家蚕浓核病毒(镇江株)部分核苷酸序列分析及主要结构蛋白基因(vp)的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对家蚕浓核病毒(Bombyx mori Densovirus,BmDNV)(镇江株)的部分核苷酸序列进行了研究,克隆并用大肠杆菌表达了主要结构蛋白基因,试图从分子水平、基因水平对它与山梨株的亲缘关系进行探讨。
     一.根据已发表的日本山梨株的序列片段1(VD_1)设计了一对引物,克隆了1.5Kb的主要结构蛋白基因(vp),测序并用Dna-Star软件分析了两者的同源性。该片段与山梨株VD_1-ORF_2的同源性为98.1%,有29处核苷酸发生了突变;推测的氨基酸序列与山梨株的同源性为98.6%,有7个氨基酸发生了替换。该序列已经在GeneBank登录,登录号为AY236978
     二.根据已发表的日本山梨株的序列片段2(VD_2)在两个开放阅读框(ORFs)之间设计了一对引物,扩增得到了992bp位于两个开放阅读框(ORFs)之间的一个片段,测序并用Dna-Star软件分析了两者的同源性。该片段与BmDNV山梨株相应部分的同源性为98.5%,位于两个开放阅读框(ORFs)之间的序列有缺失或插入突变。
     三.在NCBI数据库中用Blast软件在线检索,除家蚕浓核病毒山梨株DNA外,未发现其他同源序列。
     四.将病毒的主要结构蛋白基因(vp)插入到表达质粒pET-28a多克隆位点BamH I与EcoR I之间,使其位于诱导型启动子LacZ之后,转化到BL21(DE3)菌株,进行了诱导表达。表达产物在SDS-聚丙烯酰胺凝胶电泳中呈现特异的条带,大小约为53KD,与预计的大小大致相近。用Western-blotting检测表达产物,可以与病毒的抗体产生特异的反应,表明其为病毒的结构蛋白基因。
     五.上述结果表明,BmDNV镇江株和山梨株一样,病毒的基因组是由两个片段组成,并且两者的核苷酸序列有很高的同源性(高达98%以上),而与其他浓核病毒的核苷酸序列没有同源性,可以认为两者是同种病毒的不同分离株。
An attempt to identify the relationship between Bombyx mori Densovirus (BmDNV) Zhenjiang strain and BmDNV Yamanashi strain, partial DNA sequences of BmDNV (Zhenjiang strain) were determined and compared with the corresponding region of BmDNV (Yamanashi strain). The major viral structural protein (vp) gene was expressed by Escherichia coli (E. coli) expression system and examined by Western-blotting assay.
    I. Based on nucleotide sequences of BmDNV (Yamanashi strain) VD1 segment, oiigonuclotide primers was designed. Employing the designed-primers, a fragment of nucleotide sequences about 1.5 Kb, which is speculated to be the major structural protein (vp) gene, was amplified from the genomic DNA of BmDNV (Zhenjiang strain) by polymerase chain reaction (PCR).
    Sequenced and analyzed with Dna-star software, the nucleotide sequence of the cloned structural protein (vp) gene and its deduced amino acid sequence are highly homologous with its homologue in BmDNV Yamanashi strain, with the identity of 98.1% and 98.6% respectively. Compared with Yamanashi strain, 29 bases and 7 amino acids of the vp gene were substituted in Zhenjiang strain, respectively. No reading frame shift mutant was observed. The newly determined sequence has been submitted to GeneBank and the accession number is AY 236978.
    2. Based on nucleotide sequences of BmDNV (Yamanashi strain) VD2 segment, oiigonuclotide primers toward between two open reading frames (ORFs) on DNA of the virus was designed. Another fragment of nucleotide sequences about 1.0 Kb was generated from BmDNV (Zhenjiang strain) by polymerase chain reaction (PCR).
    Sequenced and analyzed with Dna-star software, the similarity between the corresponding region of Zhenjiang strain and Yamanashi strain was 98.5%. 15 nucleotide mutants, including 3 gaps, were found in the segment.
    3. On-line searching with Blast software in NCBI data base, no homologous sequences were found except DNA sequence of Densovirus Yamanashi strain.
    4. The major structural protein (vp) gene of BmDNV (Zhenjiang strain) was inserted into between the EcoRI and BamHI sites of the multiple cloning sites (MCS) of the expression plasmid pET-28a under the inducible promoter LacZ. Transformed and expressed in E.coli BL21(DE3), a 53KD protein, identical to the predicted molecular mass, was demonstrated by SDS-PAGE analysis. The product can react with polyclonal antibody of virus specifically by Western-blotting assay. This indicated that the
    
    
    cloned gene was viral structural protein gene.
    5. The above results indicate that the genome of BmDNV Zhenjiang strain composes of two DNA segments as BmDNV Yamanashi strain does. The two BmDNVs are highly homologous in nucleotide sequences (about 98%) and no other homologous sequence was found in NCBI data base. These results reveal that the two BmDNVs are different isolate of the same virus.
引文
1.川濑茂实.1990.家蚕浓核病毒.鲁兴萌译.国外蚕业.1990(2):9-13.
    2.戴仁鸣,孙玉昆,胡雪芳,等.家蚕软化病病毒化学性状研究.蚕业科学,1982,8(4):199—202.
    3.高谦,蔡幼民.1988.家蚕浓核症病毒中国(镇江)株核酸结构的分析.蚕业科学.14(3):138—140.
    4.高谦,蔡幼民,余承鑫,刘爱萍.1989.家蚕对浓核病毒的抗性机制及浓核病毒胚胎传染可能性的初步研究.蚕业科学.15(1):41-44.
    5.郭锡杰,钱元骏.胡雪芳,等.我国家蚕浓核病毒(DNV)寄生部位研究.蚕业科学1985.11(2):93—98.
    6.胡雪芳,王红林,钱元骏,等.我国部分地区家蚕软化病病毒性状鉴定.蚕业科学,1983,9(3):156-166.
    7.李莉,郭海涛,张珈敏,等.黑胸大蠊浓核病毒分类的相关研究.中国病毒学,2003,18(5):486-491.
    8.廖森泰,芦蕴良.1988.广东家蚕浓核病病毒理化性状研究.蚕业科学.14(2):83-86.
    9.吕鸿声著,昆虫病毒与昆虫病毒病,科学出版社,1982,125,305.
    10.吕鸿声.昆虫病毒分子生物学.北京:中国农业科技出版社.1998.p381—400.
    11.钱元骏,郭锡杰,渡部仁.我国和日本家蚕DNV的血清学关系.蚕业科学,1985,11(4):241.
    12.秦俭,易文仲.1988.家蚕浓核症病毒中国(镇江)株不感受性的连锁分析.蚕业科学.14(3):129-132
    13.王开芬,谢天恩.1393.家蚕浓核病毒感染蚕种原代细胞的超显微结构观察.蚕业科学.19(2):113-114
    14.浙江大学主编.家蚕病理学,北京,中国农业出版社.2001,74-80
    15.中国农业科学院蚕业研究所主编.中国养蚕学.上海.上海科技技术出版社.1990.549-566
    16. Abd-Alla A, Jousset FX, Li Y, et al. NS-3 protein of the Junonia coenia densovirus is essential for viral DNA replication in an Ld 652 cell line and Spodoptera littoralis larvae. J Virol, 2004, 78: 790-797.
    17. Abe H, Kobayashi M, and Watanbe H. Mosaic infection with densovirus virus in the midgut epithelium of the silkworm, Bombyx mori. J Invertebr Pathot, 1990, 55:112-117.
    18. Abe H, Sugasaki T. Kanehara M, et al. Identification and genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-2, in the silkworm, Bombyx mori. Genes Genet Syst. 2000, 75: 93-6.
    19. Afanasiev B N and Carlson J C. Densovirinae as gene transfer vehicles. In Faisst S, and Rommelaere J (eds), parvoviruses: from molecular biology to pathology and therapeutic uses. S. Karger, Basel, Switzerland, 2000, p33-58.
    20. Afanasiev B N, Galev E E, Buchatsky I. P, et al. Organization of the densovirus genome, with particular reference to the mosquito densovirus. Dokl. Biol. Sci, 1990, 311:275-278.
    
    
    21. Afanasiev B N, Gaylow E E, Buchatsky L P, et al. Nucleotide sequence and genomic organization of Aeries densonucleosis virus. Virology, 1991,185:323-336
    22. Afanasiev B N, Kozlov Y V, Carlson J O et al. Densovirus ofAedes aegypti as an expression vector in mosqito cells. Exp. Parasitology, 1994, 79: 322-339.
    23. Afanasiev B N, Ward T W, Beaty B J et al. Transduction of Aedes aegypti mosquitoes with vectors derived from Aeries densovirus. Virology, 1999, 257: 62-72.
    24. Bando H, Choi H, Ito Y et al. Terminal structure of a densovirus implies a hairpin transfer replication which is similar to the model for AAV. Virology, 1990, 179: 57-63.
    25. Bando H, Choi H, Ito Y, et al. Structural analysis on the single-stranded genomic DNAs of the virus newly isolated from silkworm: the DNA molecules share a common terminal sequence. Arch Virol, 1992, 124: 187-193.
    26. Bando H, Hayakawa T, Asano S et al. Analysis of the genetic information of a DNA segment of a new virus isolated from silkworm. Arch Virol, 1995,140: 241-247.
    27. Bando H, Kondo N and Kawase S. Molecular homology among the structural proteins of densonucleosis virus from the silkworm, Bombyx mori. Arch Virol, 1984, 80:209-218.
    28. Bando H, Kusuda J, Gojobori T et al. Organization and nucleotide sequence of a densovirus imply a host-dependent evolution of parvoviruses. J Virol, 1987, 61: 553-560.
    29. Bando H, Kusuda J, Kawase S. Molecular cloning and characterization of Bombyx desovirus genome. Arch Virol, 1987, 93: 139-146.
    30. Bando H, Nakagaki M, and Kawase S. Polymines in densonucleosis virus from the silkworm, Bombyx mori. J Invertebr Pathol, 1983, 42: 264-266.
    31. Bergeron J, Bert BH, and Tijssen P. Genome organization of the Kresse Strain of Porcine Parvovirus: identification of the allotropicdeterminant and comparison with those of NADL-2 and field isolates. J. Virol, 1996, 70: 2508-2515.
    32. Bossin H, Fournier P, Royer C, et al. Junonia coenia densovirus-based vectors for stable transgene expression in Sf9 cells: influence of the densovirus sequences on genomic integration. J Virol, 2003, 77: 11060-11071.
    33. Boublik Y, Jousset F W, and Bergoin M. Complete nucleotide sequence and genomic organization of the Aedes albopictus parvovirus (AaPV) pathogenic for Aedes aegypti larvae. Virology, 1994, 200: 752-763.
    34. Boublik Y. Jousset F X and Bergoin M. Structure, restriction map and infectivity of the genomic and replicative forms of AaPV DNA. Arch Virol, 1994, 137: 229-40.
    35. Brownstein DG, Smith AL, Johnson EA, et al. The pathogenesis of infection with minute virus of mice depends on expression of the small nonstructural protein NS2 and on the genotype of the allotropic determinants VP1 and VP2. Virology, 1992, 66:3118-3124.
    36. Chang SF, Sgro JY, and Parrish CR. Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the canine host range and specific antigenic and hemagglutination properties. J. Virol. 1992, 66: 6858-6867.
    
    
    37. Chen S, Cheng L, Zhang Q, et al. Genetic, biochemical, and structural characterization of a new densovirus isolated from a chronically infected Aedes albopictus C6/36 cell line. Virology, 2004, 318: 123-133.
    38. Cotmore S, D'Abramo Jr A M, Carbonell L F et al. The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells. Virology, 1997, 231: 267-280.
    39. Ding C, Urabe M, Bergoin M, et al. Biochemical characterization of Junonia coenia densovirus nonstructural protein NS-I. J Virol, 2002, 76: 338-345.
    40. Dumas B, Jourdan M, Pascaud A M et al. 1992. Complete nucleotide sequence of the cloned infectious genome of Junonia coenia densovirus reveals an organization unique among parvoviruses. Virology, 1992, 191: 202-222.
    41. Eguchi R, Furuta Y and Ninaki O. 1986. Dominant nonsusceptibility to densonucleosis virus in the silkworm,Bombyx mori. J Seric Sci Jpn,, 1986, 55: 177-178.
    42. Fediere G, El-Far M, Li Y, et al. Expression strategy of densonucleosis virus from Mythimna loreyi. Virology, 2004, 320:181-189.
    43. Fediere G, Li Y, Zadori Z et al. 2002.Genome organization of Casphalia extranea Densovirus, a new Iteravirus. Virology,2002, 292:299-308
    44. Fox JM, Stevenson MA, Bloom ME. Replication of Aleutian Mink Disease Parvovirus in vivo is influenced by residues in the VP2 Protein. J. Viro, 1999, 73: 8713-8719.
    45. Giraud C, Devauchelle G and Bergoin M. The densovirus of Junonia coenia (Jc DNV) as an insect cell expression vector. Virology, 1992, 186:207-218.
    46. Govindasamy L, Hueffer K, Parrish CR, et al. Structures of Host Range-Controlling Regions of the Capsids of Canine and Feline Parvoviruses and Mutants. J. Virol, 2003, 77: 12211-12221.
    47. Gross O and Tal J. Expression of the insect parvovirus GmDNV in vivo: structural and nonstructural proteins are encoded by opposite DNA strands. J Invertebr Pathol, 2000, 75: 126-132.
    48. Guo H, Zhang J, and Hu Y. Complete sequence and organization of Periplaneta fuliginosa densovirus genome. Acta Virol, 2000, 44:315-322
    49. Hayakawa T, Asano S, Sahara K et al. Detection of replicative intermediate with closed terminus of Bornbyx mori densonucleosis virus. Arch Virol, 1997, 142:393-399
    50. Hayakawa T, Kojima K, Nonaka K et al. Analysis of protein encoded in bipartite genome of a new type of parvo-like virus isolated from silkworm-structural protein with DNA polymerase motif. Virus Res, 2000, 66:101-108
    51. Hu Y, Zheng J, Iizuka Y, et al. A densovirus newly isolated from the smoky-brown cockroach Periplaneta fuliginosa. Arch Virol, 1994, 138: 365-372.
    52. Iwashita Y, and Chun C Y. The development of a densonucleosis virus isolated from silkworm larvae, Bombyx mori, of China. In "The ultrastructure and functioning of Insect Cell" (Akai H, King R C, Morohoshi S. Eds), 1982, p161-164.
    53. Jourdan M, Jousset FX, Gervais M, et al. Cloning of the genome of a densovirus and rescue of infectious virions from recombinant plasmid in the insect host Spodoptera littoralis. Virology, 1990, 179:
    
    403-409.
    54. Jousset FX, Baquerizo E, Bergoin M.A new densovirus isolated from the mosquito Culex pipiens (Diptera: culicidae), Virus Res, 2000, 67:11-16.
    55. Jousset FX, Barreau C, Boublik Y, et al. A parvo-like virus persistently infecting a C6/36 clone of Aedes albopictus mosquito cell line and pathogenic for Aedes aegypti larvae. Virus Res, 1993, 29: 99-114.
    56. Kawase S, Cai Y M, Bando H, et al. Chemical properties of the Yamanashi isolate of the Bombyx densonucleosis virus. J Seric Sci Jpn, 1984, 53: 341-347.
    57. Kittayapong P, Baisley K J, O'Neill SL A mosquito densovirus infecting Aedes aegypti and Aedes albopictus from Thailand. Am J Trop Med Hyg, 1999, 61: 612-617.
    58. Kobayashi M, Hashimoto Y, Seki H, et al. In vitro translation of RNA from the midgut of the silkworm, Bombyx mori, infected with a densonucleosis virus. J Invertebr Pathol, 1988, 52: 259-267.
    59. Kojima K, Hirano A, Shin-ichiro Asano et al. Analysis of the BmDNV-2 specific DNA polymerase and the common terminal sequence binding proteins. J Seric Sci Jpn, 2001, 70:103-108
    60. Kurihara Y, Watanabe H, Maeda S, et al. Chemical characteristics of a previously undescribed densonucleosis virus isolated from the silkworm Bombyx mori. J Seric Sci Jpn, 1984, 53: 33-40.
    61. Li Y, Zadori Z, Bando H et al. Genome organization of the densovirus from Bombyx mori (BmDNV-1) and enzyme activity of its capsid. J GenVirol, 2001, 82:2821-2825
    62. Mukha DV, Schal K. A densovirus of German cockroach Blatella germanica: detection, nucleotide sequence and genome organization. Mol Blot (Mosk), 2003, 37: 607-618.
    63. Naeger L K, Cater J and Pintel D J. The small nonstructural protein (NS2) of the parvovirus minute Virus of mice is required for the efficient replication and infectious virus production in a cell-type specific manner. J Virol, 1990, 64:6166-6175
    64. Naeger L K, Salome N and Pintel D J. NS2 is required for efficient translation of viral mRNA in minute virus of mice-infected murine cells. J Virol, 1993, 67:1034-1043.
    65. Nakagaki M and Kawase S. DNA of a new parvo-like virus isolated from the silkworm Bombyx mori. J Invertebr Pathol, 1980, 35:124-133
    66. Nakagaki M, Morinaga T, Chun-qin Zhou et al. 1999. Increasing curves of two virus DNAs in the midgut epithelium of infected with Bombyx mori densocleosis virus type 2(BmDNV-2). J Seric Sci Jpn, 1999, 68:173-180
    67. Ogoyi DO, Kadono-Okuda K. Eguchi R. et at. Linkage and mapping analysis of a non-susceptibility gene to densovirus (nsd-2) in the silkworm, Bombyx mori. Insect Mol Biol, 2003, 12:117-124.
    68. Oie KL, Durrant G. Wolfinbarger JB, et al. The relationship between capsid protein (VP2) sequence and pathogenicity, of Aleutian mink disease parvovirus (ADV): a possible role for raccoons in the transmission of ADV infections. J. Virol, 1996, 70:852-861.
    69. Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: A Laboratory Manual. 2na,New York: Cold Spring Harbor Laboratory Press, 1989
    70. Seki H, Iwashita Y. Histopathological features and pathogenicity of densonucleosis virus
    
    (Yamanashi isolate) in the silkworm. Bombyx mori. isolated from seicultural farms in Yamanashi prefecture. J Seric Sci Jpn, 1983, 52: 400-405.
    71. Seki H, Kawase S. Excretion of viruses from the silkworm larvae infected with DNV (Yamanashi isolate) and purification of the virus from feces. J Seric Sci Jpn, 1985, 54: 523-524.
    72. Shike H, Dhar A K, Burns J C et al. Infectious hypodermal and hematopoietic necrosis virus of shrimp is related to mosquito brevidensoviruses. Virology, 2000, 277:167-177
    73. Shimizu T. Pathogenicity of an infectious flacherie virus of the silkworm, Bombyx mori, obtained from sericulturat farms in the suburbs of Ina city. J Seric Sci Jpn, 1975, 44: 45-48.
    74. Simpson AA, Chipman PR, Baker TS, et al.The structure of an insect parvovirus (Galleria mellonella densovirus) at 3.7 A resolution. Structure, 1998, 6:1355-1367.
    75. Soares RM, Cortez A, Heinemann MB, et al. Genetic variability of porcine parvovirus isolates revealed by analysis of partial sequences of the structural coding gene VP2. J Gen Virol, 2003, 84: 1505-1515.
    76. Sotoshiro H, Ikeda M, and Kobayashi M. Comparative analysis of Bombyx mori (Lepidoptera: Bombycidae) densovirus type 2 polypeptides synthesized in vivo and in vitro. Appl Entomol Zool, 1996. 31:154-159
    77. Sotoshiro H, Ikeda M, and Kobayashi M. ldentification of a novel virus-specific in vitro translation product in the midgut of silkworm, Bombyx mori, infected with B. mori densovirus type 2. J seric Sci Jpn, 1997, 66:38-47
    78. Sotoshiro H, Kobayashi M. Identification of viral structural polypeptides in the midgut and feces of the silkworm, Bombyx mori, infected with Bombyx Densovirus Type 2. J Invertebr Pathol, 1995, 66:60-67.
    79. Stevenson MA, Fox JM, Wolfinbarger JB, et al. Effect of a valine residue at codon 352 of the VP2 capsid protein on in vivo replication and pathogenesis of Aleutian disease parvovirus in mink. Am J Vet Res, 2001, 62: 1658-1663.
    80. Thao M L, Wineriter S, Buckingham G et al. 2001 Genetic characterization of a putative Densovirus from the mealybug Planococcus citri. Current microbiology, 2001, 43: 457-458.
    81. Tijssen P, Bergoin M. Densonucleosis viruses constitute an increasingly diversified subfamily among the parvovirus. Semin Virol, 1995, 6: 347-355.
    82. Tijssen P, Li Y, El-Far M, et al. Organization and expression strategy of ambisense genome of desonucleosis virus of Galleria mellonella. J. Virol, 2003, 77: 10357-10365.
    83. van Munster M, Dullemans AM, Verbeek M, et al. Characterization of a new densovirus infecting the green peach aphid Myzus persicae. J Invertebr Pathol, 2003, 84: 6-14.
    84. van Munster M, van den Heuvel J F J M and van der Wilk F. A new virus infecting Myzus persicae has a genome organization similar to the species of the genus Densovirus. J Gen Virol, 2003, 84: 165-172.
    85. van Regenmortel, M. H.V, Fauquet C, et al. Virus taxonomy: classification and nomenclature of virus. The seventh report of the International Committee on Taxonomy of viruses. Academic Press, San
    
    Diego, Calif, 2000.
    86. Vasudevacharya J and Compans RW. The NS and capsid genes determine the host range of porcine parvovirus. Virology, 1992, 187:515-524.
    87. Vihinen-Ranta M, Wang D, Weichert WS, et al. The VP1 N-Terminal sequence of Canine Parvovirus affects nuclear transport of capsids and efficient cell infection. J. Virol, 2002, 76:1884 - 1891.
    88. Vihinen-Ranta M, Yuan W, and Parrish CR. Cytoplasmic trafficking of the Canine Parvovirus capsid and its role in infection and nuclear transport J. Virol, 2000, 74:4853 - 4859.
    89. Weichert WS, Parker JS, Wahid AT, et al. Assaying for structural variation in the parvovirus capsid and its role in infection. Virology, 1998, 250:106-117.
    90. Ward T W, Kimmick M W, Afanasiev B N et al. Characterization of the Structural Gene Promoter of Aedes aegypti Densovirus. J Virol, 2001, 75:1325-1331.
    91. Watanabe H, Kawase S, Shimizu T, et al. Difference in serological characteristics of densonucleosis viruses in the silkworm, Bombyx mori. J Seric Sci Jpn, 1986, 55: 75-76.
    92. Watanabe H, Kurihara Y. Comparative histopathology of two densonucleosis in the silkworm, Bombyx mori. J Invertebr Pathol, 1988, 51: 287-290.
    93. Yamagishi J, Hu Y, Zheng J et al. Genome organization and mRNA structure of Periplaneta fuliginosa densovirus imply alternative splicing involvement in viral gene expression. Arch Virol, 1999, 144:2111-2124.
    94. Zadori Z, Szelei J, Lacoste M, et al. A viral phospholipase A2 is required for parvovirus infectivity. Dev cell, 2000, 1:291-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700