P38 MAPK抑制剂联合G-CSF对全身γ射线照射小鼠辐射损伤的实验治疗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核事故受照人员以及临床上因各种疾病而接受放射治疗的患者,会出现各种辐射损伤。其中造血系统对辐射高度敏感,其辐射损伤治疗是放射病预防诊治研究中的关键,目前尚无有效治疗手段。因此研发造血系统辐射损伤预防和治疗药物具有重要的社会意义和临床价值。
     P38丝裂原活化激酶(p38mitogen-activated protein kinases, p38MAPK)通路在造血细胞发育、衰老和凋亡中具有重要作用,在造血细胞受照后激活。抑制P38MAPK通路能降低造血祖干细胞的凋亡,缓解再生性障碍贫血和骨髓增生异常综合征病人的病情。SB203580(SB)为p38MAPK抑制剂,其作为辐射预防药的研究尚未见报道。
     为探索p38MAPK抑制剂作为小鼠辐射损伤预防药物的可行性,我们首先进行了小鼠30天生存率实验。在小鼠接受7.2Gy全身照射前半小时腹腔注射SB(15mg/kg)一次,随后隔日给药,共给药6次。结果表明P38MAPK抑制能显著提高受照小鼠30天生存率。进行小鼠6Gy全身照射体内实验表明,SB能提高小鼠外周血及单侧股骨有核细胞计数,增强小鼠造血祖细胞增殖能力,降低骨髓细胞中活性氧(ROS)水平。本课题首次证实P38MAPK通路可能作为辐射损伤预防治疗的靶点。
     粒细胞集落刺激因子(granulocyte colony-stimulating factor, G-CSF)是已经批准用于临床治疗肿瘤患者放、化疗后白细胞低下的造血细胞因子,但临床上提倡用于治疗急性放射病的G-CSF给药剂量都较小,且持续给药时间长,用于重度以上急性放射病治疗作用不明显。临床上在放疗后使用G-CSF治疗发现,G-CSF能够诱发骨髓细胞功能耗竭。因此本课题进一步开展了SB联合G—CSF对不同剂量(2,4,6Gy)γ射线全身照射小鼠造血免疫系统辐射损伤的治疗作用研究。
     SB治疗组小鼠于照射后24小时第1次腹腔注射给药,以后隔天注射1次,共给药5次。G-CSF治疗组小鼠于照射后2小时和6小时后腹腔注射给药,剂量为1μg/只,以后每天注射两次,共6天。联合用药组小鼠同时腹腔注射两种药物。照射组和未照射组小鼠腹腔注射等体积的含30%DMSO的无菌对照溶液。
     在小鼠接受7.2Gy全身照射后观察生存率,发现SB与G-CSF联合应用能显著提高小鼠生存率。利用粒—巨噬细胞集落形成实验(colony forming units-granulocyte-macrophage,CFU-GM)对小鼠造血祖细胞功能进行检测,发现联合用药组小鼠骨髓细胞的克隆形成能力均高于SB或者G-CSF单独用药组。利用鹅卵石样区域形成细胞实验(cobblestone area-forming cell, CAFC)检测4Gy受照小鼠骨髓造血干细胞的功能,发现联合用药组小鼠第4周CAFC数高于照射组,SB或者G-CSF单独用药组。
     对SB辐射损伤保护作用机制进行初步探索。检测小鼠骨髓细胞ROS水平,发现SB,G-CSF单独给药,以及联合给药组小鼠骨髓细胞ROS水平均低于照射组小鼠。体外实验在发现SB提高受照小鼠骨髓细胞克隆能力的基础上,利用MAPK信号转导通路PCR芯片筛选出p38在辐射损伤中16个可能调节的下游靶基因。SB除抑制MAPK信号通路外,还能调节CDK4/6, CyclinD2等周期蛋白及一些转录因子的表达来起作用。
     综上所述,首次发现SB作为预防药物预防辐射损伤有一定疗效,而与G-CSF联合后,可缓解G-CSF的副作用,对辐射损伤尤其4Gy全身照射小鼠具有更好的治疗效果,研究结果为开发临床放射疾病预防和治疗新方法提供了实验依据。SB可能是通过降低骨髓细胞ROS水平,提高造血系统功能来实现辐射保护作用,具体作用机制仍需进一步深入研究。
The patients received radiotherapy for various diseases in clinic and the victims of nuclear events might develop different irradiation injuries. It is well known that hematopoietic system is hypersensitive to irradiation, so hematopoietic injury is the key of the radiation protection and therapy. The prevention and therapy of hematopoietic radiation injury is very essential for the clinic and society.
     P38mitogen-activated protein kinases (p38MAPK, p38) play important role in the development, senescence and apoptosis of the hematopoietic cells, and are over activated after irradiation. Inhibition of p38either with pharmacological inhibitors or by genetic approaches has been shown to reduce the severity of acquired aplastic anemia and myelodysplastic syndromes by inhibiting apoptosis of hematopoietic stem and progenitor cells. So in the present study, we discussed whether inhibition of p38with SB203580(SB) alone could prevent TBI-induced BM injury.
     The feasibility of SB as radiation prevention drug was evaluated by the30-day survival rates of the mice exposed to radiation. Mice were given SB at15mg/kg via intraperitoneal injection (ip)30min before irradiation, and then thereafter every other day for a total of6injections. Our results showed that p38inhibition with SB had significant effect on the30-day survival rates of the mice exposed to7.2Gy TBI. In addition, SB could elevate the white blood cells (WBC) and bone marrow mononucleated cells (BMNCs) count, enhance the hematopoietic progenitor cells colony ability by decreasing the reactive oxygen species (ROS) levels in bone marrow cells of the mice exposed to6Gy TBI. We proved firstly that p38might be used as the targets of radioprotection.
     Granulocytes colony-stimulating factor (G-CSF) has been approved to be used on the low WBCs patients caused by radio and chemo-therapy in clinic. But in clinic, the G-CSF used in acute radiation syndrome was low dosage and continued long time, had no obvious effects on patients received high irradiation doses. The clinical trials demonstrated G-CSF during radiotherapy could exhaust the bone marrow capacity, probably via promoting HSPC proliferation and differentiation to negatively affect the self-renewal of HSCs. So in the present study, we examined whether inhibition of p38with SB in combination with G-CSF can mitigate TBI-induced BM injury.For SB treatment, mice were given SB at15mg/kg via ip24h after irradiation, and then thereafter every other day for a total of5injections. For G-CSF treatment, mice were administered with G-CSF at a dose of1μg/each by ip at2h and6h after irradiation on the first day, and then twice every day for5days. For combination therapy, mice were given both SB and G-CSF as described above. As a control, mice were irradiated and then treated with vehicle in a similar manner as described for SB and/or G-CSF.
     To test the effects of SB and/or G-CSF on TBI-induced lethality in mice, we first observed the survival rates of mice after exposure of them to7.2Gy TBI. Our results showed that p38inhibition with SB had no significant effect on the30-day survival rates of the mice exposed to7.2Gy TBI when it was used alone but increased the survival of the mice when it was combined with G-CSF. To determine whether SB and/or G-CSF increase hematopoiesis after TBI by stimulating hematopoietic progenitor cells, we examined the effects of SB and/or G-CSF on CFU-GM. The effect of SB plus G-CSF on CFU-GM frequencies was greater than either agent alone. The effects of SB and/or G-CSF on the hematopoietic function of mouse BM HSCs received4Gy TBI were analyzed by a CAFC assay. The effects of SB plus G-CSF on CAFC frequencies were higher than IR, SB or G-CSF alone.
     The mechanism of SB radioprotection was explored. The bone marrow cells ROS levels were detected; our results suggested that SB and/or G-CSF might decrease the ROS level of bone marrow cells. SB could mitigate the CAFC ability of bone marrow cells in vitro experiments. The16genes regulated by IR and p38were screened out by Mouse MAP Kinases Signaling Pathway PCR Array. In addition to the MAPK related genes, the CDK4/6, CyclinD2cell cycle genes and other translation factors genes were also regulated by IR and SB.
     In summary, SB alone showed preventive effects on the hematopoietic irradiation injury. After combined with G-CSF, the shortcomings of G-CSF were attenuated, the combination showed better therapeutic effects than each alone especially after4Gy TBI, which provides new experiments results for the development of new radiation prevention and treatment methods in clinic. SB might enhance the hematopoietic system function by decreasing bone marrow cells ROS levels to elevate the30-day survival rates of the mice exposed to7.2Gy TBI, the detailed mechanism still needed to be further explored.
引文
1. Measurements, N.C.o.R.P.a., Management of terrorist events involving radioactive materials., in Bethesda, MD [R]:NCRP Publications; NCRP Report No.138.,2001.
    2. Coleman, C.N., et al., Molecular and cellular biology of moderate-dose (1-10 Gy) radiation and potential mechanisms of radiation protection:report of a workshop at Bethesda, Maryland, December 17-18,2001 [J]. Radiat Res,2003.159(6):p. 812-34.
    3. Meng, A., et al., Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and-independent mechanisms[J]. Exp Hematol,2003.31(12):p.1348-56.
    4. Meng, A., et al., Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells [J]. Cancer Res,2003.63(17):p. 5414-9.
    5. 陈家佩,毛秉智。,辐射血液学-基础与临床[M],in前言,第一版,Editor2002,军事医学科学出版社:北京.
    6. Mauch, P., et al., Hematopoietic stem cell compartment:acute and late effects of radiation therapy and chemotherapy [J]. Int J Radiat Oncol Biol Phys,1995.31(5): p.1319-39.
    7. Antman, K.S., et al., Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression [J]. N Engl J Med,1988.319(10):p.593-8.
    8. Griffin, J.D., Clinical applications of colony-stimulating factors [J]. Oncology (Williston Park),1988.2(1):p.15-23.
    9. Neta, R. and J.J. Oppenheim, Cytokines in therapy of radiation injury [J]. Blood, 1988.72(3):p.1093-5.
    10. Schuening, F.G., et al., Effect of recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoietic recovery after otherwise lethal total body irradiation [J]. Blood,1989.74(4):p. 1308-13.
    11. Metcalf, D., The colony stimulating factors. Discovery, development, and clinical applications [J]. Cancer,1990.65(10):p.2185-95.
    12. Patchen, M.L., et al., Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression [J]. Int J Cell Cloning,1990.8(2):p.107-22.
    13. Tanikawa, S., et al., Effects of recombinant human granulocyte colony-stimulating factor on the hematologic recovery and survival of irradiated mice [J]. Blood,1990.76(3):p.445-9.
    14. Uckun, F.M., et al., In vivo radioprotective effects of recombinant human granulocyte colony-stimulating factor in lethally irradiated mice [J]. Blood,1990. 75(3):p.638-45.
    15. Schuening, F.G., et al., Effects of recombinant canine stem cell factor, a c-kit ligand, and recombinant granulocyte colony-stimulating factor on hematopoietic recovery after otherwise lethal total body irradiation [J]. Blood,1993.81(1):p. 20-6.
    16. Dainiak, N., et al., The hematologist and radiation casualties [J]. Hematology Am Soc Hematol Educ Program,2003:p.473-96.
    17. Herodin, F. and M. Drouet, Cytokine-based treatment of accidentally irradiated victims and new approaches [J]. Exp Hematol,2005.33(10):p.1071-80.
    18. Herodin, F., N. Grenier, and M. Drouet, Revisiting therapeutic strategies in radiation casualties [J]. Exp Hematol,2007.35(4 Suppl 1):p.28-33.
    19. Smith, T.J., et al.,2006 update of recommendations for the use of white blood cell growth factors:an evidence-based clinical practice guideline [J]. J Clin Oncol, 2006.24(19):p.3187-205.
    20. Greenbaum, A.M. and D.C. Link, Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization [J]. Leukemia,2011.25(2):p.211-7.
    21. Metcalf, D., S. Mifsud, and L. Di Rago, Murine megakaryocyte progenitor cells and their susceptibility to suppression by G-CSF [J]. Stem Cells,2005.23(1):p. 55-62.
    22. Semerad, C.L., et al., G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow [J]. Blood,2005.106(9):p.3020-7.
    23. Pape, H., et al., G-CSF during large field radiotherapy reduces bone marrow recovery capacity [J]. Eur J Med Res,2006.11(8):p.322-8.
    24. Liu, Q., et al., Clinical report of three cases of acute radiation sickness from a (60)Co radiation accident in Henan Province in China [J]. J Radiat Res (Tokyo), 2008.49(1):p.63-9.
    25. Beekman, R. and I.P. Touw, G-CSF and its receptor in myeloid malignancy [J]. Blood,2010.115(25):p.5131-6.
    26. Duarte, R.F. and D.A. Franf, The synergy between stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF):molecular basis and clinical relevance [J]. Leuk Lymphoma,2002.43(6):p.1179-87.
    27. Streeter, P.R., L.Z. Dudley, and W.H. Fleming, Activation of the G-CSF and Flt-3 receptors protects hematopoietic stem cells from lethal irradiation [J]. Exp Hematol,2003.31(11):p.1119-25.
    28. Bertho, J.M., et al., Comparison of autologous cell therapy and granulocyte-colony stimulating factor (G-CSF) injection vs. G-CSF injection alone for the treatment of acute radiation syndrome in a non-human primate model [J]. Int J Radiat Oncol Biol Phys,2005.63(3):p.911-20.
    29. Ryan, M.A., et al., Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell mobilization [J]. Nat Med,2010.16(10): p.1141-6.
    30. Lee, J.C., et al., A protein kinase involved in the regulation of inflammatory cytokine biosynthesis [J]. Nature,1994.372(6508):p.739-46.
    31. Weinstein, S.L., M.R. Gold, and A.L. DeFranco, Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages [J]. Proc Natl Acad Sci U S A,1991.88(10):p.4148-52.
    32. Han, J., et al., A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells [J]. Science,1994.265(5173):p.808-11.
    33. Verma, A., et al., Cutting edge:activation of the p38 mitogen-activated protein kinase signaling pathway mediates cytokine-induced hemopoietic suppression in aplastic anemia [J]. J Immunol,2002.168(12):p.5984-8.
    34. Brancho, D., et al., Mechanism of p38 MAP kinase activation in vivo[J]. Genes Dev,2003.17(16):p.1969-78.
    35. Tamura, K., et al., Requirement for p38alpha in erythropoietin expression:a role for stress kinases in erythropoiesis[J]. Cell,2000.102(2):p.221-31.
    36. Mudgett, J.S., et al., Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis [J]. Proc Natl Acad Sci U S A,2000.97(19):p. 10454-9.
    37. Geest, C.R. and P.J. Coffer, MAPK signaling pathways in the regulation of hematopoiesis [J]. J Leukoc Biol,2009.86(2):p.237-50.
    38. Uddin, S., et al., Differentiation stage-specific activation of p38 mitogen-activated protein kinase isoforms in primary human erythroid cells [J]. Proc Natl Acad Sci U S A,2004.101(1):p.147-52.
    39. Nagata, Y. and K. Todokoro, Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis [J]. Blood,1999.94(3):p.853-63.
    40. Hideshima, T., et al., Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu [J]. Blood,2003.101(2):p.703-5.
    41. Ito, K., et al., Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells [J]. Nat Med,2006.12(4):p.446-51.
    42. Probin, V., Y. Wang, and D. Zhou, Busulfan-induced senescence is dependent on ROS production upstream of the MAPK pathway [J]. Free Radic Biol Med,2007. 42(12):p.1858-65.
    43. Jang, Y.Y. and S.J. Sharkis, A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche [J]. Blood,2007.110(8):p.3056-63.
    44. Katsoulidis, E., et al., Role of the p38 mitogen-activated protein kinase pathway in cytokine-mediated hematopoietic suppression in myelodysplastic syndromes [J]. Cancer Res,2005.65(19):p.9029-37.
    45. Hildesheim, J., R.T. Awwad, and A.J. Fornace, Jr., p38 Mitogen-activated protein kinase inhibitor protects the epidermis against the acute damaging effects of ultraviolet irradiation by blocking apoptosis and inflammatory responses [J]. J Invest Dermatol,2004.122(2):p.497-502.
    46. Kumar, S., et al., Pyridinylimidazole compound SB 203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase [J]. Biochem Biophys Res Commun,1999.263(3):p.825-31.
    47. Cuenda, A., et al., SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1 [J]. FEBS Lett,1995. 364(2):p.229-33.
    48. Citrin, D., et al., Radioprotectors and mitigators of radiation-induced normal tissue injury [J]. Oncologist,2010.15(4):p.360-71.
    49. Gudkov, A.V. and E.A. Komarova, Radioprotection:smart games with death [J]. J Clin Invest,2010.120(7):p.2270-3.
    50. Kulkarni, S., et al., Hematological targets of radiation damage [J]. Curr Drug Targets,2010.11(11):p.1375-85.
    51. Coleman, C.N., et al., Medicine. Modulation of radiation injury [J]. Science,2004. 304(5671):p.693-4.
    52. Stone, H.B., et al., Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries [J]. Report of an NCI Workshop, December 3-4,2003. Radiat Res,2004.162(6):p.711-28.
    53. Schuchter, L.M., et al.,2002 update of recommendations for the use of chemotherapy and radiotherapy protectants:clinical practice guidelines of the American Society of Clinical Oncology [J]. J Clin Oncol,2002.20(12):p. 2895-903.
    54. Brizel, D.M. and J. Overgaard, Does amifostine have a role in chemoradiation treatment? [J] Lancet Oncol,2003.4(6):p.378-81.
    55. Kouvaris, J.R., V.E. Kouloulias, and L.J. Vlahos, Amifostine:the first selective-target and broad-spectrum radioprotector [J]. Oncologist,2007.12(6):p. 738-47.
    56. Hensley, M.L., et al., American Society of Clinical Oncology 2008 clinical practice guideline update:use of chemotherapy and radiation therapy protectants [J]. J Clin Oncol,2009.27(1):p.127-45.
    57. Singh, V.K., et al., Effects of genistein administration on cytokine induction in whole-body gamma irradiated mice [J]. Int Immunopharmacol,2009.9(12):p. 1401-10.
    58. Wambi, C.O., et al., Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival [J]. Radiat Res,2009. 172(2):p.175-86.
    59. Hu, K.X., et al., The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury [J]. Br J Radiol,2010.83(985):p. 52-8.
    60. Charles, M., UNSCEAR report 2000:sources and effects of ionizing radiation. United Nations Scientific Comittee on the Effects of Atomic Radiation [J]. J Radiol Prot,2001.21(1):p.83-6.
    61. Xiao, M. and M.H. Whitnall, Pharmacological countermeasures for the acute radiation syndrome [J]. Curr Mol Pharmacol,2009.2(1):p.122-33.
    62. Measurements., N.C.o.R.P.a., Management of terrorist events involving radioactive materials. [R], in Bethesda, MD:NCRP Publications; NCRP Report 2001. p. No.138.
    63. Ricks, M.E.B.a.F.M.O.H., ed. The Medical Basis for Radiation-Accident Preparedness The Clinical Care of Victims[M].1 ed.2002, CRC Press:Pantheon, New York.384.
    64. Moulder, J.E., Report on an interagency workshop on the radiobiology of nuclear terrorism. Molecular and cellular biology dose (1-10 Sv) radiation and potential mechanisms of radiation protection (Bethesda, Maryland, December 17-18,2001) [J]. Radiat Res,2002.158(1):p.118-24.
    65. Waselenko, J.K., et al., Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group [J]. Ann Intern Med,2004.140(12):p.1037-51.
    66. Wang, Y., et al., Inhibition of p38 mitogen-activated protein kinase promotes ex vivo hematopoietic stem cell expansion [J]. Stem Cells Dev,2011.20(7):p. 1143-52.
    67. Wang, Y., L. Liu, and D. Zhou, Inhibition of p38 MAPK Attenuates Ionizing Radiation-Induced Hematopoietic Cell Senescence and Residual Bone Marrow Injury [J]. Radiat Res,2011.
    68. Gupta, A.K., et al., The Ras radiation resistance pathway [J]. Cancer Res,2001. 61(10):p.4278-82.
    69. Somervaille, T.C., D.C. Linch, and A. Khwaja, Different levels of p38 MAP kinase activity mediate distinct biological effects in primary human erythroid progenitors [J]. Br J Haematol,2003.120(5):p.876-86.
    70. Natarajan, P.L. and S. Narayanan, Mitogen-activated protein kinases mediate the production of B-cell lymphoma 2 protein by Mycobacterium tuberculosis in monocytes [J]. Biochemistry (Mosc),2011.76(8):p.938-50.
    71. Iwasa, H., J. Han, and F. Ishikawa, Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway [J]. Genes Cells,2003.8(2):p. 131-44.
    72. Zou, J., et al., Inhibition of p38 MAPK activity promotes ex vivo expansion of human cord blood hematopoietic stem cells [J]. Ann Hematol,2012.
    73. Xavier, S., et al., Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage [J]. Biochim Biophys Acta,2002.1573(2):p.109-20.
    74. Soule, B.P., et al., Therapeutic and clinical applications of nitroxide compounds [J]. Antioxid Redox Signal,2007.9(10):p.1731-43.
    75. Bairati, I., et al., Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients [J]. J Clin Oncol,2005.23(24):p.5805-13.
    76. Halperin, E.C., et al., A double-blind, randomized, prospective trial to evaluate topical vitamin C solution for the prevention of radiation dermatitis [J]. CNS Cancer Consortium. Int J Radiat Oncol Biol Phys,1993.26(3):p.413-6.
    77. Topkan, E., et al., Comparison of the protective effects of melatonin and amifostine on radiation-induced epiphyseal injury [J]. Int J Radiat Biol,2008. 84(10):p.796-802.
    78. 赵燕芳,韩阿如娜,邢爽,李明,熊国林,大剂量重组人粒细胞集落刺激因子对8.0Gy60Coγ射线照射小鼠长期存活率及远后效应的影响[J].国际药学研究杂志,2010.37(6):p.217-222.
    79. Hosseinimehr, S.J., Trends in the development of radioprotective agents [J]. Drug Discov Today,2007.12(19-20):p.794-805.
    80. Neta, R., Modulation with cytokines of radiation injury:suggested mechanisms of action [J]. Environ Health Perspect,1997.105 Suppl 6:p.1463-5.
    81. Drouet, M., et al., Single administration of stem cell factor, FLT-3 ligand, megakaryocyte growth and development factor, and interleukin-3 in combination soon after irradiation prevents nonhuman primates from myelosuppression: long-term follow-up of hematopoiesis [J]. Blood,2004.103(3):p.878-85.
    82. Drouet, M. and F. Herodin, Radiation victim management and the haematologist in the future:time to revisit therapeutic guidelines? [J] Int J Radiat Biol,2010. 86(8):p.636-48.
    83. Weisdorf, D., et al., Acute radiation injury:contingency planning for triage, supportive care, and transplantation [J]. Biol Blood Marrow Transplant,2006. 12(6):p.672-82.
    84. Dent, P., et al., MAPK pathways in radiation responses [J]. Oncogene,2003. 22(37):p.5885-96.
    85. Losa, J.H., et al., Role of the p38 MAPK pathway in cisplatin-based therapy [J]. Oncogene,2003.22(26):p.3998-4006.
    86. Zarubin, T. and J. Han, Activation and signaling of the p38 MAP kinase pathway [J]. Cell Res,2005.15(1):p.11-8.
    87. Feng, Y., J. Wen, and C.C. Chang, p38 Mitogen-activated protein kinase and hematologic malignancies [J]. Arch Pathol Lab Med,2009.133(11):p.1850-6.
    88. Anur, P., et al., p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC-and FANCA-deficient mononuclear phagocytes [J]. Blood, 2012.119(9):p.1992-2002.
    89. Dhanasekaran, D.N. and G.L. Johnson, MAPKs:function, regulation, role in cancer and therapeutic targeting [J]. Oncogene,2007.26(22):p.3097-9.
    90. Dhillon, A.S., et al., MAP kinase signalling pathways in cancer [J]. Oncogene, 2007.26(22):p.3279-90.
    91. Zhou, L., J. Opalinska, and A. Verma, p38 MAP kinase regulates stem cell apoptosis in human hematopoietic failure [J]. Cell Cycle,2007.6(5):p.534-7.
    92. Navas, T., et al., Inhibition of p38alpha MAPK disrupts the pathological loop of proinflammatory factor production in the myelodysplastic syndrome bone marrow microenvironment [J]. Leuk Lymphoma,2008.49(10):p.1963-75.
    93. Asur, R., et al., Involvement of MAPK proteins in bystander effects induced by chemicals and ionizing radiation[J]. Mutat Res,2009.
    94. Malumbres, M., Revisiting the "Cdk-centric" view of the mammalian cell cycle [J]. Cell Cycle,2005.4(2):p.206-10.
    95. Thornton, T.M. and M. Rincon, Non-classical p38 map kinase functions:cell cycle checkpoints and survival [J]. Int J Biol Sci,2009.5(1):p.44-51.
    96. Sherr, C.J. and J.M. Roberts, Living with or without cyclins and cyclin-dependent kinases [J]. Genes Dev,2004.18(22):p.2699-711.
    97. Kozar, K., et al., Mouse development and cell proliferation in the absence of D-cyclins [J]. Cell,2004.118(4):p.477-91.
    98. Malumbres, M., et al., Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6 [J]. Cell,2004.118(4):p.493-504.
    99. Ramsey, M.R., et al., Expression of p16Ink4a compensates for pl8Ink4c loss in cyclin-dependent kinase 4/6-dependent tumors and tissues [J]. Cancer Res,2007. 67(10):p.4732-41.
    100. Fry, D.W., et al., Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts [J]. Mol Cancer Ther,2004.3(11):p.1427-38.
    101. Toogood, P.L., et al., Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6 [J]. J Med Chem,2005.48(7):p.2388-406.
    102. Johnson, S.M., et al., Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition [J]. J Clin Invest, 2010.120(7):p.2528-36.
    103. Wen, A.Y., K.M. Sakamoto, and L.S. Miller, The role of the transcription factor CREB in immune function [J]. J Immunol,2010.185(11):p.6413-9.
    104. Ramakrishnan, V. and B.S. Pace, Regulation of gamma-globin gene expression involves signaling through the p38 MAPK/CREB1 pathway [J]. Blood Cells Mol Dis,2011.47(1):p.12-22.
    105. Li, S., et al., The HIV-1 matrix protein p17 activates the transcription factors c-Myc and CREB in human B cells [J]. New Microbiol,2010.33(1):p.13-24.
    106. Gaundar, S.S., K.F. Bradstock, and L.J. Bendall, p38MAPK inhibitors attenuate cytokine production by bone marrow stromal cells and reduce stroma-mediated proliferation of acute lymphoblastic leukemia cells [J]. Cell Cycle,2009.8(18):p. 2975-83.
    107. Avruch, J., MAP kinase pathways:the first twenty years [J]. Biochim Biophys Acta,2007.1773(8):p.1150-60.
    1. Linton PJ & Dorshkind K. Age-related changes in lymphocyte development and function[J]. Nature Immunol.2004,5(2),133-9.
    2. Lichtman MA & Rowe JM. The relationship of patient age to the pathobiology of the clonal myeloid diseases[J]. Semin. Oncol.2004,31(2),185-97.
    3. Appelbaum FR, Gundacker H, Head DR et al. Age and acute myeloid leukemia[J]. Blood,2006,107(9),3481-5.
    4. Kollman C, Howe CW, Anasetti C et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors:the effect of donor age[J]. Blood,2001,98(7):2043-51.
    5. Allsopp RC, Weissman IL. Replicative senescence of hematopoietic stem cells during serial transplantation:does telomere shortening play a role? [J] Oncogene,2002, 21(21):3270-3.
    6. Effros RB, Globerson A. Hematopoietic cells and replicative senescence[J]. Exp Gerontol.2002,37(2-3):191-6.
    7. Rossi DJ. Bryder D, Zahn JM et al. Cell intrinsic alterations underlie hematopoietic stem cell aging[J]. Proc Natl Acad Sci USA,2005,102(26),9194-9199.
    8. Rossi DJ, Bryder D, Weissman IL. Hematopoietic stem cell aging:mechanism and consequence[J]. Exp Gerontol,2007,42(5):385-90.
    9. Chambers SM, Shaw CA, Gatza C et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation[J]. PloS Biol,2007,5(8):e201.
    10. Janzen V, Forkert R, Fleming HE et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a[J]. Nature,2006,443(7110):421-6.
    11.Meng A, Wang Y, Van Zant G, Zhou D. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells[J]. Cancer Res. 2003,63(17):5414-9.
    12. Wang Y, Schulte BA, Larue AC et al. Total body irradiation selectively induces murine hematopoietic stem cell senescence[J]. Blood.2006,107(1):358-66.
    13. Meng A, Wang Y, Brown SA et al. Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and-independent mechanisms[J]. Exp Hematol,2003,31(12):1348-56.
    14. Marcotte R, Wang E. Replicative senescence revisited[J]. J Gerontol A Biol Sci Med Sci,2002,57(7):B257-B269.
    15. Campisi J, Kim SH, Lim CS, Rubio M. Cellular senescence, cancer and aging:the telomere connection[J]. Exp Gerontol,2001,36(8):1619-37.
    16. Serrano M, Blasco MA. Putting the stress on senescence[J]. Curr Opin Cell Biol, 2001,13(6):748-753.
    17. Allsopp RC, Morin GB, DePinho R et al. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation[J]. Blood,2003,102(2):517-20.
    18. Yamaguchi H, Calado RT, Ly H et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia[J]. N Engl J Med,2005,352(14):1413-24.
    19. Ito K. Hirao A, Arai F et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells[J]. Nature,2004,431(7011):997-1002.
    20. Ito K. Hirao A, Arai F et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells[J]. Nature Med,2006,12(4):446-451.
    21. Lombard DB, Chua KF, Mostoslavsky R et al. DNA repair, genome stability, and aging[J]. Cell,2005,120(4):497-512.
    22. Rossi DJ, Bryder D, Seita J et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age[J]. Nature.,2007,447(7145):725-9.
    23. Prasher JM, Lalai AS, Heijmans-Antonissen C et al. Reduced hematopoietic reserves in DNA interstrand crosslinkrepair-deficient Erccl-/- mice[J]. EMBO J,2005, 24(4),861-71.
    24. Reese JS, Liu L, Gerson SL. Repopulating defect of mismatch repair-deficient hematopoietic stem cells[J]. Blood,2003,102(5):1626-33.
    25. Bender CF, Sikes ML, Sullivan R et al. Cancer predisposition and hematopoietic failure in Rad50S/Smice[J]. Genes Dev,2002,16 (17):2237-2251.
    26. Navarro S, Meza NW, Quintana-Bustamante O et al. Hematopoietic dysfunction in a mouse model for Fanconi anemiagroup D1[J]. Mol. Ther,2006,14(4):525-35.
    27. Nijnik A, Woodbine L, Marchetti C et al. DNA repair is limiting for haematopoietic stem cells during ageing[J]. Nature,2007,447(7145):686-90.
    28. Campisi J. Senescent cells, tumor suppression, and organismal aging:good citizens, bad neighbors[J]. Cell,2005,120(4):513-22.
    29. Beausejour CM, Krtolica A, Galimi F et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways[J]. EMBO J,2003,22(16):4212-22.
    30. Dumble M, Moore L, Chambers SM et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging[J]. Blood,2007,109(4):1736-42.
    31. Cheng T, Rodrigues N, Shen H et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science,2000,287(5459):1804-8.
    32. Knights CD, Catania J, Di Giovanni S et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate[J]. J Cell Biol,2006, 173(4):533-44.
    33. Tyner SD, Venkatachalam S, Choi J et al. p53 mutant mice that display early ageing-associated phenotypes[J]. Nature,2002,415(6867):45-53.
    34. Maier B, Gluba W, Bernier B et al. Modulation of mammalian life span by the short isoform of p53[J]. Genes Dev,2004,18(3):306-19.
    35. Chen Z, Trotman LC, Shaffer D et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis[J]. Nature,2005, 436(7051):725-30.
    36. Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours[J]. Nature,1992, 356(6366):215-21.
    37. Matheu A, Maraver A, Klatt P et al. Delayed ageing through damage protection by the Arf/p53 pathway[J]. Nature,2007,448(7151):375-9.
    38. Krishnamurthy J, Ramsey MR, Ligon KL et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature,2006,443(7110):453-7.
    39. Molofsky AV, Slutsky SG, Joseph NM et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing[J]. Nature,2006, 443(7110):448-52.
    40. Bilousova G, Marusyk A, Porter CC et al. Impaired DNA replication within progenitor cell pools promotes leukemogenesis[J]. PLoS Biol,2005,3(12):e401.
    1. J. Avruch, MAP kinase pathways:the first twenty years[J]. Biochim Biophys Acta 1773(2007)1150-60.
    2. D.N. Dhanasekaran, G.L. Johnson, MAPKs:function, regulation, role in cancer and therapeutic targeting[J]. Oncogene 26 (2007) 3097-9.
    3. A.S. Dhillon, S. Hagan, O. Rath, and W. Kolch, MAP kinase signalling pathways in cance[J]. Oncogene 26 (2007) 3279-90.
    4. C.R. Geest, and P.J. Coffer, MAPK signaling pathways in the regulation of hematopoiesis[J]. J Leukoc Biol 86 (2009) 237-50.
    5. 李德冠,孟爱民.造血干细胞衰老机制研究[J].中国药理学通报,2008,24(6):701-704。
    6. S.L. Weinstein, M.R. Gold, and A.L. DeFranco, Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages[J]. Proc Natl Acad Sci U S A 88 (1991) 4148-52.
    7. J. Han, J.D. Lee, L. Bibbs, and R.J. Ulevitch, A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells[J]. Science 265 (1994) 808-11.
    8. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J] Science.2002,298:1911-1912.
    9. Tyler ZARUBIN, Jiahuai HAN. Activation and signaling of the p38 MAP kinase pathway[J]. Cell Res.2005,15(1):11-18.
    10. J.F. Schindler, J.B. Monahan, W.G. Smith.p38 Pathway Kinases as Anti-inflammatory Drug Targets[J]. J Dent Res,2007,86(9):800-811.
    11. Navas T, Zhou L, Estes M, Haghnazari E, et al. Inhibition of p38alpha MAPK disrupts the pathological loop of proinflammatory factor production in the myelodysplastic syndrome bone marrow microenvironment[J]. Leuk Lymphoma. 2008,49(10),1963-75.
    12. 张玉军,刘淑霞,刘青娟等p38/Fas/FasL在戊地昔布诱导食管癌裸鼠移植瘤细胞凋亡中的调控作用[J].中国药理学通报,2009,25(8):1081-1085.
    13. Reinhardt HC, Aslanian AS, Lees JA, et al. p53-deficient cells rely on ATM-and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage[J]. Cancer Cell.2007,11 (2):175-89.
    14. Sabio G, Arthur JS, Kuma Y,, et al. p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP[J].. EMBO J. 2005,24(6):1134-1145.
    15. Krens SF, Spaink HP, Snaar-Jagalska BE. Functions of the MAPK family in vertebrate-development[J]. FEBS Lett.2006,580(21):4984-90.
    16. Nagata Y, Moriguchi T, Nishida E, Activation of p38 MAP kinase pathway by erythropoietin and interleukin-3[J]. Blood.1997,90(3):929-34.
    17. Uddin S, Ah-Kang J, Ulaszek J,et al. Differentiation stage-specific activation of p38 mitogen-activated protein kinase isoforms in primary human erythroid cells [J]. Proc Natl Acad Sci U S A.2004,101(1):147-52.
    18. Hideshima T, Akiyama M, Hayashi T, et al. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu[J]. Blood,2003,101(2):703-705.
    19. Aimin Meng, Yong Wang, Gary Van Zant, et al. Ionizing Radiation and Busulfan Induce Premature Senescence in Murine Bone Marrow Hematopoietic Cells[J]. Cancer Res,2003,63:5414-5419.
    20. Ito K, Hirao A, Arai F, Takubo T, et al. Reactiveoxygen species act through p38 MAPK to limit thelifespan of hematopoietic stem cells[J]. Nat Med 2006,12: 446-451.
    21. Virginia Probin, Yong Wang, Daohong Zhou. Busulfan-induced senescence is dependent on ROS production upstream of the MAPK pathway [J]. Free Radic Biol Med.2007,42(12):1858-1865.
    22. Yoon-Young Jang, Saul J. Sharkis.A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche[J]. Blood.2007,110(8):3056-3063.
    23. Efstratios Katsoulidis, Yongzhong Li, Patrick Yoon, et al. Role of the p38 Mitogen-Activated Protein Kinase Pathway in Cytokine-Mediated Hematopoietic Suppression in Myelodysplastic Syndromes[J]. Cancer Res,2005,65 (19): 9029-9037.
    24. Tony A. Navas, Mani Mohindru, Myka Estes, et al.Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors [J]. Blood,2006,108(13):4170-4177.
    25. Geest, C. R, Coffer, P. J. MAPK signaling pathways in the regulation of hematopoiesis[J]. J Leukoc Biol,2009,86(2):237-250.
    26. Ferreiro, I, Joaquin, M, Islam, A. Whole genome analysis of p38 SAPK-mediated gene expression upon stress [J].2010,11:144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700