小蠹发声结构、声信息特征与自动种类识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小蠹科昆虫是重要的森林害虫,它的分类是研究和防治的基础,但是此类昆虫体小种多,给分类鉴定造成一定困难。目前,小蠹科昆虫的分类主要是利用昆虫的外部形态特征、生理学特征和遗传学特征,从声学的角度对小蠹进行分类国内外还未见报道。本研究从声学的角度对红脂大小蠹、华山松大小蠹、云南切梢小蠹、短毛切梢小蠹和横坑切梢小蠹进行了研究,具体从三个方面进行了探索:五种小蠹胁迫声信号在时域和频域上的差异:利用胁迫声信号,结合语音识别的相关技术,对五种小蠹自动识别分类;对采自云南松上的三种切梢小蠹的发声器官做扫描电镜,观察此三种切梢小蠹发生器的位置、形态,并对三种小蠹的发声器做了比较,为进一步确定三种小蠹种间差异提供证据。现得出结论如下:
     (1)分析五种小蠹胁迫声信号的时域特征和频域特征包括单脉冲数、脉冲组持续时间、主峰频率,结果表明五种小蠹不同属种间差异显著,但是同属内种间差异不明显。
     (2)本研究利用人工神经网络和摩尔频率倒谱系数(MFCC)对五种小蠹进行声学识别分类,最高识别率达到100%,平均识别率为88.8%,识别效果较高,为小蠹的分类提供了一个更加便捷的方法。利用线性预测倒谱系数(LPCC)作对照,平均识别率为76.4%,识别性能比MFCC差,这与人类语音识别中的结果一致。
     (3)云南切梢小蠹、短毛切梢小蠹和横坑切梢小蠹三种切梢小蠹的音锉由脊状横纹组成,三种小蠹音锉结构差异不大。三种小蠹的左右翅差异较大,主要表现在右翅音锉与翅锁结构之间有一鳞片状结构区域,左翅无此结构。左翅的横纹相较于右翅更加密集、深刻。因此推断发声主要在左翅,右翅不发声或只起辅助作用。三种切梢小蠹的音锉在雌雄虫之间也略有差异——雄虫的音锉密集,深刻,而雌虫相对较疏松、平坦。
     (4)三种切梢小蠹的刮器由锥形突起构成。刮器雌雄虫之间差别不大,但是这三种小蠹种间差异较大:云南切梢小蠹的刮器是由1排锥形突起构成,没有重叠;短毛切梢小蠹由1-2排刺状突起构成,中间多重叠成2排;横坑切梢小蠹刮器排列较为不规律,一般由2-3排刺状突起构成。三种小蠹刮器的差异可作为其分类的依据。
Bark beetles in Scolytidae are the very important forest pests, classification of which is the basic of research and prevention. However, the bark beetles, distributed in many species, are small and some are familiar in appearance, which makes the classification difficult. So far the methods of classification of bark beetles are mainly made use of the features of appearance, physiology and genetics but the bioacoustics classification has not been reported. This paper shows the research on the bioacoustics of Dendroctonus valens, Dendroctonus armandi, Tomicus yunnanensis,Tomicus brevipilosus and Tomicus minor specially including three aspects: find the differences of stress stridulation of five bark beetle species in time and frequency domain; research into the automated identification of the five bark beetles by bioacoustics on the basis of the related techniques of speech recognition; describe and compare the location and appearance of stridulatory organs of Tomicus yunnanensis,Tomicus brevipilosus and Tomicus minor and prove the interspecific differences further by SEM. The results are as following:
     (1) Analyze time-domain including number of pulse groups and lasting time of pulse groups as well as frequency-domain including main peak frequency of five bark beetle species. The result was that the differences between the species in the different genus were obvious, whereas the differences between the species in the same genus were indistinctive.
     (2) The automated identification and classification system based on ANN and MFCC worked well, which the highest identification rates were 100% and the average identification rate was 88.8%, supplying a more convenient method to classification and identification of bark beetles. The results showed that identification rates of LPCC as a control were obviously lower than that of MFCC, just like the results in speech recognition.
     (3) The files of three Tomicus beetles from Yunnan were familiar and consisted of parallel ribs. The files on the right and left elytra had discrepancies, which were especially embodied in there being a area consisted of squamae between the file and the sutural on the right elytra but not on the left elytra, which resulted in the length of ribs on the left longer than that on the right. Otherwise, the ribs of the left elytral file were more intensive and deeper than those of the right elytral file. Thus, it was deduced that in the stridulatory process the left file took the main role and the right one was accessory. The ribs of male file were more intensive and deeper than those of female file.
     (4) The plectrums of three Tomicus beetles were consisted of numerous small cone-like structures. There were few differences between male and female beetles. Interspecific difference between the three species was remarkable: the plectrum of T. yunnanensis was consisted of one row of cone-like structures; the plectrum of T. brevipilosus was consisted of one to two rows of cone-like structures, usually two rows at the middle; the plectrum of T. minor, consisted of two to three rows of cone-like structures, was more unorderly. The difference can be another evidence to classify the three species.
引文
[1] Lawrence R. Kirkendall, Massimo Faccoli, Hui Ye. Description of the Yunnan Shoot Borer, Tomicus yunnanensis Kirkendall & Faccoli sp. n. (Curculionidae, Scolytinae), an Unusually Aggressive Pine Shoot Beetle from Southern China, with a Key to the Species of Tomicus. R.Oberpreler, 2008(7): 25~39
    [2] Ryker L.C., Rudinsky J.A. Sound Production in Scolytidae: Acoustic Signals of Male and Female Dendroctonus Valens LeConte. Z.ang.Ent., 1976(80):113~118.
    [3]廉振民.昆虫鸣声分类研究.北京:科学出版社,2001:2~17
    [4]常岩林.昆虫的鸣声通讯.生物学通报,2000,35(2):11~13
    [5]李永材,黄溢明.比较生理学.北京:高等教育出版社,1984,41~62
    [6]雷仲仁,周尧,李莉.蝉鸣特征及其在分类学上的意义(同翅目:蝉总科).昆虫分类学报,1994,16(1):51~59
    [7]隋艳辉,徐洪富,孙淑君等.昆虫发声行为的研究现状.山东农业大学学报(自然科学版),2003,34(3):443~446
    [8] Martin C. Gopfert, Hans Briegel, Daniel Robert. Mosquito Hearing: Sound-induced Antennal Vibrations in Male and Female Aedes Aegypti. The Journal of Experimental Biology, 1999( 202): 2727~2738
    [9] Jayne E. Yack. The Structure and Function of Auditory Chordotonal Organs in Insects. Microscopy research and technique, 2004(63): 315~337
    [10] David D. Yager. Structure, Development, and Evolution of Insect Auditory Systems. Microscopy Research and Technique, 1999(47): 380~400
    [11] R. R. Hoy, D. Robert. Tympanal Hearing in Insects. Annu. Rev. Entomol, 1996(41):433~450
    [12]长有德,康乐.昆虫求偶名曲的行为特征与功能及其生态学意义.动物学研究,2002,23(5):415~425
    [13]石福明,杨培林,蒋书楠.鼻优草螽和苍白优草螽鸣声和发声器的研究.动物学研究,2001,22(2):115~119
    [14]芦荣胜,石福明,杜喜翠.四种雏蝗雄性鸣声结构的比较研究(直翅目:蝗总科) .广西科学,2003,10(2) :146~149
    [15]芦荣胜,石福明,杨培林.两种米纹蝗雄性鸣声的比较研究(直翅目,蝗总科) .动物分类学报, 2003,28 (3):411~415
    [16] Forrest T.G., Lajote D.R., Cusick D.. Calling Songs, Duets, and Auditory Tuning in Two Cryptic Katydids (Tettigoniidae: Phaneropterinae: Amblycorypha) . Ann Entomol Soc Am, 2006, 99(5): 978~987
    [17] Fristrup, K. M., Watkins, W. A.. Characterizing Acoustic Features of Marine Animal Sounds. Woods Hole Oceanog. Inst. Tech. Rept., 1992, WHOI-92-04
    [18] Owren, M. J., Seyfarth, R. M., Cheney, D. L.. The Acoustic Features of Vowel-like Grunt Calls in Chacma Baboons(Papio cyncephalus ursinus): Implications for Production Processes and Functions. Acoustical Society of America, 1997, 101(5): 2951~1963
    [19] Jason D. Wood, Brenda Mccowan, William R. ,et, al. Classification of African Elephant Loxodonta Africana Rumbles Using Acoustic Parameters and Cluster Analysis. Animal Sound and its Recording, 2005,( 15): 143~161
    [20]蔡育伦.薮鸟鸣唱声的地理变异.国立台湾大学硕士学位论文,2005,1~43
    [21]韩萍,张红梅.仓储物害虫分类识别中的声信号的特征提取.计算机工程与应用,2003,14:215~217
    [22]卢亚玲.昆虫鸣声信号特征参数提取的研究.武汉工业学院学报,2008,27(3):53~56.
    [23]魏星,周萍.语音识别系统及其特征参数的提取研究.计算机与现代化,2009, 169(9):167~168
    [24]雅琴,智爱娟.几种语音识别特征参数的研究.计算机技术与发展,2009,19(12):67~70
    [25]李宏松,苏建民,黄英来等.基于声音信号的特征提取方法的研究.信息技术,2006,1:91~94
    [26] Greenwood, D.D.. Critical Bandwidth and the Frequency Coordinates of the Basilar Membrane. Acoustical Society of America , 1961, 33(10): 1344~1356
    [27]孟祥斌,尹常永,包妍.语音识别系统中的特征参数提取过程研究.沈阳工程学院学报,2009,5(4):370~372
    [28]卢坚,陈毅松,孙正兴等.语音/音乐自动分类中的特征分析.计算机辅助设计与图形学学报,2002,14(3):233~237
    [29] Ilyas Potamitis, Todor Ganchev, Nikos Fakotakis. Automatic Acoustic Identification of Crickets and Cicadas. Signal Processing and Its Applications, 2007. ISSPA 2007
    [30] Gerhard Manteuffe. Measuring Pig Welfare by Automatic Monitoring of Stress. Bornimer Agartechnische Berichte, 2002, 16(5): 973~998
    [31] Chang-Hsing Lee. Automatic Recognition of Bird Songs Using Cepstral Coefficients. Journal ofInformation Technology and Applications, 2006, 1(1): 17~23
    [32] Vlad M. Trifa, Automated Species Recognition of Antbirds in a Mexican Raiforest Using Hidden Markov Models. Acoustical Society of America, 2008, 123(4): 2424~2431
    [33] Patrick J. Clemins, Michael T. Johnson. Generalized Perceptual Linear Prediction Features for Animal Vocalization Analysis. Acoustical Society of America, 2006, 120(1): 527~534
    [34]韩纪庆.语音信号处理.北京:清华大学出版社,2004,196~198
    [35] Sven E. Anderson et al., Automatic Recognition and Analysis of Birdsong Syllables from Continuous Recordings. Acoustic society of America, 1995, 78:1011~1034
    [36] ven E. Anderson, Template-based automatic recognition of birdsong syllables from continuous recordings. J. Acoustic society of America, 1996, 100(2): 1209~1218
    [37] Judith C. Brown. Automatic Classification of Killer Whale Vocalizations Using Dynamic Time Warping. Acoustical Society of America, 2007, 122(2): 1201~1207
    [38]吴炜烨.神经网络在语音识别中的应用研究.21世纪人才培养,2009,16(1):130~131
    [39]张震南.人工神经网络技术在语音识别中的应用.信息技术,2008,37(4):21
    [40]殷柏涛,陈伦裕,张志涛等.用神经网络对水稻飞虱鸣声进行模式分类.声学与电子工程,1994,36(4):1~10
    [41]姚青,赖凤香,傅强等.基于人工神经网络的昆虫鸣声识别.昆虫分类学报,2005,27(1):19~22
    [42]韩萍.仓储物害虫声音的模式识别.计算机工程,2003,29(22):151~152
    [43] Chesmore ED.. Methodologies for Automating the Identification of Species. Proceedings of 1st BioNet-International Working Group on Automated Taxonomy, July 1997: 3~12
    [44] Chesmore ED., Automated Bioacoustic Identification of Species. Annals of the Brazilian Academy of Sciences, 2004, 76(2): 435~440
    [45] Stuart Parsons, Gareth Jones. Acoustic Identification of Twelve Species of Echolocating Bat by Discriminant Function Analysis and Artificial Neural Networks. The Journal of Experimental Biology, 2000, 203: 2641~2656
    [46] Arja Selin, Jari Turunen, Juha T. Tanttu. Bird Sound Classification and Recognition Using Wavelets. Razprave IV. Razreda SAZU, 2006, XLVⅡ-3: 185~204
    [47]谭保华,熊健民,刘幺和.语音识别技术概述.郧阳师范高等专科学校学报,2004,24(6):11~14
    [48]韩纪庆.语音信号处理.北京:清华大学出版社,2004.200~208
    [49] Joseph A. Kogan. Automated Recognition of Bird Song Elements from Continuous Recordings Using Dynamic Time Warping and Hidden Markov Models: A comparative study. Acoustical Society of America, 1998, 103(4): 2185~2196
    [50] Sven E. Anderson. Speech Recognition Meets Bird Song: A Comparison of Statistics-based and Template-based Techniques. Acoustical Society of America, 1999, 106(4): 2130~2130
    [51] Patrick J. Clemins, Michael T. Johnson, Automatic Type Classification and Speeker Identification of Africa Elephant Vocalizations. Animal Behavior, 2002, 98(40): 2233~2256
    [52] Patrick J. Clemins, Johnson M. T., Leong K. M., et al.. Automatic Classification and Speaker Identification of African Elephant Loxodonta Africana Vocalizations. Acoustical Society of America, 2004, 117(2): 956~963
    [53] Datta S., Sturtivant C.. Dolphin Whistle Classification for Determining Group Identities. Signal Process, 2002, 82(2): 251~258
    [54] Rebya D., Andr-Obrecht R., Galinier A.,et al., Gargnelutti B., Cepstral coefficients and hidden Markov models reveal idiosyncratic voice characteristics in red deer Cervus elaphus stage. Acoustical Society of America, 2006,120(6): 4080~4089
    [55] Jidong Tao, Michael T. Johnson, Acoustic Model Adaptation for Ortolan Bunting (Emberiza Hortulana L.) Song-type Classification. Acoustical Society of America, 2008, 123(3): 1582~1590
    [56]韩纪庆.语音信号处理.北京:清华大学出版社,2004.272~277
    [57] Roch M. A., Soldevilla M. S., Burtenshaw J. C., et al.. Gaussian Mixture Model Classification of Odontocetes in the Southern California Bight and the Gulf of California. Acoustical Society of America, 2007, 121(3): 1737~1748
    [58] John G. Harris, Mark D. Skowronski. Automatic Speech Processing Methods for Bioacoustic Signal Analysis: a Case Study of Cross-disciplinary Acoustic Research. IEEE Intl. Conf. on Acoustic, Speech, and Singal Processing, 2006, 5: 793~796
    [59] Jinkui Cheng, Yuehua Sun, Liqiang Ji. A Call-independent and Automatic Acoustic System for the Individual Recognition of Animals: A Novel Model Using Four Passerines. Patten Recognition , 2010, 43(11): 3846~3852
    [60] Todor Ganchev, Ilyas Potamitis,. Automatic Acoustic Identification of Singing Insects. Acoustics, Speech and Signal Processing, 2007, 4: 721~724
    [61] Judith C. Brown, Hidden Markov and Gaussian Mixture Models for Automatic Call Classification. Acoustical Society of America, 2009, 125(6): 221~224
    [62] Patrick J. Clemins. Generalized Perceptual Features for Vocalization Analysis Across Multiple Species. IEEE, 2006, 253~256
    [63] Murray, S. O., Mercado, E., Roitblat, H. L.. The Neural Network Classification of False Killer Whale (Pseudorca crassidens) Vocalizations. Acoustical Society of America, 1998, 104(6), 3626~3633
    [64]聂晓颖,郭敏,何建平.人工神经网络对果蝇鸣声的分类识别.西北农林科技大学学报,2007,35(12):201~204
    [65] Meta Virant-doberlet, Andrej Cokl. Vibrational Communication in Insects. Neotropical Entomology, 2004, 33(2): 121~134
    [66] Thierry Aubin, Nicolas Mathevon et al.. Acoustic Communication in the Kittiwake Rissa Ridactyla: Potential Cues for Sexual and Individual Signatures in Long Calls. Polar Biol, 2007, 30: 1027~1033
    [67] Drosopoulos, S., Claridge, M. Insect Sounds and Communication: Physiology, Behaviour, Ecology, and Evolu-tion, Contemporary Topics in Entomology. CRC Press, 2005, 234~256
    [68] Riede K.. Acoustic Monitoring of Orthoptera and Its Potential for Conservation. Insect Conservation, 1998, 2(3-4): 217~223
    [69] J. Schofield, Chesmore ED. Automated Acoustic Identification of Beetle Larvae in Imported Gilds Using Time Domain Analysis. Acoustics 08 Paris, 5929~5934
    [70]韦雪青.林木蛀干害虫声音监测技术初探.北京林业大学硕士学位论文,2010,1~82
    [71]叶庆红,廖明潮.昆虫鸣声数字化信号处理系统的构建.计算机与数字工程,2007,38(6):70~72
    [72]谢令德,郑哲民,唐国文等.三种油葫芦鸣声节律谱图比较.动物分类学报,2006,31(3):485~489
    [73]贾洪敏,黄大庄.灵空山红脂大小蠹发生与林分及其立地条件的关系.安徽农业科学,2006,34(5):884~885
    [74]王鸿斌,张真,孔祥波等.入侵害虫红脂大小蠹的适生区和适生寄主分析.林业科学,2007,43(10):71~76
    [75]赵建兴,杨忠岐,任晓红等.红脂大小蠹的生物学特性及在我国的发生规律.林业科学,2008,44(2):99~105
    [76]吕淑杰,谢寿安,张军灵等.红脂大小蠹、华山松大小蠹和云杉大小蠹形态学比较.西北林学院学报,2002,17 (2): 58~59
    [77]谢寿安,吕淑杰,袁锋等.华山松大小蠹和红脂大小蠹过氧化氢同工酶酶谱的比较.西北林学院学报,2003,18 (2):62~63
    [78]陈小平,王兴旺,李涛等.华山松大小蠹的研究进展.四川林业科技,2008,29(4):56~58
    [79]谢寿安,丁彦.华山松大小蠹化学信息物质.东北林业大学学报,2010,38(1):91~94
    [80]韩平定,曹鹏,刘悦等.云南切梢小蠹枝梢选择和存活分析初探.河南林业科技,2009,29(3):7~8
    [81]陈鹏,李丽莎,刘宏屏.云南切梢小蠹与横坑切梢小蠹蛀梢期的竞争研究.西部林业科学,2009,38(3):52~58
    [82]陈鹏,李丽莎,刘宏屏.云南切梢小蠹和横坑切梢小蠹对寄主繁殖部位的选择实验.西部林业科学,2010,39(1):15~20
    [83]叶辉,吕军.云南横坑切梢小蠹生物学研究.昆虫学报,2004,47(2):223~228
    [84]陈方,高升.语音识别技术及发展.电信科学,1996,10:54~57
    [85]卢小春,胡继平,王修信.基于人工神经网络的汉语数字语音识别系统.广西科学,2004,11(4):320~322
    [86]李泽,崔宣,马雨廷等.MFCC和LPCC特征参数在说话人识别中的研究.河南工程学院学报(自然科学版),2010,22(2):51~55
    [87]余建潮,张瑞林.基于MFCC和LPCC的说话人识别.计算机工程与设计,2009,30(5):1189~1191
    [88] Hopkins A.D.. Contributions Toward a Monograph of The Scolytid Beetles.I: The Genus Dendroctonus.U.S.Dep. Agric.Bur.Ent.Tech, 1909, 17, Part I
    [89] J.A. Rudinsky, R.R. Michael. Sound Production in Scolytidae: Stridulation by Female Dendroctonus beetles. Journal of insect Physiology, 1973, 19(3): 689~705
    [90]赵丽稳.小蠹虫声信号记录分析与相关行为研究.中国林业科学研究院硕士学位论文,2008,1~49
    [91] Gunther Tschuch. Modeling Vibration and Sound Production in Insects with Nonresonant Stridulatory Organs. Acoustical Society of America, 1999,106(6): 3706~3710

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700