,崔译霖,张进忠,等.改性甘蔗渣吸附废水中低浓度Cd2+和Cr3+的研究[J].西南大学学报-自然科学版,2010,32(1):118-122.
    [150]谢志刚.橘皮渣水处理剂的制备及其应用研究[D].重庆市:重庆大学,2006:16-25.
    [151]何玉燕.改性锯屑对钙镁离子的吸附特性研究[J].能源与环境,2009,17(2):17-47.
    [152]付江盛,成岳,唐燕超,等.粉煤灰多孔陶粒在水处理中的应用研究[J].环境科学与技术,2008,11(31):112-115.
    [153]秦益民,陈洁,宋静,等.改性海带对铜离子的吸附性能[J].环境科学与技术,2009,32 (5):147-153.
    [154]周利民,刘峙嵘,许文苑.麦麸对重金属离子的吸附性能研究[J].离子交换与吸附,2005,21(4):370-375.
    [155]赵怀志.银的主要应用领域和发展现状[J].云南冶金,2001,31(3):118-127.
    [156]杨遇荞.银在高新技术中的若干应用[J].稀有金属,1996,78(12):210-233.
    [157]张文钲.银的杀菌功能[J].金属世界,2002,12(3):20-21.
    [158] Stohs S.j., Bagchi D.. Oxidative mechanisms in the toxicity of metal ions[J]. Free Radic. Biol. Med., 1995, 18(2): 321-326.
    [159]胡骁骅,张普柱,孙永华,等.纳米银抗菌医用敷料银离子吸收和临床应用[J].中华医学杂志,2003,83(24):2178-2179.
    [160]阮建明,Grant M. H.,黄伯云.金属毒性研究[J].中国有色金属学报,2001,12(6):960-965.
    [161] Pelletier L., Druet P., Goyer R. A., Cherian M. G.. Immunotoxicology of metals,Toxicology of Metals[A]. Springer Verlag: Berlin Heidelberg, 1995:77-92.
    [162]周茂洪,赵肖为,周峙苗.几种重金属离子对光合细菌生长的抑制效应[J].生态学杂志,2002,21(4):6-11.
    [163] Makoto O.. Reassessment of long-term use of dense HA as dent implant-case report[J]. Biomed Mater Res, 1998, 43(4): 318-320.
    [164]中华人民共和国环境保护总局.HJ489-2009.水质、银含量测定,3,5-Br2-PADAP分光光度法[S].北京:国家环保总局,1997,7,1.
    [165]中华人民共和国国家标准.GB5749-2006.生活饮用水卫生标准[S].北京:国家卫生部,2006.
    [166]岩石矿物分析编写小组.岩石矿物分析[M].北京:地质出版社,1975:857-860.
    [167]张志龙.现代地球化学找矿对分析技术的要求以及分析技术的发展趋向[J].分析实验室,1987,2(13):57-62.
    [168]黄美荣,李振宇,李新贵.含银废液来源及其回收方法[J].工业用水与废水, 2005,36(2):9-12.
    [169]刘伟.从阳极泥中回收金、银并综合回收铜、铅、锑[J].黄金科学技术,2002,2(10):5.
    [170]王智敏.分光光度法测定微量银[J].理化检验-化学分册,2007,43(9):792-793.
    [171] Rudolf P., Madeleine S.. An electrochemical stripping method for the selective determination of traces of silver[J]. Talanta, 1987, 8(34): 705-708.
    [172] Resano M., Aramendía M., García-Ruiz E., et al. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of silver at trace and ultratrace levels[J]. Analytica Chimica Acta, 2006, 3(1): 142-149
    [173] Manzoori J.L., Abdolmohammad Z. H., Amjadi M.. Ultra-trace determination of silver in water samples by electrothermal atomic absorption spectrometry after preconcentration with a ligand less cloud point extraction methodology[J]. Journal of Hazardous Materials, 2007, 7(144): 458-463.
    [174] Márquez K., Staikov G., Schultze J. W., et al. Silver deposition on silicon and glassy carbon. A comparative study in cyanide medium[J]. Electrochimica Acta, 2003, 48(7): 875-882.
    [175] Argekar A. A., Kulkarni M. J., Mathur J. N.. ICP-AES determination of silverafter chemical separation from uranium matrix[J]. Talanta, 1995, 12(42): 1937-1942.
    [176] Houk R.S., Hasan T., Gazda D., et al. On-line cleanup of blanks by electrochemically modulated liquid chromatography for inductively couple plasms-mass spectrometry[J]. Analytica Chimica Acta, 2005, 527(1-2): 63-68.
    [177] Santana O.D., Wagener A. R., Santelli R. E., et al. Precipitation dissolution system for silver preconcentration and determination by flow injection flame atomic absorption spectrometry[J]. Talanta, 2002, 5(56): 673-680.
    [178] Gao Y., Wu P., Li W., et al. Simultaneous and selective preconcentration of trace Cu and Ag by one-step displacement cloud point extraction for FAAS determination[J]. Talanta, 2010, 11(81): 586-590.
    [179]曹庚振.刚果红形成树脂分离富集极谱催化波连测地质样中银、金、钌的研究[D].吉林长春:吉林大学,2006:18-25.
    [180] Absalan G., Akhond M., Ghanizadeh A.Z.. Benzil derivative of polyacrylic hydrazide as a new sorbent for separation, preconcentration and measurement of silver(I) ion[J]. Talanta, 2007, 8(56): 231-236.
    [181]黄荣辉,周方钦,刘正华,等.固载硫杂杯芳烃树脂分离富集火焰原子吸收法测定痕量银[J].分析化学,2007,35 (1):99-102.
    [182]赵桂芳,徐强,康丽君,等.咪唑功能化聚苯乙烯包覆硅胶微球分离富集火焰原子吸收光谱法测定痕量银[J].光谱实验室,2008,3(25): 513-517.
    [183]孙立群,林力,郭有康.巯基棉分离富集原子吸收光谱法测定铜精矿中金银[J].光谱实验室,2000,2(17):213-217.
    [184] Chakrapani G., Mahanta P. L., Murty D.S.R., Gomathy B.. Preconcentration of traces of gold, silver and palladium on activated carbon and its determination in geological samples by flame AAS after wet ashing[J]. Talanta, 2001, 6(1): 1139-1147.
    [185] Angel M., Hayat A. Elmahadi M.. Rosapuchades.Immobilized cyanobacteria for On line trace metal rnriehment by flow injection atomic absorption spectometry[J]. Analytical Chemistry, 1994, 66 (7): 3632-3638.
    [186]王丽涛.微量元素锌铜与人体健康[J].微量元素与健康研究,2007,24(4):66.
    [187] Chen J. P., Yoon J. T., Yiacoumi S.. Effects of chemical and physical properties of influent on copper sorption onto activated carbon fixed-bed columns[J]. Carbon, 2003, 41(8): 1635-1644.
    [188]中华人民共和国环境保护标准.HJ485-2009.水质铜的测定,二乙基二硫代氨基甲酸钠分光光度法[S].北京:国家环境保护部,2009,11,1.
    [189] Silva. E. L., Martins. A. O., Valentini. A., et al. Application of silica gel organic functionalized with 3(1-imidazolyl)propyl in an on-line preconcentration system for the determination of copper by FAAS[J]. Talanta, 2004, 64(1): 181-189.
    [190] Cundeva K., Stafilov T., Pavlovska G.. Flotation separation of cobalt and copper from fresh waters and their determination by electro-thermal atomic absorption spectrometry[J]. Microchem J, 2000, 65(2): 165-175.
    [191] Zhu X. S., Zhu X. H., Zhang G. L., et al. Cloud Point Extraction Preconcentration Determination of Trace Copper by Flame Atomic Absorption Spectrometry[J]. Chinese Journal of Spectroscopy Laboratory, 2005, 22(2): 332-336.
    [192] Paleologos E. K., Viessidis A. G., Karayannis M. I.. On-Line Sorption Preconcentration of Metals Based on Mixed Micellar Cloud Point Extraction Prior to Their Determination with Micellar Cheniluminescence Application to the Determination of Chromium at ng/L levels[J]. Anal. Chim. Acta, 2003, 477(3): 223-231.
    [193] Soylak M., Saracoglu S., Divrikli U., et al. Coprecipitation of heavy metals with erbium hydroxide for their flame atomic absorption spectrometric determinations in environmental samples[J]. Talanta, 2005, 66(5): 1098-1102.
    [194] Ferreira S. L. C., Ferreira J. R., Dantas A. F., et al. Copper determination in natural water samples by using FAAS after preconcentration onto amberlite XAD-2 loaded with calmagite[J]. Talanta, 2000, 50(6): 1253-1259.
    [195] Taher M. A.. Determination of trace copper in biological and environmental samples by third derivative spectrophotometry after preconcentration with the ion pair of nitroso-R and tetradecyl dimethyl benzyl ammonium chloride on microcrystalline naphthalene[J]. Anal Chim Acta, 2000, 408(1-2): 153-161.
    [196] Ngeontae W., Aeungmaitrepirom W., Tuntulani T., et al. Highly selective preconcentration of Cu(II) from sea water and water samples using amidoamidoxime silica[J]. Talanta, 2009, 78(3): 1004-1010.
    [197] Abollino O., Aceto M., Bruzzoniti M.C., et al. Speciation of copper and manganese in milk by solid-phase extraction/inductively coupled plasma atomic emission spectrometry[J]. Analytica Chimica Acta, 1998, 4 (375):299-306.
    [198] Brown S., Taylor N.L.. Could mitochondrial dysfunction play a role in manganese toxicity, Environ[J]. Toxicol. Pharmacol, 1999, 4(7): 49-57.
    [199] Michalke B.. Manganese speciation using capillary electrophoresis-ICP-mass spectrometry[J]. J. Chromatogr. A, 2004, 1050 (3): 69-76.
    [200] Chen S.Z., Xiao M.F., Lu D.B., et al. The use of carbon nanofibers microcolumn preconcentration for inductively coupled plasma mass spectrometry determination of Mn、Co and Ni[J]. Spectrochimica Acta Part B, 2007, 62(2): 1216-1221.
    [201]黄典文,简秀芳.氧化偶氮胂Ⅲ褪色光度法测定微量锰的研究[J].理化检验-化学分册,2000,36(3):110-111.
    [202]刘长增.高灵敏催化光度法测定痕量锰[J].理化检验-化学分册,2001,37(8):369-371.
    [203]郑怀礼,姚秉华,姚加飞,李宏.催化动力学光度法测定痕量锰的研究进展[J].光谱学与光谱分析,2005,25(8):1312-1314.
    [204] Aparecida P. A., Lorena C.P., Solange C., et al. Determination of manganese by flame atomic absorption spectrometry after its adsorption onto naphthalene modified with 1-(2-pyridylazo)-2-naphthol (PAN)[J]. Talanta, 2007, 71(5): 1252-1256.
    [205]陆乔勇.石墨炉原子吸收法测定尿锰方法的研究[J].预防医学论坛,2007,13(3):239-243.
    [206]杨彦,王红梅,陈艳卿,等.石墨炉原子吸收光谱法直接测定尿锰[J].环境科学导刊,2009,28(5):79-80.
    [207] Michalke B.. Manganese speciation using capillary electrophoresis ICP-mass spectrometry[J]. Journal of Chromatography A, 2004, 1050(34): 69-76.
    [208] Michalke B., Berthele A., Mistriotis P., et al. Manganese species from human serum, cerebrospinal fluid analyzed by size exclusion chromatography, capillary electrophoresis coupled to inductively coupled plasma mass spectrometry[J]. Journal of Trace Elements in Medicine and Biology, 2007, 21(1): 4-9.
    [209] Larrea M.M.T., Pomares A.M.S., Gomez J.M.. Validation of an ICP-OES method for macro and trace elements determination in Laminaria and Porphyra seaweeds from four different countries[J]. Journal of Food Composition and Analysis, 2008, 152(3): 1122-1129.
    [210]韩立新,李冉.ICP-AES法测定茶叶、茶水中的矿物质和微量元素[J].光谱学与光谱分析,2002,22(2):204-206.
    [211] Dantas A.N.S., Costa R.S., Gouveia S.T., et al. Development of amicrowave-assisted digestion method using ICP-OES to measure metals in gum deposits of internal combustion engines[J]. Fuel Processing Technology, 2010, 91(11): 1422-1427.
    [212] Suleiman J. S., Hu B., Huang C. Z., et al. Determination of Cd, Co, Ni and Pb in biological samples by microcolumn packed with black stone (Pierre noire) online coupled with ICP-MS[J]. Journal of Hazardous Materials, 2008, 157(2-3): 410-417.
    [213] Cristina S. L., Inigo N.B.. Optimization of a slurry dispersion method for minerals and trace elements analysis in infant formulae by ICP-MS and FAAS[J]. Food Chemistry, 2009, 115(3): 1048-1055.
    [214]王小平,李柏.ICP-OES和ICP-MS测定中日两国大米中27种矿质元素含量[J].光谱学与光谱分析,2010,30(8):2260-2264.
    [215] Wu Y.W., Jiang Z.C., Hu B.. Speciation of vanadium in water with quinine modified resin micro-column separation/preconcentration and their determination by fluorination assisted electrothermal vaporization(FETV) inductively coupled plasma mass spectrometry(ICP-MS)[J]. Talanta, 2005, 67(4): 854-861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700