铜合金表面激光复合耐磨层及界面特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜和铜合金因具有优异的导电性、高的导热率及良好的塑性而日益广泛地应用于电力、冶金、机械装备、航空航天等领域。然而,铜及铜合金作为苛刻工况条件下的工件如连铸结晶器等要求低的变形量、高耐磨、耐热腐蚀等,其难以直接满足工程要求。激光熔覆技术具有可提高零件特定工作面服役性能及整体工件寿命的特点。尽管激光熔覆技术在金属表面强化方面具有巨大的优势,但铜合金良好的导热性及对激光低的吸收率导致铜表面激光熔覆成为的难点。本文利用Nd:YAG固体激光器作为热源,以预置粉末方法提高铜对激光能量的吸收率,在Cu-Cr-Zr合金表面成功制备了耐磨熔覆层。利用扫描电子显微镜(SEM)、x射线衍射(xRD)、透射电子显微镜(TEM)、差示扫描量热法(DSC)及干滑动摩擦磨损测试对熔覆层形貌、微观组织、界面结构、增强相生长机理及摩擦磨损行为进行了全面研究。
     针对Ni与Cu能够无限互溶的特性,在铜合金表面分别进行了4种非自熔性Ni基合金与2种自熔性Ni基合金熔覆层的制备。结果表明,纯Ni、Ni-30Cu、GH-01及Ni30、Ni45与铜基材浸润性较差,熔覆层及界面区存在大量缺陷;B和Si等元素形成硬脆性化合物是导致自熔性Ni基合金裂纹萌生和扩展的原因之一;即使合金粉末中含有适量Cu也不能改善熔覆层与Cu基材界面相容性。含适量Al的KF-6合金在激光与反应放热耦合下形成了良好冶金结合界面,熔覆层组织致密呈细小枝晶状;(Ni,Cu)固溶体是良好冶金结合界面的基础,马兰戈尼对流和非平衡快速凝固综合作用使界面组织局部表现为层状结构。
     为提高铜合金抗磨、耐热性能,在铜合金表面分别进行了非自熔性Co基合金、自熔性Co基合金及Ni/Co复合熔覆层的制备。结果表明,工艺参数对Co基合金与Cu基材润湿性有明显影响;自熔性Co基合金中形成裂纹,将限制其工程应用。非自熔性Co基合金HG-Co01致密而无缺陷,熔覆层山α-Co固溶体和Cr23C6组成;其合金粉末中适量Ni使界面形成了富Ni的(Ni,Cu)固溶体和富Co的(α-Co,Ni)固溶体,使冶金结合界面形成。为显著改善Co基合金/铜基材界面性能,以KF-6镍基合金为中间过渡层,实现了Co/Ni/Cu的梯度过渡,Co/Ni、Ni/Cu界面结构为固溶体,均实现冶金结合;复合层组织细小,无气孔、裂纹等缺陷。
     以KF-6合金为中间过渡层,采用非自熔性Co基合金HG-Co01为金属粘接相,在铜合金表面分别采用直接引入和原位合成的方法成功制备了Co基金属陶瓷复合层。研究证实,Ni包WC增强Co基复合层与中间过渡层形成良好冶金结合,WC颗粒分布均匀,未发生严重烧损,基本保持原有多角形态,部分WC边缘发生扩散形成合金化层。以Ni包WC、HG-Co01、Ti粉和石墨粉为原料,采用激光原位合成的方法成功制备了TiC+WC增强Co基合金复合层。复合层中TiC以枝晶、细小颗粒形态析出;随着(Ti+C)含量的增加,TiC析出量增加。原位合成复合熔覆层形成机理为:复合粉末在激光作用下首先形成共熔体,并发生Ni包WC的表层分解和扩散形成TiWC2合金化层;同时,Ti、C元素在熔体中发生扩散形成亚稳定的TiXCy增强体,持续激光热作用和反应放热的耦合及浓度补偿最终形成稳定的TiC增强相,TiC的长大机制主要为扩散机制和溶解—析出机制
     铜合金表面熔覆层硬度较铜基材明显提高, KF-6合金中间过渡使复合熔覆层硬度在界面区域呈梯度下降。室温干滑动摩擦磨损试验结果表明,复合材料熔覆层摩擦系数均小于0.25,耐磨性大幅提高。铜基材粘着磨损严重,相同条件下,复合熔覆层耐磨性均较Cu基材显著提高。
     以典型的铜合金零部件——连铸结晶器铜板为工程实际应用对象,分析了镀层失效的主要形式为磨损和疲劳裂纹,将结晶器铜板表面激光复合Ni/Co熔覆层与镀层比较发现,Ni/Co复合熔覆层高温(400℃)耐磨性是电镀Ni-Co层的3.15倍,Ni/Co复合层摩擦系数呈下降趋势并稳定。目前,已成功将Ni/Co复合激光熔覆层应用于结晶器铜板,使用寿命比Ni-Co镀层的提高一倍以上。
The excellent thermal conductivity, outstanding electric capability, good elasticity of copper and its alloys make them interesting materials for applications involving electrical apparatus, machinery, metallurgical equipment and aerospace components, etc. However, due to the poor wear resistance, resistance to deformation and hot corrosion resistance, the service life of copper components such as chill mould for continuous casting is decreased seriously in extreme conditions without surface treatment. Laser surface cladding (LSC) can raise the reliability of working surface and increased service life of components.Though LSC can be easily achieved for many nonferrous metals it is difficult to prepare crack-free and nonporous coatings on copper, due to the good thermal conductivity, poor wettability with many other materials and reflectivity to laser beam during laser processing.In the present study, Wear-resistant coatings were fabricated onto a Cu-Cr-Zr alloy by LSC using a pulsed Nd:YAG laser with uniformly powder preplacement beds to increase the laser energy absorptivity of Cu surface. Surface and cross-section topography, microstructures, phase constitutions, interfacial structure, formation mechanism of reinforcement and wear properties of coatings wear investigated by means of scanning electronic microscopy (SEM) with X-ray energy dispersive microanalysis (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC), as well as dry sliding wear test.
     Based on Ni and Cu has complete miscibility with each other, which forms an ultimate mutual solution, four Ni-based non self-fluxing alloy and two Ni based self-fluxing alloy were deposited by LSC. It is found that pure Ni, Ni-30Cu, GH-01, Ni30 and Ni45 alloys have lower wettability on copper, which induces cracks or pores in coatings and interface zone. One reason of cracks is borides or silicides formation in coatings and interface zone. Even though an amount of Cu is in coating, it still does not improve the wettability with copper. The KF-6 alloy coating was generated metallurgical bonding with copper substrate due to chemical heat release between Ni and Al induced by laser. The coupling interaction between marangoni effect and non-equilibrium rapid solidification resulted layer structure in interface zone.
     Co-based alloy coatings have been fabricated on copper substrate to improve heat and wear resistance of copper components. The results showed that technological parameters influence the wettability of HG-Co01 alloy with copper. Cracks were formed in HG-Co02 alloy coating due to borides and silicides. Microstructure of HG-Co01 coating was composed ofα-Co solution and Cr23C6. The Ni-based solid solutions (a-Co, Ni) and (Ni, Cu) were formed at interface, which generate metallurgical bonding by diffusion between Co-based coating and copper substrate. To obtain better interface between HG-Co01 coating and copper, the KF-6 alloy as an interlauer was prepared by LSC on copper firt and then HG-Co 01 multilayer coatings were cladded. By this mean, Co/Ni gradient coating was prepared on copper which dramatically improve the compatibility between Co and Cu. The compact-grainstructure was obtained without defects in gradient coating.
     With KF-6 alloy as an interlauer and HG-Co01 alloy as metal matrix, metal matrix composite (MMC) coatings were successfully fabricated on copper by LSC using introducing Ni-coated WC reinforcement phase and in-situ synthesis of TiC, respectively. The results indicated that composite coatings and copper substrate were bonded metallurgically. WC particles were dispersively distributed in MMC coatings with slightly heat damage. WC particles kept their original multiangular shape. The alloying elements such as Co, Cr and Ni diffused into WC particles rapidly during laser processing, thus forming an alloyed layer with limited thickness. In situ synthesized TiC+Ni/WC reinforced Co-based coatings were fabricated on copper substrate by Nd:YAG LSC using preplaced powder. Reindorcements dispersed uniformly in the matrix, and TiC shows the morphology of dendritic and particle. The atomic ratio for formating reinforcements is of importance to the constituent of raw components. During LSC, the laser-materials interaction induces the heating effect and formating melt first, then Ti element diffused into WC particles forming TiWC2 alloyed layer. In the meantime, heating effect results the Ti atom and C atom in interdiffusion action and formation of TixCy. The coupling of lsaer and exothermic reaction with concentration compensation generated stable TiC finally. The nucleation and growth mechanism of TiC is diffusion and dissolution-reprecipitation mechanism
     The hardness and wear resistance of copper were significantly improved by LSC Co-based alloy coatings. The hardness of interfacial zone in composite coatings decreased gradually. The results of wear test at room temperature showed that the friction coefficients of MMC coatings were less than 0.25. The copper adhesive wear severely while after LSC composite coatings, its wear resistance was improved significantly.
     In engineering application, chill mould plate for continuous casting was taken as typical practical application copper components to treat by LSC. The main failure forms of electroplating coating on chill mould plate are wearing and fatigue crack. The results of wear test under 400℃indicated that the wear resistance of Ni/Co composite coating was 3.15 times of that of electroplating coating. The Ni/Co composite coating on chill mould plate for continuous casting by LSC has successfully fabricated for practical application. The service life of LSC Ni/Co composite coating is more than two times of that of Ni-Co electroplating coating.
引文
[1]曲敬信,汪泓宏.表面工程手册[M].北京:化学工业出版社,1998,1-17.
    [2]张九渊.表面工程与失效分析[M].杭州:浙江大学出版社,2005,1-13.
    [3]姚寿山,李戈扬,胡文彬.表面科学与技术[M].北京:机械工业出版社,2006,1-24.
    [4]蔡开科.连铸结晶器[M].(第1版).北京:冶金工业出版社,2008,1-50.
    [5]王华明.金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J].航空学报,2002,23(5):473-478.
    [6]王爱华,谢长生,李树栋,等.铝合金表面激光熔覆Fe-A1青铜过渡区的组织结构及其在小能多冲作用下的行为[J].稀有金属材料与工程,1999,28(5):289-292.
    [7]钟敏霖,刘文今.Stellite和NiCrSiB合金激光送粉熔覆裂纹倾向的比较研究[J].中国激光,2002,29(11):1031-1036.
    [8]武晓雷,洪友士.激光熔覆TiCp/Ni合金涂层中界面结构及界面硬度与弹性模量分布[J].金属学报,2000,36(3):282-286.
    [9]Y.P. Kathuria. Laser-cladding process:a study using stationary and scanning CO2 laser beams [J]. Surface & Coatings Technology,1997,97 (1-3):442-447.
    [10]C. Navas, A. Conde, B.J. Fernandez, et al. Laser coatings to improve wear resistance of mould steel [J]. Surface & Coatings Technology,2005,194 (1):136-142.
    [11]H. Li, X. Zeng. A Study on surface property of thick-film embedded resistor fabricated by laser micro-cladding and rapid prototype [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008, 473 (1-2):126-132.
    [12]Y.P. Hu, C.W. Chen, K. Mukherjee. Development of a new laser cladding process for manufacturing cutting and stamping dies [J]. Journal of Materials Science,1998,33 (5):1287-1292.
    [13]Y.P. Kathuria. Nd-YAG laser cladding of Cr3C2 and TiC cermets [J]. Surface & Coatings Technology,2001,140 (3):195-199.
    [14]K. Partes, G. Sepold. Modulation of power density distribution in time and space for high speed laser cladding [J]. Journal of Materials Processing Technology,2008,195 (1-3):27-33.
    [15]V. Fallah, S.F. Corbin, A. Khajepour. Solidification behaviour and phase formation during pre-placed laser cladding of Ti45Nb on mild steel [J]. Surface & Coatings Technology,2010,204 (15):2400-2409.
    [16]黄尚猛.Cr12模具钢激光熔覆技术的研究[D].硕士学位论文,天津:天津大学,2008.
    [17]陆伟.激光熔覆高速线材轧辊熔覆层开裂问题的研究[D].博士学位论文,北京:北京工业大学,2006.
    [18]杨洗陈,李会山,王云山,等.用于重大装备修复的激光再制造技术[J].激光与光电子学进展,2003,40(10):53-57.
    [19]姚军.AZ91D镁合金激光熔覆与重熔层组织特征及其性能研究[D].博士学位论文,长春:吉林大学,2007.
    [20]张松,张春华,康煜平,等.钛合金表面激光熔覆原位生成TiC增强复合涂层[J].中国有色金属学报,2001,11(6):1026-1030.
    [21]D.S. Gnanamuthu. Cladding [P]. United States Patent 3952180, April 20,1976.
    [22]T.R. Anthony, H.E. Cline. Surface rippling induced by surface tension gradients during laser surface melting and alloying [J]. Journal of Applied Physics,1977,48: 3888-3894
    [23]D. Rosenthal. The Theory of Moving Sources of Heat and its Application to Metal Treatments [J]. Transactions of the American Society of Mechanical Engineers, 1946,80:849-866.
    [24]Y.I. Nissim, A. Lietoila, R.B. Gold, et al. Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam [J]. Journal of Applied Physics,1980,51 (1):274-279.
    [25]李俊昌.激光的衍射及热作用计算[M].北京:科学出版社,2002,404-417.
    [26]J.M. Lin. A simple model of powder catchment in coaxial laser cladding [J]. Optics and Laser Technology,1999,31 (3):233-238.
    [27]A. Kumar, S. Roy. Effect of three-dimensional melt pool convection on process characteristics during laser cladding [J]. Computational Materials Science,2009,46 (2):495-506.
    [28]R. Jendrzejewski, I. Kreja, G. Sliwinski. Temperature distribution in laser-clad multi-layers [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2004,379 (1-2):313-320.
    [29]栗丽,杨洗陈,董哲.激光熔覆中同轴粉末流温度场的CCD检测[J].中国激光,2009,36(9):2431-2437.
    [30]A. Viswanathan, D. Sastikumar, H. Kumar, et al. Formation of WC-iron silicide (Fe5Si3) composite clad layer on AISI 316L stainless steel by high power (CO2) laser [J]. Surface & Coatings Technology,2009,203 (12):1618-1623.
    [31]Z. Xiong, G.X. Chen, X.Y. Zeng. Effects of process variables on interfacial quality of laser cladding on aeroengine blade material GH4133 [J]. Journal of Materials Processing Technology,2009,209 (2):930-936.
    [32]X.H. Wang, M. Zhang, X.M. Liu, et al. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding [J]. Surface & Coatings Technology,2008,202 (15):3600-3606.
    [33]T.M. Yue, T. Li. Laser cladding of Ni/Cu/Al functionally graded coating on magnesium substrate [J]. Surface & Coatings Technology,2008,202 (13): 3043-3049.
    [34]A.H. Wang, X.L. Zhang, X.F. Zhang, et al. Ni-based alloy/submicron WS2 self-lubricating composite coating synthesized by Nd:YAG laser cladding [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,475 (1-2):312-318.
    [35]X.B. Liu, S.H. Shi, J. Guo, et al. Microstructure and wear behavior of γ/Al4C3/TiC/CaF2 composite coating on y-TiAl intermetallic alloy prepared by Nd:YAG laser cladding [J]. Applied Surface Science,2009,255 (11):5662-5668.
    [36]C.P. Paul, H. Alemohammad, E. Toyserkani, et al. Cladding of WC-12Co on low carbon steel using a pulsed Nd:YAG laser [J]. Materials Science and Engineering A, 2007,464(1-2):170-176.
    [37]J.M. Amado, M.J. Tobar, J.C. Alvarez, et al. Laser cladding of tungsten carbides (Spherotene (R)) hardfacing alloys for the mining and mineral industry [J]. Applied Surface Science,2009,255 (10):5553-5556.
    [38]S.D. Jackson. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 mu m [J]. Optics Letters,2009, 34 (15):2327-2329.
    [39]A. Conde, F. Zubiri, J. de Damborenea. Cladding of Ni-Cr-B-Si coatings with a high power diode laser [J]. Materials Science and Engineering A,2002,334 (1-2): 233-238.
    [40]F. Lusquinos, R. Comesana, A. Riveiro, et al. Fibre laser micro-cladding of Co-based alloys on stainless steel [J]. Surface & Coatings Technology,2009,203 (14): 1933-1940.
    [41]J. del Val, R. Comesana, F. Lusquinos, et al. Laser cladding of Co-based superalloy coatings:Comparative study between Nd:YAG laser and fibre laser [J]. Surface & Coatings Technology,2010,204 (12-13):1957-1961.
    [42]张安峰,周志敏,朱刚贤,等.准分子激光微加工与熔覆特性的研究进展[J].铸造技术,2007,28(9):1252-1256.
    [43]U. de Oliveira, V. Ocelik, J.T.M. De Hosson. Analysis of coaxial laser cladding processing conditions [J]. Surface & Coatings Technology,2005,197 (2-3): 127-136.
    [44]C.F. Hung, J.M. Lin. Solidification model of laser cladding with wire feeding technique [J]. Journal of Laser Applications,2004,16 (3):140-146.
    [45]J.D. Kim, Y. Peng. Plunging method for Nd:YAG laser cladding with wire feeding [J]. Optics and Lasers in Engineering,2000,33 (4):299-309.
    [46]Y.J. Huang, X.Y. Zeng. Study on modes of energy action in laser-induction hybrid cladding [J]. Applied Surface Science,2009,256 (3):749-756.
    [47]S.F. Zhou, X.G. Dai, X.Y. Zeng. Effects of processing parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cladding [J]. Applied Surface Science,2009,255 (20):8494-8500.
    [48]Y.J. Huang, X.Y. Zeng, Q.W. Hu, et al. Microstructure and interface interaction in laser induction hybrid cladding of Ni-based coating [J]. Applied Surface Science, 2009,255 (7):3940-3945.
    [49]S.F. Zhou, Y.J. Huang, X.Y. Zeng, et al. Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding [J]. Materials Science and Engineering A,2008,480 (1-2):564-572.
    [50]S.F. Zhou, Y.J. Huang, X.Y. Zeng. A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot [J]. Applied Surface Science,2008,254 (10):3110-3119.
    [51]关振中.激光加工工艺手册[M].(第1版).北京:中国计量出版社,1998,275-296.
    [52]毛怀东.激光熔覆层裂纹控制方法与实践[D].博士学位论文,天津:天津大学,2007.
    [53]余美菊.铁基合金激光熔覆层质量与性能改善的研究[DJ.硕士学位论文,郑州:郑州大学,2004.
    [54]H.K. Lee. Effects of the cladding parameters on the deposition efficiency in pulsed Nd:YAG laser cladding [J]. Journal of Materials Processing Technology,2008,202 (1-3):321-327.
    [55]T.M. Yue, Y.P. Su. Laser cladding of SiC reinforced Zr65A17.5Ni10Cu17.5 amorphous coating on magnesium substrate [J]. Applied Surface Science,2008,255 (5):1692-1698.
    [56]Q.J. Zhu, S.Y. Qu, X.H. Wang, et al. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding [J]. Applied Surface Science, 2007,253 (17):7060-7064.
    [57]X. Wu, B. Xu, Y. Hong. Synthesis of thick Ni66Cr5Mo4Zr6P15B4 amorphous alloy coating and large glass-forming ability by laser cladding [J]. Materials Letters,2002, 56 (5):838-841.
    [58]李胜,曾晓雁,胡乾午.激光熔覆专用铁基合金特点分析及设计思路评述[J].中国表面工程,2007,20(4):11-15.
    [59]赵高敏,王昆林,刘家浚.La203对激光熔覆铁基合金层硬度及其分布的影响[J].金属学报,2004,40(10):1115-1120.
    [60]S.H. Wang, J.Y. Chen, L. Xue. A study of the abrasive wear behaviour of laser-clad tool steel coatings [J]. Surface & Coatings Technology,2006,200 (11):3446-3458.
    [61]R. Li, M.G.S. Ferreira, M. Anjos, et al. Localized corrosion performance of laser surface cladded UNS S44700 superferritic stainless steel on mild steel [J]. Surface & Coatings Technology,1997,88 (1-3):96-102.
    [62]C. Huang, W. Tsai, J. Li. Microstructure and Electrochemical Behavior of Laser Cladded Fe-Cr-Mo-Si-N Surface Alloys on Carbon Steel [J]. Materials Science and Engineering A,1995,196 (1):243-248.
    [63]X.L. Wu. Rapidly solidified nonequilibrium microstructure and phase transformation of laser-synthesized iron-based alloy coating [J]. Surface & Coatings Technology,1999,115 (2-3):153-162.
    [64]Z. Mei, W.Y. Wang, A.H. Wang. Transmission electron microscopy characterization of laser-clad iron-based alloy on Al-Si alloy [J]. Materials Characterization,2006,56 (3):185-191.
    [65]A.H. Wang, C.S. Xie, W.Y. Wang. Cracking behavior in the transitional region of laser-clad coatings on Al-Si alloy under multiple impact loading [J]. Materials Characterization,2002,49 (3):247-254.
    [66]A.H. Wang, C.S. Xie, J.H. Nie. Bond strength of a laser-clad iron-base alloy coating on Al-Si alloy substrate and its fracture behavior [J]. Materials Characterization, 2001,47(1):1-7.
    [67]G.J. Xu, M. Kutsuna, Z.J. Liu, et al. Characteristics of Ni-based coating layer formed by laser and plasma cladding processes [J]. Materials Science and Engineering A, 2006,417 (1-2):63-72.
    [68]F. Liu, C.S. Liu, X.Q. Tao, et al. Laser cladding of Ni-based alloy on copper substrate [J]. Journal of University of Science and Technology Beijing,2006,13 (4):329-332.
    [69]G.L. Goswami, S. Kumar, R. Galun, et al. Laser cladding of nickel based carbide dispersion alloys for hardfacing applications [J]. Lasers in Engineering,2003,13(1): 35-44.
    [70]C.Y. Cui, Z.X. Guo, Y.H. Liu, et al. Characteristics of cobalt-based alloy coating on tool steel prepared by powder feeding laser cladding [J]. Optics and Laser Technology,2007,39 (8):1544-1550.
    [71]W.C. Lin, C. Chen. Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding [J]. Surface & Coatings Technology,2006,200 (14-15): 4557-4563.
    [72]A.S.C.M. D'Oliveira, P.S.C.P. da Silva, R.M.C. Vilar. Microstructural features of consecutive layers of Stellite 6 deposited by laser cladding [J]. Surface & Coatings Technology,2002,153 (2-3):203-209.
    [73]G. Dehm, M. Bamberger. Laser cladding of Co-based hardfacing on Cu substrate [J]. Journal of Materials Science,2002,37 (24):5345-5353.
    [74]R. Colaco, R. Vilar. Abrasive wear of metallic matrix reinforced materials [J]. Wear, 2003,255:643-650.
    [75]R. Anandkumar, A. Almeida, R. Colaco, et al. Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings [J]. Surface & Coatings Technology, 2007,201 (24):9497-9505.
    [76]J. Feng, M.G.S. Ferreira, R. Vilar. Laser cladding of Ni-Cr/Al2O3 composite coatings on AISI 304 stainless steel [J]. Surface & Coatings Technology,1997,88 (1-3): 212-218.
    [77]K. Van Acker, D. Vanhoyweghen, R. Persoons, et al. Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings [J]. Wear,2005,258 (1-4):194-202.
    [78]H.M. Wang, Y.L. Yu, S.Q. Li. Microstructure and tribological properties of laser clad CaF2/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings [J]. Scripta Materialia,2002,47 (1):57-61.
    [79]X.D. Lu, H.M. Wang. High-temperature sliding wear behaviors of laser clad Mo2Ni3Si/NiSi metal silicide composite coatings [J]. Applied Surface Science,2003, 214 (1-4):190-195.
    [80]H.M. Wang, Y.F. Liu. Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy [J]. Materials Science and Engineering A,2002,338 (1-2):126-132.
    [81]P.H. Chong, H.C. Man, T.M. Yue. Microstructure and wear properties of laser surface-cladded Mo-WC MMC on AA6061 aluminum alloy [J]. Surface & Coatings Technology,2001,145 (1-3):51-59.
    [82]P.H. Chong, H.C. Man, T.M. Yue. Laser fabrication of Mo-TiC MMC on AA6061 aluminum alloy surface [J]. Surface & Coatings Technology,2002,154 (2-3): 268-275.
    [83]J. Xu, W.J. Liu, M.L. Zhong. Microstructure and dry sliding wear behavior of MoS2/TiC/Ni composite coatings prepared by laser cladding [J]. Surface & Coatings Technology,2006,200 (14-15):4227-4232.
    [84]H. Yan, A.H. Wang, X.L. Zhang, et al. Nd:YAG laser cladding Ni base alloy/nano-h-BN self-lubricating composite coatings [J]. Materials Science and Technology,2010,26 (4):461-468.
    [85]T.M. Yue, A.H. Wang, H.C. Man. Corrosion resistance enhancement of magnesium ZK6O/SiC composite by Nd:YAG laser cladding [J]. Scripta Materialia,1999,40 (3):303-311.
    [86]P. Volovith, J.E. Masse, A.F. abre, et al. Microstructure and corrossion resistance of magnesium alloy ZE41 with laser surface cladding by Al-Si powder [J]. Surface & Coatings Technology,2008,202 (20):4901-4914.
    [87]J.D. Majumdar, I. Manna, A. Kumar, et al. Direct laser cladding of Co on Ti-6A1-4V with a compositionally graded interface [J]. Journal of Materials Processing Technology,2009,209 (5):2237-2243.
    [88]I. Manna, J.D. Majumdar, B.R. Chandra, et al. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel [J]. Surface & Coatings Technology,2006,201 (1-2):434-440.
    [89]M. Hazra, A.K. Mondal, S. Kumar, et al. Laser surface cladding of MRI 1.53M magnesium alloy with (Al+Al2O3) [J]. Surface & Coatings Technology,2009,203 (16):2292-2299.
    [90]L.X. Cai, C.M. Wang, H.M. Wang. Laser cladding for wear-resistant Cr-alloyed Ni2Si-NiSi intermetallic composite coatings [J]. Materials Letters,2003,57 (19): 2914-2918.
    [91]X.D. Lu, H.M. Wang. Corrosive sliding wear behavior of laser clad Mo2Ni3Si/NiSi intermetallic coating [J]. Applied Surface Science,2005,245 (1-4):346-352.
    [92]Y.N. Wu, G. Zhang, Z.C. Cheng, et al. Oxidation behavior of laser remelted plasma sprayed NiCrAlY and NiCrAlY-Al2O3 coatings [J]. Surface & Coatings Technology, 2001,138 (1):56-60.
    [93]J.H. Park, J.S. Kim, K.H. Lee, et al. Effects of the laser traetment and thermal oxidation behavior of CoNiCrAlY/ZrO2-8wt%Y2O3 thermal barrier coating [J]. Journal of Materials Processing Technology,2008,201 (1-3):221-335.
    [94]X. Wang, P. Xiao, M. Schmidt, et al. Laser processing of yttria stabilised zirconia/alumina coatings on Fecralloy substrate [J]. Surface & Coatings Technology, 2004,187 (2-3):370-376.
    [95]Y.C. Wang, Y.M. li, H.L. Yu, et al. In situ fabrication of bioceramic composite coatings by laser cladding [J]. Surface & Coatings Technology,2005,200 (7): 2080-2084.
    [96]GJ. Cheng, D. Pirzada, M. Cai, et al. Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser [J]. Materials Science and Engineering C, 2005,25 (4):541-547.
    [97]朱诚意,李光强,张峰,等.连铸结晶器表面镀层技术研究进展[J].材料保护,2005,38(5):43-47.
    [98]李虹.连铸方坯结晶器电镀硬铬的工艺[J].材料保护,2001,34(5):55.
    [99]J.R. Tuck, A.M. Korsunsky, R.I. Davidson, et al. Modelling of the hardness of electroplated nickel coatings on copper substrates [J]. Surface & Coatings Technology,2000,127 (1):1-8.
    [100]于金库.提高连铸机结晶器耐磨性Ni-Fe合金单层电镀技术的研究[D].硕士学位论文,石家庄:河北师范大学,2002.
    [101]王红,方克明,张宏杰.薄板坯结晶器铜板组箱式电镀Ni-Co合金镀层的特点及应用[J].连铸,2005,(1):20-27.
    [102]Z.Y. Shi, D.q. Wang, Z.m. Ding. Surface strengthening pure copper by Ni-B coating [J]. Applied Surface Science,2004,221 (1-4):62-68.
    [103]V.D. Papachristos, C.N. Panagopoulos, L.W. Christoffersen, et al. Young's modulus, hardness and scratch adhesion of Ni-P-W multilayered alloy coatings produced by pulse plating [J]. Thin Solid Films,2001,396 (1-2):173-182.
    [104]张鹏,赵永武.Ni-Fe-W合金镀层的结构形貌及摩擦学性能研究[J].润滑与密 封,2007,32(2):88-91.
    [105]M.A. Farzaneh, K. Raeissi, M.A. Golozar. Effect of current density on deposition process and properties of nanocrystalline Ni-Co-W alloy coatings [J]. Journal of Alloys and Compounds,2010,489 (2):488-492.
    [106]T.F. Li, S.X. Qu, Z.H. Li, et al. Investigation of the mechanical properties of the Ni-P-CNTs coated copper composite materials:Experiments and modeling [J]. Materials Science and Engineering A,2009,500 (1-2):182-187.
    [107]吕春雷,曹为民,印仁和,等.连铸结晶器铜板电镀层的研究进展[J].电镀与精饰,2010,32(1):15-19.
    [108]王红星,盛晓波,储成林,等.铜表面Ni2Al3涂层高温抗氧化性能与组织转变研究[J].材料热处理学报,2008,29(2):166-170.
    [109]W.M. Song, G.R. Yang, J.J. Lu, et al. Microstructure of Ni/WC surface composite on a copper substrate [J]. Materials Science and Engineering A,2007,445:537-542.
    [110]G.R. Yang, W.M. Song, J.J. Lu, et al. Microstructure of surface composite Al2O3/Ni on copper substrate produced by vacuum infiltration casting [J]. Materials Science and Engineering A,2006,418 (1-2):223-228.
    [111]W.M. Song, G.R. Yang, J.J. Lu, et al. Microstructure and wear behaviour of Ni-based surface coating on copper substrate [J]. Wear,2007,262 (7-8):868-875.
    [112]G.R. Yang, Y. Hao, W.M. Song, et al. An investigation of the structure and properties of infiltrated layer on the surface of copper alloy [J]. Materials Science and Engineering A,2005,399 (1-2):206-215.
    [113]G.R. Yang, W.M. Song, J.J. Lu, et al. Surface composite fabrication using Fe-based alloying powder through infiltration casting technique on copper substrate [J]. Materials Science and Engineering A,2006,419 (1-2):153-161.
    [114]高原,徐晋勇,高清,等.双层辉光离子渗金属技术特点[J].中国工程科学,2008,10(2):26-30.
    [115]张跃飞,袁庆龙,陈飞,等.纯铜表面双层辉光离子渗钛合金层的摩擦磨损性 能[J].摩擦学学报,2003,23(4):292-295.
    [116]K.T. Chiang, K.J. Kallenborn, J.L. Yuen. Aluminization of copper for oxidation protection [J]. Surface & Coatings Technology,1992,52 (2):135-139.
    [117]M.R. Bateni, F. Ashrafizadeh, J.A. Szpunar, et al. Improving the tribological behavior of copper through novel Ti-Cu intermetallic coatings [J]. Wear,2002,253 (5-6):626-639.
    [118]M.R. Bateni, S. Mirdamadi, F. Ashrafizadeh, et al. Formation of Ti-Cu intermetallic coatings on copper substrate [J]. Materials and Manufacturing Processes,2001,16 (2):219-228.
    [119]M.R. Bateni, S. Mirdamadi, F. Ashrafizadeh, et al. Oxidation behaviour of titanium coated copper substrate [J]. Surface & Coatings Technology,2001,139 (2-3): 192-199.
    [120]G.X. Hu, Z.X. Xu, J.J. Liu, et al. Microstructure and corrosion resistance of simultaneous Al-Fe coating on copper by pack cementation [J]. Surface & Coatings Technology,2009,203 (22):3392-3397.
    [121]J.M. Guilemany, J. Nutting, V.V. Sobolev, et al. Interface structures of high velocity oxy-fuel sprayed WC-Co coating on a copper substrate [J]. Materials Science and Engineering A,1997,232 (1-2):119-128.
    [122]V.V. Sobolev, J.M. Guilemany, J.A. Calero. Modelling of the formation of WC-Co coatings by HVOF spraying onto copper substrates [J]. Revista De Metalurgia,1997, 33 (5):287-297.
    [123]V.V. Sobolev, J.M. Guilemany, J.A. Calero. Thermal processes in HVOF sprayed WC-Co coating on a copper substrate [J]. Journal of Thermal Spray Technology, 1998,7 (2):191-192.
    [124]V.V. Sobolev, J.M. Guilemany, J.A. Calero. Heat transfer during the formation of an HVOF sprayed WC-Co coating on a copper substrate [J]. Journal of Materials Processing Technology,1999,96 (1-3):1-8.
    [125]V.V. Sobolev, J.M. Guilemany, J.A. Calero. Development of coating structure and adhesion during high velocity oxygen-fuel spraying of WC-Co powder on a copper substrate [J]. Journal of Thermal Spray Technology,2000,9 (1):100-106.
    [126]郭国林.紫铜表面高速火焰喷涂WC/镍基合金涂层及界面的显微组织研究[D].济南:山东大学,2006.
    [127]侯利锋,卫英慧.铜基体超音速火焰喷涂碳化物涂层界面研究[J].材料热处理学报,2005,26(3):70-72.
    [128]简中华,马壮,王富耻,等.热喷涂铜基W涂层工艺性能研究[J].兵器材料科学与工程,2007,30(2):27-30.
    [129]种法力,陈俊凌,李建刚.铜基体上爆炸喷涂钨涂层及其电子束热负荷实验研究[J].表面技术,2005,34(6):33-35.
    [130]C. Borchers, F. Gartner, T. Stoltenhoff, et al. Microstructural and macroscopic properties of cold sprayed copper coatings [J]. Journal of Applied Physics,2003,93 (12):10064-10070.
    [131]卜恒勇,卢晨.冷喷涂技术的研究现状及进展[J].材料工程,2010,(1):94-98.
    [132]J.S. Kim, Y.S. Kwon, O.I. Lomovsky, et al. Cold spraying of in situ produced TiB2-Cu nanocomposite powders [J]. Composites Science and Technology,2007,67 (11-12):2292-2296.
    [133]J.F. Li, P.A. Agyakwa, C.M. Johnson, et al. Characterization and solderability of cold sprayed Sn-Cu coatings on Al and Cu substrates [J]. Surface & Coatings Technology, 2010,204(9-10):1395-1404.
    [134]G. Dehm, B. Medres, L. Shepeleva, et al. Microstructure and tribological properties of Ni-based claddings on Cu substrates [J]. Wear,1999,229:18-26.
    [135]K.F. Tam, F.T. Cheng, H.C. Man. Cavitation erosion behavior of laser-clad Ni-Cr-Fe-WC on brass [J]. Materials Research Bulletin,2002,37 (7):1341-1351.
    [136]C. Georges, H. Sanchez, N. Semmar, et al. Laser treatment for corrosion prevention of electrical contact gold coating [J]. Applied Surface Science,2002,186 (1-4): 117-123.
    [137]K.W. Ng, H.C. Man, F.T. Cheng, et al. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts [J]. Applied Surface Science, 2007,253 (14):6236-6241.
    [138]S. Bysakh, K. Chattopadhyay, T. Maiwald, et al. Microstructure evolution in laser alloyed layer of Cu-Fe-Al-Si on Cu substrate [J]. Materials Science and Engineering A,2004,375-77:661-665.
    [139]F. Liu, C.S. Liu, S.Y. Chen, et al. Pulsed Nd:YAG laser post-treatment Ni-based crack-free coating on copper substrate and its wear properties [J]. Surface & Coatings Technology,2007,201 (14):6332-6339.
    [140]Y.Z. Zhang, Y. Tu, M.Z. Xi, et al. Characterization on laser clad nickel based alloy coating on pure copper [J]. Surface & Coatings Technology,2008,202 (24): 5924-5928.
    [141]高阳,潘峰,佟百运,等.铜基材上热障涂层的激光熔敷[J].中国有色金属学报,2003,13(2):315-318.
    [142]李慧莉,陈岁元,刘大亮,等.铜合金表面激光原位制备颗粒增强钴基合金涂层组织[J].中国激光,2008,35(4):620-624.
    [143]R.L. Sun, D.Z. Yang, L.X. Guo, et al. Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate [J]. Surface & Coatings Technology,2000, 132 (2-3):251-255.
    [144]R. Vilar, E.C. Santos, P.N. Ferreira, et al. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding [J]. Acta Materialia, 2009,57 (18):5292-5302.
    [145]S. Zhang, C.H. Zhang, C.S. Liu, et al. Cavitation erosion behaviour on aluminium alloy by using laser surface cladding of NiCrBSi [J]. Rare Metal Materials and Engineering,2002,31 (2):99-102.
    [146]李国华,丁钢,王捧柱,等.激光熔覆镍基合金涂层及其应用研究[J].金属热 处理,1999,(9):14-17.
    [147]杨贵荣.铜合金表面铸渗工艺及渗层性能研究[D].博士学位论文,兰州:兰州理工大学,2006.
    [148]O. Salas, K. Kearns, S. Carrera, et al. Tribological behavior of candidate coatings for Al die casting dies [J]. Surface & Coatings Technology,2003,172 (2-3):117-127.
    [149]ASM Handbook Ⅲ. Alloys Phase Diagrams [M]. Printed in the United States of America,1992.
    [150]刘江龙,殷一贤,冯兴建.纯金属Ni在激光熔凝处理后的缺陷[J].激光杂志,1991,12(6):303-306.
    [151]董江,刘芳,陈岁元,等.铜板上激光熔覆制备Co-Ni-Cu梯度涂层[J].东北大学学报(自然科学版),2008,29(11):1581-1584.
    [152]F. Liu, C. Liu, S. Chen, et al. Laser cladding Ni-Co duplex coating on copper substrate [J]. Optics and Lasers in Engineering,2010,48:792-799.
    [153]董江,刘芳,陈岁元,等.铜合金表面添加SiC晶须的Ni-Cu激光熔覆层[J].东北大学学报(自然科学版),2009,30(1):79-82.
    [154]B. Adak, P. Nash, D.J. Chen, et al. Microstructural characterization of laser cladding of Cu-30Ni [J]. Journal of Materials Science,2005,40 (8):2051-2054.
    [155]程广萍,何宜柱.激光熔覆镍基合金与铝反应合成Ni-Al金属间化合物覆层的研究[J].材料工程,2010,(3):29-33.
    [156]L.J. Qin, J.D. Hu, C.Y. Cui, et al. Effect of Al content on reaction laser sintering of Ni-Al powder [J]. Journal of Alloys and Compounds,2009,473 (1-2):227-230.
    [157]陈光,傅恒志.非平衡凝固新型金属材料[M].北京:科学出版社,2004.
    [158]李木森,傅绍丽,徐万东,等.Fe2B相价电子结构及其本质脆性[J].金属学报,1995,31(5):201-207.
    [159]毛怀东,张大卫,刘泽福.激光熔覆层网状添加物对裂纹控制的影响[J].天津大学学报,2008,41(5):553-557.
    [160]张祥林,章小峰,王爱华,等.激光熔覆金属基固体自润滑涂层的组织结构[J]. 中国机械工程,2006,17(19):2084-2088.
    [161]陈华,宫文彪,刘睿,等.激光熔覆镍基合金的耐磨耐蚀性研究[J].金属热处理,2001,(3):25-27.
    [162]F.J. Wang, H.D. Mao, D.W. Zhang, et al. The crack control during laser cladding by adding the stainless steel net in the coating [J]. Applied Surface Science,2009,255 (21):8846-8854.
    [163]王家金.激光加工技术[M].北京:中国计量出版社,1992,276.
    [164][日]向井楠宏著,袁章福,余仲达译著.高温熔体的界面物理化学[M].北京:科学出版社,2009.
    [165]李恒德,肖纪美.材料表面与界面[M].北京:清华大学出版社,1990.
    [166]E.J. Ha, W.S. Kim. A study of low-power density laser welding process with evolution of free surface [J]. International Journal of Heat and Fluid Flow,2005, (26):613-621.
    [167]A. Sanz. Tribological behavior of coatings for continuous casting of steel [J]. Surface & Coatings Technology,2001,146:55-64.
    [168]F. Liu, C.S. Liu, S.Y. Chen, et al. Laser cladding Ni-Co duplex coating on copper substrate [J]. Optics and Lasers in Engineering,2010,48 (7-8):792-799.
    [169]M.X. Li, S.H. Zhang, H.S. Li, et al. Effect of nano-CeO2 on cobalt-based alloy laser coatings [J]. Journal of Materials Processing Technology,2008,202 (1-3):107-111.
    [170]王富耻.材料现代分析测试方法[M].北京:北京理工大学出版社,2006.
    [171]李明喜.钴基合金及其纳米复合材料激光熔覆涂层研究[D].博士学位论文,南京:东南大学,2004
    [172]熊云.激光熔覆钴基金属陶瓷复合层组织与性能的研究[D].硕士学位论文,东营:中国石油大学(华东),2008.
    [173]周圣丰.激光感应复合熔覆金属陶瓷层技术的研究[D].博士学位论文,武汉:华中科技大学,2008.
    [174]S.A. David, J.M. Vitek, S.S. Babu, et al. Welding of nickel base superalloy single crystals [J]. Science and Technology of Welding and Joining,1997,2 (2):79-88.
    [175]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992.
    [176]史震兴,余志祥,叶枫.实用连铸冶金技术[M].北京:冶金工业出版社,1998.
    [177]刘升.板坯结晶器铜板材质及镀层的优化与应用[J].铸造设备研究,2004,(4):28-30.
    [178]李源源.结晶器铜板表面电沉积RE-Ni-W-P-B4C复合镀层的研究[D].硕士学位论文,武汉:武汉科技大学,2007.
    [179]王隆寿.结晶器铜板热裂纹原因及对策[J].宝钢技术,1995,(1):20-27.
    [180]徐党委,王华,沈峰,等.连铸结品器铜板磨损的原因分析[J].连铸,2007,(1):29-31.
    [181]万安元.国内外板坯结晶器镀层情况简介[J].材料保护,2001,34(1):37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700