蚁群觅食仿真和动画的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中鸟群、鱼群和蚁群聚集成群及觅食等行为有趣而惊人。受这些现象的启发,分别产生了蚁群优化算法、群组动画中的Boid模型以及人工鱼。这些研究目标和内容都属于不同的学科却有着相似的生物学启迪和内在机理,这一点深深吸引并鼓励笔者进行新的探索和研究。另外和以上研究内容有紧密联系和潜在应用的一个学科是游戏人工智能。本文在总结和分析群组动画、蚁群优化算法和游戏人工智能的国内外相关研究工作的基础上,主要开展了蚁群觅食仿真和动画关键技术研究。取得的主要成果如下:
     (1)提出了基于直接交互的蚁群觅食仿真。在自然界中蚂蚁之间存在直接交互现象,但在以往的蚁群觅食仿真中忽略了这一点。受蚂蚁之间通过反哺进行的直接交互的现象启发,提出了一个和以往蚂蚁通过信息素交换信息完全不同的直接交互机制。将该机制与传统的信息素交互机制融合以后,得到了两种新的蚁群觅食模型。仿真实验结果表明:新的蚁群觅食模型提高了在有障碍物的场景下找到最短路径的能力。对这个新的蚁群觅食模型抽象以后得到了一个新的蚁群优化算法框架。
     (2)用群组动画研究方法开展了蚁群觅食动画技术研究。提出了多种搜索策略作为蚂蚁和环境之间的交互规则,结合一个有限状态机和底层的运动构成了一个三层蚁群觅食模型。蚁群觅食动画分别在2D/3D环境中运行进行了验证。特别在3D环境下用两种LOD方法进行了绘制提高了渲染效率,对替身图进行光照着色提高了渲染效果。
     (3)设计了基于理性决策模型的游戏人工智能行为系统用于游戏的开发,也将这个行为系统用在了蚁群觅食仿真中。游戏AI主要针对的是游戏中智能角色的行为和规划的设计。通过分析当前游戏人工智能中行为建模的方法,本文研究出一套适用于任何动态场景以及复杂非线性故事情节的虚拟角色的行为模型,带给用户以实时交互并包含拟人化智能角色的“真实”游戏环境。通过在智能足球对战平台和Starcraft对战平台上的实验,该方法得到了进一步的验证。
The flocks and foraging behaviors of birds, fishes and ant colony are interesting and amazing. Inspired from these phenomena, ant colony optimization algorithm, boid model which pioneered the research of crowd simulation and animation, artificial fishes were produced respectively. I am so attracted to these phenomena that different research content and object have similar biologic mechanism. On the basis of analysis and summary of the relevant research home and abroad, my dissertation is about ant colony foraging simulation and animation and my contribution includes:
     1. Ant colony foraging simulation based on direct interaction between ants is proposed. Direct interaction between ants exists in real world, but is rare seen in ant colony foraging simulations. Inspired from trophallaxies, a way that ants exchange information directly, a direct interaction mechnasim DACF is proposed to be used in ant colony foraging simulation. Then the mechnasim is combined the direct interaction mechanism with the indirect pheromones interaction mechanism. Based on Wilensky’s ant colony foraging model and Panait’s model, this thesis develops two new models. The simulation results of comparison experiments demonstrate that our new model improves the ability of finding the shortest route in environment with obstacles. Abstracting the principle of the new ant colony foraging simulation model can get a new ant colony optimization framework.
     2. The research of animation of ant colony foraging with crowd simulation methods is firstly carried out. This model consists of three layers, which together model 2D/3D ant behaviors among static food, obstacle and ant nest. Several search strategies are proposed to represent the interaction rules among ants and the enviroment. Ant colony foraging animation is run in 2D/3D environments separately. Then two LOD methods are used to render ant colony, and Phong illumination model is applied to shade the impostor of ant to get better rendering results.
     3. A behavior system based on rational decision-making model is proposed to be used in design for games AI. The system is also applied in ant colony foraging simulation. After analysis on the current methods on model creating in games AI, a behavior model for virtual actors is developed. This model is suited for any dynamic scene as well as complicated nonlinear storyline. Thereafter, "real" game environment can be presented to users, where there are real-time interactions with users and the personate intelligent roles. Finally, the advantages of this method are verified by the experiments on the platform of intelligent football competing and Starcraft comprting.
引文
[1] B. Holldober and E. O. Wilson. Journey of the Ants: A Story of Scientific Exploration. Harvard University Press, Cambridge, MA, 1994.
    [2] E. N. Marais. Die Siel van die Mier (The Soul of the Ant). J. L. van Schaik, Pretoria, South Africa, fifth edition, 1948
    [3] P-P. Grasse. La Reconstruction dun id et les Coordinations Individuelles chez Bellicositermes Natalensis et Cubitermes sp. la Theorie de la Stigmergie; Essai d’interpretation du Comportement des Termites Constructeurs. Insectes Sociaux, 1959, 6(2): 41~80
    [4] J-L. Deneubourg, S. Aron, S. Goss, and J-M. Pasteels. The Self-Organizing Exploratory Pattern of the Argentine Ant. Journal of Insect Behavior, 1990, 3(1): 159~168
    [5] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, 1992
    [6] M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on System, Man, and Cybernetics-Part B, 1996, 26(1): 29~41
    [7] L. M. Cambardella, E. D. Taillard, and M. Dorigo. Ant Colonies for the QAP. Technical report, IDSIA, Lugano, Switzerland, 1997
    [8] L. Nemes and T. Roska. A CNN Model of Oscillation and Chaos in Ant Colonies: A Case Study. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, October 1995, 42(10): 741~745
    [9] M. Dorigo. Learning by Probabilistic Boolean Networks. In Proceedings of the IEEE International Conference on Neural Networks.1994. 887~891
    [10] Daniel Thalmann, Christophe Hery, Seth Lippman, Hiromi Ono, Stephen Regelous, Douglas Sutton. Crowd and Group Animation. ACM SIGGRAPH 2004 Course Notes, 2004
    [11] Reynolds, C. W. Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer Graphics, 1987, 21(4): 25~34
    [12] F. Heppner and U. Grenandar. A Stochastic Nonlinear Model for Coordinated Bird Flocks. In S. Krasner, editor, The Ubiquity of Chaos.AAAS Publications, 1990
    [13] Dolan. http://www.aridolan.com
    [14] Hartman, Christopher, Benes, Bedrich Autonomous Boids. Computer Animation and Virtual Worlds, 2006, 17(3): 199~206
    [15] Xiaoyuan Tu, D. T. Artificial Fishes: Physics, Locomotion, Perception, Behavior. Computer Graphics, 1994,28(2): 43~50.
    [16] K. Stephens, B. Pham, and A. Wardhani. Modelling Fish Behaviour. In Proceedings of the International Conference of Computer Graphics and Interactive Techniques in Australasia and South East Asia, 2003. 71~78
    [17] Soraia Raupp Musse, Daniel Thalmann. Hierarchical Model for Real Time Simulation of Virtual Human Crowds. IEEE Transactions on Visualization and Computer Graphics, 2001, 7(2):152~164
    [18] B. Robertson, Pixar has taken a unique approach to animating crowds of characters for its next feature film A Bug‘s Life. Computer Graphics World, 1998, 21(1): 24~34
    [19] B. Robertson, Faces and crowds. Computer Graphics World, 1998,21(1): 61-63
    [20] D. Hopkins, Designing User Interfaces to Simulation Games. http://www.donhopkins.com/drupal/node/9
    [21] Strategy First, Empire of the Ants. http://www.strategyfirst.com/en/games/redir/?iGameID=13
    [22] B. Werber, Empire of the Ants. New York: Bantam, 1999
    [23] R. Nelson, A Bug’s Life Review. http://psx.ign.com/articles/160/160232p1.html
    [24] J. Kennedy and R. C. Eberhart. Particle Swarm Optimization. In Proceedings of the IEEE International Joint Conference on Neural Networks. IEEE Press, 1995. 1942~1948
    [25]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践, 2002, 22(11): 32~38
    [26] Maya. http://www.maya.com/
    [27] SoftImage. http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id= 13571168
    [28] 3D Studio Max. http://usa.autodesk.com/3ds-max/
    [29] Blender. http://www.blender.org/
    [30] MotionBuilder. http://usa.autodesk.com/adsk/servlet/pc/index?id=13581855&siteID=123112
    [31] Lightwave 3D. http://www.newtek.com/lightwave/
    [32] Houdini. http://www.sidefx.com/
    [33] Swarm. http://www.swarm.org/index.php/Main_Page
    [34] RePast. http://repast.sourceforge.net/
    [35] Ascape. http://ascape.sourceforge.net/
    [36] NetLogo. http://ccl.northwestern.edu/netlogo/
    [37] MASON. http://www.cs.gmu.edu/~eclab/projects/mason/
    [38] Mankyu Sung, Michael Gleicher, Stephen Chenney. Scalable Behaviors for Crowd Simulation. Computer Graphics Forum, 2004, 23(3):519~528
    [39] Ayneesh Sud, Erik Anderson, Sean Curtis, Ming Lin, Dinesh Manocha. Real-time Path Planning for Virtual Agents in Dynamic Environments. IEEE Virtual Reality Conference, 2007. 91~98
    [40] Ayneesh Sud, Russell Gayle, Erik Anderson, Stephen Guy, Ming Lin, Dinesh Manocha. Real-time Navigation of Independent Agents Using Adaptive Roadmaps. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, 2007. 99~106
    [41] Stephen. J. Guy, Jatin Chhugani, Changkyu Kum, Nadathur Satish, Ming Lin, Dinesh Manocha, Pradeep Dubey. ClearPath: Highly Parallel Collision Avoidance for Multi-agent Simulation. Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009. 177~187
    [42] Branislav Ulicny, Daniel Thalmann. Towards Interactive Real-time Crowd Behavior Simulation. Computer Graphics Forum, 2003, 21(4):767~775
    [43] Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, Ming Lin. Interactive Navigation of Multiple Agents in Crowded Environments. Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games, 2008. 139~147
    [44] Adrien Treuille, Seth Cooper, Zoran Popovi? Continuum Crowds InSIGGRAPH '06: ACM SIGGRAPH 2006 Papers, 2006. 1160~1168
    [45] Massive, 2006. http://www.massivesoftware.com
    [46] Julien Pettre. Populate Your Game Scene. Motion in Games: First International Workshop, MIG 2008, 2008. 33~42
    [47] Julien Pettre, Helena Grillon, Daniel Thalmann. Crowds of Moving Objects: Navigation Planning and Simulation. IEEE International Conference on Robotics and Automation, 2007.3062~3067
    [48] Michael Wooldridge. Agent-based Software Engineering. IEEE Proceedings of Software Engineering, 1997, 144(1):26~37
    [49] Wei Shao, Demetri Terzopoulos. Autonomous Pedestrians. Graphical Models, 2007, 69(5):246~274
    [50] Jonathan Maim, Barbara Yersin, Daniel Thalmann. Real-time Crowds: Architecture, Variety, and Motion Planning. ACM SIGGRAPH ASIA 2008 Course Notes, 2008. 1~16
    [51] Bobby Bodenheimer, Charles F. Rose, Seth Rosenthal, John Pella. The Process of Motion Capture: Dealing with the Data. Computer Animation and Simulation, 1997
    [52] Michael Gleicher. Retargetting Motion to New Character. In Proceedings of SIGGRAPH, 1998. 33~42
    [53] Andrew Witkin, Zoran Popovic. Motion Warping. In Proceedings of SIGGRAPH, 1995. 105~108
    [54] Michael Gleicher. Motion Editing with Spacetime Constraints. In I3D’97: Proceedings of the 1997 Symposium on Interactive 3D graphics, 1997. 139~148
    [55] KOVAR L., GLEICHER M., PIGHIN F. Motion graphs. ACM TOG 2002, 21(3): 473~482.
    [56] Okan Arikan David A. Forsyth James F. O’Brien. Motion synthesis from annotations. Proceedings of ACM SIGGRAPH 2003,2003. 402~408
    [57] Serge P. Hoogendoorn, Winnie Daamen, Piet H.L. Bovy. Extracting Microscopic Pedestrian Characteristics from Video Data. In: Transportation Research Board Annual Meeting, 2003. 1~15
    [58] Lerner Alon, Chrysanthou Yiorgos, Lischinski Dani. Crowds by Example. Computer Graphics Forum, 2007, 26(3):655~664
    [59] D. P. Gibson, D. J. Oziem, C. J. Dalton and N. W. Campbell. Captureand Synthesis of Insect Motion. Symposium of Computer Animation. 2005. 39~48
    [60] Branislav Ulicny, Pablo de Heras Ciechomski, Daniel Thalmann. Crowdbrush: Interactive Authoring of Real-time Crowd Scenes. Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2004. 243~252
    [61] D. Thalmann, H. Grillon, J. Maim, B. Yersin. Challenges in Crowd Simulation. In Proceedings of the 2009 International Conference on CyberWorlds, 2009. 1~12
    [62] O. Burchan Bayazit, Jyh-Ming Lien, and Nancy M. Amato. Better Group Behaviors in Complex Environments using Global Roadmaps. Proceedings of the 2002 Aritifical Life (ALIFE) The 8th International Conference on the Simulation and Synthesis of Living Systems, 2002. 362~370
    [63] Julien Pettr, Pablo de Heras Ciechomski, Jonathan M, Barbara Yersin, Jean-Paul Laumond and Daniel Thalmann. Real-time navigating crowds: scalable simulation and rendering. Computer Animation and Virtual Worlds, 2006, 17(1):445~455
    [64] Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, and Ming Lin. Interactive Navigation of Multiple Agents in Crowded Environments. Proceedings of the 2008 symposium on Interactive 3D graphics and games, 2008. 139~147
    [65] J. Airey. Towards Image Realism with Interactive Update Rates in Complex Virtual Building Environments. Proceedings of Symposium on Interactive 3D Graphics, 1990, 24(2):41~51
    [66] D. Cohen-Or, Y. Chrysanthou, C. T. Silva. A Survey of Visibility for Walkthrough Applications. IEEE Transactions on Visualization and Computer Graphics, 2002,9(3):1~38
    [67] J. H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms. Communications of ACM, 1976, 19(10):547~554
    [68] J. William Schroeder, J. A. Zarge, W. E. Lorensen. Decimation of Triangle Meshes. Proceedings of ACM SIGGRAPH, 1992. 65~70
    [69] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, W. Wright. Simplification Envelopes. Proceedings of ACMSIGGRAPH, 1996. 119~128
    [70] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle. Mesh Optimization. Proceedings of ACM Computer Graphics, Annual Conference Series, 1993. 19~26
    [71] S. E. Chen, L. Williams. View Interpolation for Image Synthesis. Proceedings of SIGGRAPH, 1993. 279~285
    [72] S. E. Chen. QuickTime VR-An Image-Based Approach to Virtual Environment Navigation. Proceedings of SIGGRAPH, 1995. 21~28
    [73] P. E. Debevec, C. J. Taylor, J. Malik. Modeling and Rendering Architecture from Photographs: A Hybrid Geometry and Image-Based Approach. Proceedings of SIGGRAPH, 1996. 11~20
    [74] L. McMillan, G. Bishop. Plenoptic Modeling: An Image-Based Rendering System. Computer Graphics, 1995, 29(2):39~46
    [75] W. R. Mark, L. McMillan, G. Bishop. Post-Rendering 3D Warping. Proceedings of Symposium on Interactive 3D Graphics, 1997. 7~16
    [76] L. Darsa, B. C. Silva, A. Varshney. Navigating Static Environments Using Image-Space Simplification and Morphing. Proceedings of Symposium on Interactive 3D Graphics, 1997. 25~34
    [77] P. W. Maciel, P. Shirley. Visual Navigation of Large Environments Using Textured Clusters. Proceedings of Symposium on Interactive 3D Graphics, 1995. 95~102
    [78] G. Schaufler, W. Sturzlinger. A Three-Dimensional Image Cache for Virtual Reality. Computer Graphics Forum, 1996, 15(3):227~235
    [79] A. Aubel, R. Boulic, D. Thalmann. Animated Impostors for Real-Time Display of Numerous Virtual Humans. Proceedings of the 1st International Conference on Virtual Worlds(VW-98), 1998, 1434(1):14~28
    [80] A. Aubel, R. Boulic, D. Thalmann. Lowering the Cost of Virtual Human Rendering with Structured Animated Impostors. Proceedings of WSCG99, 1999
    [81] A. Aubel, R. Boulic, D. Thalmann. Real-Time Display of Virtual Humans: Level of Details and Impostors. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(2):207~217
    [82] Dudash Bryan. Animated Crowd Rendering. In GPU Gems 3 Chapter 2,Addison-Wesley, edited by Hubert Nguyen, 2007. http://http.developer.nvidia. com/GPUGems3/gpugems3_ch02.html
    [83] Dirk Helbing, Peter Molnar. Social Force Model for Pedestrian Dynamics. Physical Review, 1995, 51(5):4282~4286
    [84] Burstedde C., Klauck K, Schadschneider A., Zittartz J.: Simulation of pedestrian dynamics using a 2-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications, 2001, 295(3): 507~525
    [85] Burstedde C., Klauck K, Schadschneider A., Zittartz J.: Cellular Automaton Approach to Pedestrian Dynamics. Proceedings from the first Pedestrian and Evacuation Dynamics Conference, 2001. 87~97
    [86] Craig W. Reynolds. Steering Behaviors for Autonomous Characters. Proceedings of Game Developers Conference, 1999. 763~782
    [87] Craig W. Reynolds. Big Fast Crowds on PS3. Proceedings of the 2006 ACM SIGGRAPH Symposium on Videogames, 2006. 113~121
    [88] Dirk Helbing, Peter Molnar. Social Force Model for Pedestrian Dynamics. Physical Review, 1995, 51(5):4282~4286
    [89] Dirk Helbing, Illes Farkas, Tamas Vicsek. Simulating Dynamical Features of Escape Panic. Nature, 2000, 407(1):487~490
    [90] Dirk Helbing, Illes J. Farkas, Illes J. Farkas, Tamas Vicsek. Simulation of Pedestrian Crowds in Normal and Evacuation Situations. In: Schreckenberg, M., Sharma, S.D (eds.) Pedestrian and Evacuation Dynamics, Springer, Berlin, 2002:21~58
    [91] Dirk Helbing, Anders Johansson. Quantitative Agent-Based Modeling of Human Interactions in Space and Time. In: Amblard, F. (ed.) Proceedings of the Fourth Conference of the European Social Simulation Associaion (ESSA2007), 2007. 623~637
    [92] Dirk Helbing, Anders Johansson, Habib Zein Al-Abideen. The Dynamics of Crowd Disasters: An Empirical Study. Physical Review, 2007, 75(4):31~35
    [93] Adriana Braun, Soraia R. Musse, Luiz P.L. de Oliveira, Bardo E.J. Bodmann. Modeling Individual Behaviors in Crowd Simulation. Proceedings of the 16th International Conference on Computer Animation and Social Agents (CASA 2003), 2003.143~148
    [94] Hubert Ludwig Klupfel. A Cellular Automation Model for Crowd Movement and Egress Simulation. PhD thesis, University Duisburg–Essen, 2003. http:// deposit.ddb.de/cgibin/dokserv?idn=96883180x
    [95] John Funge, Xiaoyuan Tu, and Demetri Terzopoulos. Cognitive modeling: knowledge, reasoning and planning for intelligent characters. In SIGGRAPH '99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pages, 1999. 29~38
    [96]赵光俊,张文俊,陈伟平.群体行为动画中认知角色的建模方法.系统仿真学报, 2007, 19(4): 3253~3257
    [97] Ai-implant, 2003. http://www.ai-implant.com
    [98]群体仿真引擎(ICTVR_CrowdSim). http://www.ict.ac.cn/jszy/jsxk_zlxk/mfxk /200707/t20070706_2121144.html
    [99]刘丰,庄越挺,罗忠祥,潘云鹤.基于多自主智能体的群体动画创作.计算机研究与发展, 2004, 41(1): 104~110
    [100]王鑫,孙守迁,侯易,邓春燕.数据驱动的人群场景动画合成方法.计算机辅助设计与图形学学报, 2009, 21(2): 250~256
    [101] Jiayi Xu, Xiaogang Jin, Yizhou Yu, Tian Shen, Mingdong Zhou. Shape-constrained Flock Animation. Computer Animation and Virtual Worlds, 2008, 19(3-4): 319~330
    [102] Xiaogang Jin, Jiayi Xu, Charlie C.L. Wang, Shengsheng Huang, Jun Zhang. Interactive Control of Large Crowd Navigation in Virtual Environment using Vector Field. IEEE Computer Graphics and Applications, 2008, 28(6): 37~46
    [103]班晓娟,关海峰,宁淑荣.一种人工鱼群体行为动画的新方法.系统仿真学报, 2009, 21(8):2239~2243.
    [104]王兆其,毛天露,蒋浩,夏时洪.人群疏散虚拟现实模拟系统——Guarder.计算机研究与发展, 2010, 47 (6): 969~978
    [105] J.-L. Deneubourg, S. Aron, S. Goss, J.-M. Pasteels, The self-organizing exploratory pattern of the Argentine ant, J. Insect Behav. 1990, 3(1): 159~168
    [106] J. M. Pasteels, J-L. Deneubourg, and S. Goss. self-organizing mechanisms in ant societies (1): trail recruitment to newly discoverd food sources. Experientia Suppl, , 1989, 76: 579~581
    [107] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels. self-organized Shortcuts in the Argentine Ant. Naturwissenschafen, 1976. 579~581
    [108] M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant Algorithms and Stigmergy. Future Generation Computer Systems, 2000, 16(9): 851~871
    [109] N. J. Nilsson. Artificial Intelligence: A New synthesis. Morgan Kaufmann, 1998
    [110] L. M. Gambardella, M. Dorigo. Solving Symmetric and Asymmetric TSPs by Ant Colonies. In Proceedings of IEEE International Conference on Evolutionary Computation. 1996. 622~627
    [111] Stutzle T, Hoos HH. MAX-MIN ant system and local search for the traveling salesman problem. In: IEEE Int’l Conf. on Evolutionary Computation. Indianapolis: IEEE Press, 1997. 309~314.
    [112] M. Dorigo and T. Stutzle. An Experimental Study of the Simple Ant Colony Optimization Algorithm. In Proceedings of the 2001 WSES International Conference on Evolutionary Computation (EC’01), 2001. 253~258
    [113] Dortgo M, Gambardella LM. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. on Evolutionary Computation, 1997, 1(l): 53~66
    [114]吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法.计算机学报,2001,24(12): 1328~1333
    [115]吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法.计算机研究与发展,1999,36(10): 1240~1245
    [116]朱庆保,杨志军.基于变异和动态信息素更新的蚁群优化算法.软件学报, 2004, 15(2): 153~156
    [117]许剑,吕志民,徐金梧.带有侦察子群的蚁群系统.北京科技大学学报, 2006, 28(8): 794~798
    [118] U. Wilensky. NetLogo Ants model. http://ccl.northwestern.edu/netlogo/models/Ants, 1997.
    [119] Vaughan, R. T., St?y, K., Sukhatme, G. S., and Mataric, M. J. Whistling in the dark: Cooperative trail following in uncertain localization space. In Proceedings of the Fourth International Conference on Autonomous Agents, 2000. 187~194.
    [120] L. Panait, S. Luke. A Pheromone-based Utility Model for Collaborative Foraging. In Proceedings of the Third International Joint Conference on Autonomous Agents and Multi Agent Systems, 2004.
    [121] T. Seeley. The Wisdom of the Hive. Harvard University Press, Cambridge, MA, 1995.
    [122] Stephen C. Pratt , Eamonn B. Mallon , David J. T. Sumpter , and Nigel R. Franks. Collective Decision-Making in a Small Society: How the Ant Leptothorax albipennis chooses a nest site. in Ants 2000: Second International Workshop on Ant Algorithms, 2000.
    [123] Wheeler W. M. A study of some ant larvae with a consideration of the origin and meaning of social habits among insects. Proc. Am. Phil. Soc., 1918, 57(2): 293~343
    [124] Bonabeau, E. Marginally stable swarms are flexible and efficient. Phys. I France, 1996, 309~320
    [125] Deneubourg, J. L., Goss, S., Franks, N. R., and Pasteels, J. The blind leading the blind: Modeling chemically mediated army ant raid patterns. Insect Behavior, 1989, 2(1): 719~725
    [126] R. J. Collins and D. R. Jefferson. Antfarm : Towards simulated evolution. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, Addison-Wesley, Redwood City, CA, 1992. 579~601
    [127] Resnick,M. Turtles, Termites and Traffic Jams. MIT Press, 1994
    [128] M. Nakamura and K. Kurumatani. Formation mechanism of pheromone pattern and control of foraging behavior in an ant colony model. In C. G. Langton and K. Shimohara, editors, Artificial Life V: Proceedings of the Fifth International Workshop on the Synthesis and Simulation of Living Systems, MIT Press, 1997. 67~76
    [129] Wodrich,M. and Bilchev, G.. Cooperative distributed search: The ants’way. Control and Cybernetics, 1997, 26(2): 151~160
    [130] R. T. Vaughan, K. St?y, G. S. Sukhatme, and M. J. Mataric. Whistling in the dark: Cooperative trail following in uncertain localization space. In C. Sierra,M. Gini, and J. S. Rosenschein, editors, Proceedings of the Fourth International Conference on Autonomous Agents, ACM Press, 2000. 187~194
    [131] L. Panait and S. Luke. A Pheromone-based Utility Model for Collaborative Foraging. In Proceedings of the Third International Joint Conference onAutonomous Agents and Multi Agent Systems, 2004.
    [132]贺建民,闵锐.多Agent系统中蚁群算法的设计与实现.微电子学与计算机, 2006, 23(10): 32~34
    [133]张成,贾素玲,魏法杰.人工蚁群觅食行为建模、仿真和分析.计算机应用研究, 2009, 26(1): 33~36
    [134] S. Luke, G. C. Balan, L. A. Panait, C. Cioffi-Revilla, and S. Paus. MASON: a Java Multi-agent Simulation Library. In Proceedings of Agent 2003 Conference on Challenges in Social Simulation, 2003.
    [135] T. Calvert and et. al . Towards the Autonomous of Multiple Human Figures. In Proceedings of Computer Animation'94, 1994. 69~75
    [136] POHL, I . Bidirectional heurisuc search in path problems. A PhD Dissertation, Stanford Univ.,Stanford, Cahf., 1969.
    [137] DE CHAMPEAUX, D., AND SINT, L. An improved bidirectional heuristic search algorithm. J. ACM, 1977, 24(2): 177~191
    [138] Luming Liang, Huanxi Zhao. The generation of circular arcs and conics by subdivision via averagingnormal vectors. International Journal of Computer Mathematics, 2010, 87(10): 2226~2234
    [139] Luming Liang. Image interpolation by blending kernels. IEEE Signal Processing Letters, 2008, 15(2): 805~808
    [140] S. Dobbyn, J. Hamill, K. O’Conor, C. O’Sullivan. Geopostors: A Real-Time Geometry/Impostor Crowd Rendering System. Proceedings of Symposium on Interactive 3D Graphics, 2005. 95~102
    [141]彭群生,鲍虎军,金小刚.计算机真实感图形的算法基础.北京:科学出版社, 1999
    [142] D. Shreiner, M. Woo, J. Neider, T. Davis. OpenGL编程指南.北京:电子工业出版社, 2006
    [143] Simbionic. http://www.simbionic.com/overview.htm
    [144] D. Harel, Statecharts: A visual approach to complex systems. Sci. Comput. Programming, 1987, 8(2): 231~274
    [145] Sacerdoti E. The nonlinear nature of plans. Proceedings of the International Joint Conference on Artificial Intelligence. 1975. 206~214
    [146] R.G.Dromey. Genetic Software Engineering - Simplifying Design Using Requirements Integration. IEEE Working Conference on Complex andDynamic Systems Architecture, Brisbane, Dec 2001.
    [147] R.L.Glass. Is This a Revolutionary Idea or Not. Communications of the ACM, 2004, 47(11): 23~25
    [148] R.G.Dromey.Formalizing the Transition from Requirements to Design. Mathematical Frameworks for Component Software– Models for Analysis and Synthesis. Jifeng He, and Zhiming Liu (Eds.), World Scientific Series on Component-Based Development, 2006. 156~187
    [149] Mat Buckland.Programming Game AI by Example.Wordware Publishing, 2005
    [150] BWAPI.http://code.google.com/p/bwapi/
    [151]周强,高春鸣,孟志刚.有限理性模型在游戏智能决策中的研究与应用.计算机应用研究[已投]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700