Goldenhar综合征家系收集、表型分析和遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:分析Goldenhar综合征的表型为该病的临床诊断提供依据;收集Goldenhar患者的遗传资料,为揭示此类疾病的遗传基础及发生机制奠定基础。
     方法:分析69例Goldenhar综合征患者的临床资料及表型间的相关性。采集一Goldenhar综合征家系的全部成员及4组核心家系成员的的新鲜血液,试剂盒提取全基因组DNA。
     结果:69例患者中,绝大多数为散发(91.3%),男女患病机会均等;双侧受累39例(56.5%),单侧受累30例(43.5%,左14:右16);耳前赘(88.4%)、眼球皮样瘤(84.1%)和其它眼异常(52.2%)是主要症状,半侧颜面短小与口面裂、颌发育不良、除耳廓畸形及耳前赘外的其它耳异常呈正相关(p<0.05),智力障碍与脑发育不良、视力减退、语言障碍、除耳廓畸形及耳前赘外的其它耳异常成明显正相关(p<0.01)。收集到一Goldenhar综合征家系内的4例患者及11例正常家系成员和4例散发患者及其父母的高质量DNA样本。
     结论:Goldenhar综合征表型复杂多样,属于相关发育领域的表型常伴发出现;双侧受累的患者往往症状更严重,累及更多器官系统的发育不良,需要接受更详细的临床检查。收集了一Goldenhar综合征家系及4组父母-患者核心家系的DNA,是国内宝贵的遗传资源,为揭示此类疾病的遗传基础及发生机制奠定了良好的基础。
     目的:为探索Goldenhar综合征的致病原因,筛查8例患者的SALL1和TCOF1基因突变情况。
     方法:取8例患者及其父母和正常同胞的基因组DNA,PCR扩增SALL1和TCOF1的全部外显子及部分内含子,用直接双向测序、Blast比对进行突变分析。
     结果:在SALL1基因中发现2个多态数据库已报道的单核苷酸多态;在TCOF1基因中发现了7个序列变异,其中6个已被报道为多态,1个为新发现的内含子突变。所有序列变异都存在于患者的正常亲属中,与疾病表型无共分离现象。
     结论:未发现此8例患者在SALL1和TCOF1基因中的致病性突变,支持Goldenhar综合征在遗传基础上是有别于TBS和TCS的一种独立疾病。
     目的:分析Goldenhar综合征患者的基因组拷贝数变异,寻找与该疾病相关的位点。
     方法:采用Human CNV370-Quadv3-0芯片对家系成员及4组父母-患者核心家系进行拷贝数变异(Copy Number Variation,CNV)的基因分型研究,芯片扫描结果用BeadStudio软件进行CNV分析,并对一个可能与患者表型相关的新发拷贝数变异进行real-time PCR验证。
     结果:CNV分析在三个散发患者中发现10个新发的拷贝数变异,综合考虑DGV数据库、27个正常对照样本以及CNV区域的基因信息情况,推测其中分别位于5q13.2、1q31.1和8p23.1区域的CNV可能与对应患者的表型相关,并用real-time PCR证实了5q13.2区域内的CNV在患者GS1中的存在。家系内CNV分析发现153个CNVs,但患者和正常个体间在CNVs数量和大小方面都没有明显差异,未发现与患者表型相关的CNV。
     结论:通过CNV分析,发现位于5q13.2的单拷贝缺失、1q31.1的重复和8p23.1的单拷贝缺失可能分别与对应患者的表型相关。在一Goldenhar综合征家系的全基因组扫描数据中,没有发现与患者表型共分离的拷贝数突变,可能即使在同一家族内,其病因也是非常复杂的,要阐明此类疾病的遗传基础将是一个非常具有挑战性的任务。
Objective To analyze the clinical phenotype and apply the referenced diagnose for Goldenhar syndrome; To collect the genetic resourse of Goldenhar syndrome for providing us with the information to explore etiological factors for this disorder.
     Methods A series of 69 patients with Goldenhar syndrome were retrospectively reviewed, and Pearson's correlation analysis were performed. and their unaffected parents were collected with genome DNA. Genomic DNA was extracted from peripheral blood samples of the members of a family with Goldenahr syndrome and another four family Trios (father, mother and patient) using a genomic DNA purification kit.
     Results Of the 69 patients with Goldenhar syndrome, Most cases (91.3%) were sporadic, and 34 patients were male and 35 patients were female, Bilateral involvement was present in 39 cases (56.5%), whereas 30 cases (43.5%,14 showed on the left side and 16 on the right side) were unilateral affected. Preauricular tag (88.4%), epibulbar dermoids (84.1%) and other anomalies of the eyes (52.2%) were mail clinical signs, and hemifacial microsomia correlated with orofacial cleft, dysplasia of maxilla and/or mandible, and anomalies of the ears, other than malformed auricle and preauricular tag (p<0.05). Dysnoesia clustered with brain anomalies, visual deterioration, delay of speech development, and anomalies of the ears, other than malformed auricle and preauricular tag (p<0.01). A family with 5 Goldenhar syndrome patients and the Trios families of 4 sporadic cases were collected with genomic DNA.
     Conclusion Goldenhar syndrome is a complex condition and shows variable phenotypes, and some clinical signs belonging to the associated developmental fields often appeared together. Patients with bilateral involvement often suffered more developmental abnormalities and required more careful examinations. The genetic resource of one family with Goldenhar syndrome and another 4 Trios families were collected for providing us with the information to reveal the aetiology mechanism of this disorder.
     Objective Mutation screen of SALL1 and TCOF1 in eight patients with Goldenhar syndrome to explore the pathogenic cause of this complex disorder.
     Methods eight patients and their unaffected relatives were collected with clinical data and genome DNA. All the exons and some of the introns of SALL1 and TCOF1 were amplified by polymerase chain reaction (PCR) and the PCR products were subjected to autotic DNA sequencing.
     Results Two polymorphic sites in SALL1 and seven variants in TCOF1 were detected, and all the variants also presented in the unaffected individuals, showing no mutation segregating with the disease.
     Conclusion Pathogenic mutation of SALL1 and TCOF1 were excluded in these patients, supporting that Goldenhar syndrome is a specific entity.
     Objective Investigate the copy number variations (CNVs) in a family with Goldenhar syndrome and four sporadic patients to identify possible susceptibility locus.
     Methods Genomic DNA of 13 family members and 4 family Trios(father, mother and patient) was genotyped with Illumina Human 370 Genotyping BeadChip. Results were analyzed using Beadstudio software to identify CNVs. Then, one de novo CNV region which may be associated with the disorder was validated by real-time PCR.
     Results Ten de novo CNVs were identified in 3 sporadic patients. After analyzing the information of database of genomic variants (DGV), CNVs of 27 health controls and all the genes in the 10 CNV regions, three CNVs located on 5q13.2,1q31.1 and 8p23.1 may be considered to associate with Goldenhar syndrome. Then, the CNV on 5q13.2 was confirmed by real-time PCR. A total of 153 CNVs were identified in the family with 5 Goldenhar syndrome patients, but there were no significant differences of the CNV number (p=0.649, t-test) or CNV size (p=0.304, Wilcoxon Mann-Whitney test) between the affected and unaffected individuals, and no clear copy number variation was identified responsible for Goldenhar syndrome in this family.
     Conclusion A microdeletion in 5q13.2, a microreplication in 1q31.1 and a microdeletion in 8p23.1 may be associated with Goldenhar syndrome. CNV analysis in the family identified no causative variant, indicating that a complex aetiology may be present even in a consanguineous family, which makes the ascertainment of the cause of Goldenhar syndrome challenging.
引文
[1]Gorlin R J, Jue K L, Jacobson U, et al. Oculoauriculovertebral dysplasia.J Pediatr,1963,63:991-999.
    [2]Araneta M R, Moore C A, Olney R S, et al. Goldenhar syndrome among infants born in military hospitals to Gulf War veterans. Teratology,1997,56 (4):244-251.
    [3]Harris J, Kallen B, Robert E. The epidemiology of anotia and microtia. J Med Genet,1996,33:809-813.
    [4]Mastroiacovo P, Corchia C, Botto L D, et al. Epidemiology and genetics of microtia-anotia:a registry based study on over one million births. J Med Genet, 1995,32:453-457.
    [5]Morrison P J, Mulholland H C, Craig B G, et al. Cardiovascular abnormalities in the oculo-auriculo-vertebral spectrum (Goldenhar syndrome). Am J Med Genet, 1992,44 (4):425-428.
    [6]Vendramini-Pittoli S, Kokitsu-Nakata NM. Oculoauriculovertebral spectrum: report of nine familial cases with evidence of autosomal dominant inheritance and review of the literature.Clin Dysmorphol.2009,18(2):67-77.
    [7]Passos-Bueno, Ornelas C C, Fanganiello R D. Syndromes of the first and second pharyngeal arches:A review. Am J Med Genet A,2009,149A(8):1853-1859.
    [8]Cousley R R. A comparison of two classification systems for hemifacial microsomia. Br J Oral Maxillofac Surg,1993,31(2):78-82.
    [9]Vento A R, LaBrie R A, Mulliken J B. et al. classification of hemifacial microsomia, Cleft Palate Craniofac J,1991,28(1):68-76.
    [10]Rollnick BR, Kaye CI, Nagatoshi K, et al. Oculoauriculovertebral dysplasia and variants:phenotypic characteristics of 294 patients. Am J Med Genet, 1987,26 (2):361-375.
    [11]Tasse C, Bohringer S, Fischer S, et al. Oculo-auriculo-vertebral spectrum (OAVS):clinical evaluation and severity scoring of 53 patients and proposal for a new classification. Eur J Med Genet,2005,48(4):397-411.
    [12]Hartsfield J K. Review of the etiologic heterogeneity of the oculo-auriculo-vertebral spectrum (Hemifacial Microsomia). Orthod Craniofac Res,2007,10(3):121-8.
    [13]Bekibele CO, Ademola SA, Amanor-Boadu SD, et al. Goldenhar syndrome:a
    case report and literature review. West Afr J Med,2005,24(1):77-80.
    [14]Rollnik B R. Oculoauriculovertebral anomaly:variability and causal heterogeneity. Am J Med Genet, Suppl.1988,4:41-53.
    [15]ROllnik. Kaye C I. Hemifacial microsomia and variants:pedigree data. Am J Med Genet,1983,15:233-253.
    [16]Gorlin R J. Branchial arch and oro-acral disorders. In:Gorlin RJCMJ, Hennekam RCM, editors. Syndromes of the Head and Neck.3rd edition. Oxford:Oxford University Press.2001:790-849.
    [17]Izumikawa Y. Oculo-auriculo-vertebral spectrum.Ryoikibetsu Shokogun Shirizu,2000, (30 Pt 5):220-221
    [18]Lafay-Cousin L, Payne E, Strother D, et al. Goldenhar phenotype in a child with distal 22q11.2 deletion and intracranial atypical teratoid rhabdoid tumor.Am J Med Genet A,2009,149A(12):2855-2859.
    [19]Botzenhart EM, Bartalini G, Blair E, et al. Townes-Brocks syndrome:twenty novel SALL1 mutations in sporadic and familial cases and refinement of the SALL1 hot spot region. Hum Mutat,2007,28:204-205.
    [20]Marszalek B, Wojcicki P, Kobus K, et al.Clinical features, treatment and genetic background of Treacher Collins syndrome. J Appl Genet,2002, 43:223-233.
    [21]Kohlhase J, Wischermann A, Reichenbach H, et al. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet, 1998,18(1):81-3.
    [22]Kohlhase J, Taschner PE, Burfeind P, et al. Molecular analysis of SALL1 mutations in Townes-Brocks syndrome. Am J Hum Genet,1999,64:435-445.
    [23]Kosaki R, Fujimaru R, Samejima H, et al. Wide phenotypic variations within a family with SALL1 mutations:Isolated external ear abnormalities to Goldenhar syndrome. Am J Med Genet Part A,2007,143:1087-1090.
    [24]Keegan CE, Mulliken JB, Wu BL, et al. Korf BRTownes-Brocks syndrome versus expanded spectrum hemifacial microsomia:review of eight patients and further evidence of a "hot spot" for mutation in the SALL1 gene. Genet Med, 2001,3:310-313.
    [25]Balestrazzi P, Baeteman MA, Mattei MG, et al. Franceschetti syndrome in a child with a de novo balanced translocation (5;13)(q11;p11) and significant decrease of hexosaminidase B. Hum Genet,1983,64(3):305-308.
    [26]Dixon MJ, Dixon J, Houseal T, et al. Narrowing the position of the Treacher Collins syndrome locus to a small interval between three new microsatellite markers at 5q32-33.1. Am J Hum Genet,1993,52(5):907-914.
    [27]Splendore A, Passos-Bueno MR, Jabs EW, et al. TCOF1 mutations excluded from a role in other first and second branchial arch-related disorders. Am J Med Genet,2002,111:324-327.
    [28]Thiel CT, Rosanowski F, Kohlhase J, et al. Exclusion of TCOF1 mutations in a case of bilateral Goldenhar syndrome and one familial case of microtia with meatal atresia. Clin Dysmorphol,2005,14:67-71.
    [29]Su PH, Yu JS, Chen JY, et al. Mutations and new polymorphic changes in the TCOF1 gene of patients with oculo-auriculo-vertebral spectrum and Treacher-Collins syndrome. Clin Dysmorphol,2007,16:261-267.
    [30]Kelberman D, Tyson J, Chandler D.C. Hemifacial microsomia:progress inunderstanding the genetic basis of a complex malformation syndrome.Hum Genet.2001,109:638-645.
    [31]潘博,林琳,蒋海越,等.先天性小耳畸形家系收集和遗传学研究.中国美容医学,2007,16:1023-1026.
    [32]Kohlhase J, Taschner PE, Burfeind P, et al. Molecular analysis of SALL1 mutations in Townes-Brocks syndrome. Am J Hum Genet,1999,64:435-445.
    [33]肖玲,胡正茂,黄雪霜,等.一个Goldenhar综合征家系的eyal基因突变检测.中国现代医学,2009,19(24):3745-3747.
    [34]Teber OA, Gillessen-Kaesbach G, Fischer S, et al. Genotyping in 46 patients with tentative diagnosis of Treacher Collins syndrome revealed unexpected phenotypic variation. Eur J Hum Genet,2004,12:879-890.
    [35]谢雨芳,田鸾英,孙彦香,等.新生儿Goldenhar综合征(眼、耳、脊柱综合征)一例.中华围产医学杂志,2006,5:324.
    [36]黄雪霜,姜海鸥,张建湘,等.Goldenhar综合征一家系的临床表型和遗传学分析.中国优生与遗传杂志,2006,14:112-114,126.
    [37]Ying Liang, Dihua Shen, Wei Cai.Two coding single nucleotide polymorphisms in the SALL1gene in Townes-Brocks syndrome:a case report and review of the literature. Journal of Pediatric Surgery,2008,43:391-393.
    [38]Hedera P, Toriello HV, Petty EM. Novel autosomal dominant mandibulofacial dysostosis with ptosis:clinical description and exclusion of TCOF1. J Med Genet.2002,39(7):484-488.
    [39]So RB, Gonzales B, Henning D, et al. Another face of the Treacher Collins syndrome (TCOF1) gene:identification of additional exons.Gene.2004,328: 49-57.
    [40]Goodin K, Prucka S, Woolley AL, et al. Familial transmission of Oculoauriculovertebral spectrum (Goldenhar syndrome) is not due to mutations in either EYA1 or SALL1. Am J Med Genet Part A,2009,149A:535-538.
    [41]黄雪霜,张建湘.Goldenhar综合征的研究现状.中国优生与遗传杂志,2006,14:123-124,39.
    [42]Ala-Mello S, Siggberg L, Knuutila S, et al. Further evidence for a relationship between the 5p15 chromosome region and the oculoauriculovertebral anomaly. Am J Med Genet A.2008,146A:2490-2494.
    [43]Neu KW, Friedman JM, Howard-Peebles PN. Hemifacial microsomia in cri du chat (5p-) syndrome. J Craniofac Genet Dev Biol.1982,2:295-298
    [44]Ladekarl S. Combination of Goldenhar's syndrome with the Cri-Du-Chat syndrome, Acta Ophthalmol,(Copenh.) 1968,3:605-610.
    [45]Josifova DJ, Patton MA, Marks K. Oculo-auriculo-vertebral spectrum phenotype caused by an unbalanced t(5;8)(p15.31;p23.1) rearrangement.Clin Dysmorphol.2004,13:151-153
    [46]Choong YF, Watts P, Little E, et al.. Goldenhar and cri-du-chat syndromes:a contiguous gene deletion syndrome?J AAPOS.2003,7:226-227
    [47]Descartes M. Oculoauriculovertebral spectrum with 5p15.33-pter deletion. Clin Dysmorphol.2006,15:153-4
    [48]Herman GE, Greenberg F, Ledbetter DH. Multiple congenital anomaly/mental retardation (MCA/MR) syndrome with Goldenhar complex due to a terminal del(22q). Am J Med Genet,1988,29:909-915.
    [49]Derbent M, Yilmaz Z, Baltaci V,et al. Chromosome 22q11.2 deletion and phenotypic features in 30 patients with conotruncal heart defects. Am J Med Genet A,2003,116A:129-135.
    [50]Balci S, Engiz O, Yilmaz Z, et al. Partial trisomy (11;22) syndrome with manifestations of Goldenhar sequence due to maternal balanced t(11;22). Genet Couns,2006,17:281-289.
    [51]Xu J, Fan YS, Siu VM. A child with features of Goldenhar syndrome and a novel 1.12 Mb deletion in 22q11.2 by cytogenetics and oligonucleotide array CGH:Is this a candidate region for the syndrome? Am J Med Genet Part A,
    2008,146A:1886-1889.
    [52]Redon R, Ishikawa S, Fitch K R, et al. Global variation in copy number in the human genome. Nature,2006,444(7118):444-454
    [53]McCarroll S A, Kuruvilla F G, Korn J M, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet, 2008,40(10):1166-1174
    [54]Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic Traits:closer to the resolution of phenotypic to genotypic ariability. Nature Reviews Genetics,2007,8:639-646.
    [55]Xu B, Roos JL, Levy S, et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet,2008,40(7):880-885.
    [56]Callier P, Faivre L, Thauvin-Robinet C, et al. Array-CGH in a series of 30 patients with mental retardation, dysmorphic features, and congenital malformations detected an interstitial 1p22.2-p31.1 deletion in a patient with features overlapping the Goldenhar syndrome. Am J Med Genet Part A, 2008,146A:2109-2115.
    [57]BeadStudio Genotyping Module(GT)User Guide Version 3, Illumina Inc.
    [58]Lupski JR, Stankiewicz P. Genomic disorders:molecular mechanisms for rearrangemen PLoS Genet,2005,1(6):e49.
    [59]McCarroll SA, Hadnott TN, Perry GH,et al. Common deletion polymorphisms in the human genome.Nat Genet,2006,38(1):86-92.
    [60]Stranger BE,Forrest MS,Dunning M,et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science,2007, 315(5813):848-853.
    [61]Kleinjan DA, van Heyningen V. Long-range control of gene expression: emerging mechanisms and disruption in disease.Am J Hum Genet,2005, 76(1):8-32.
    [62]Collins KA, Eydoux P, Duncan AM, et al. Phenotypic manifestation in a child with 46,X,der(X)t(X;1)(q24;q31.1). Am J Med Genet,2000,91(5):345-347.
    [63]Utine GE, Aktas D, Alanay Y, et al. Distal partial trisomy 1q:report of two
    cases and a review of the literature.Prenat Diagn,2007,27(9):865-871.
    [64]Christiansen LR, Lage JM, Wolff DJ, et al. Mosaic duplication 1(q11q44) in an infant with nephroblastomatosis and mineralization of extraplacental membranes. Pediatr Dev Pathol,2005,8(1):115-123.
    [65]Machlitt A, Kuepferling P, Bommer C, et al. Prenatal diagnosis of trisomy 1q21-qter:case report and review of literature.Am J Med Genet A,2005, 134A(2):207-211.
    [66]Aboura A, Coulomb-L'Hermine A, Audibert F, et al. De novo interstitial direct duplication 1(q23.1q31.1) in a fetus with Pierre Robin sequence and camptodactyly. Am J Med Genet,2002,108(2):153-159.
    [67]Mrasek K, Kruger G, Bauer I, et al. A new unbalanced chromosomal abnormality in 1 q31.1 to 1q32 without phenotypic consequences. Cytogenet Genome Res,2008,121:286-287.
    [68]Josifova DJ, Patton MA, Marks K. Oculoauriculovertebral spectrum phenotype caused by an unbalanced t(5;8)(p15.31;p23.1) rearrangement. Clin Dysmorphol,2004,13:151-153.
    [69]Ozgen HM, van Daalen E, Bolton PF, et al. Copy number changes of the microcephalin 1 gene (MCPH1) in patients with autism spectrum disorders. Clin Genet,2009,76(4):348-356.
    [70]Wat MJ, Shchelochkov OA, Holder AM, et al. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A,2009,149A(8):1661-1677.
    [71]Hollox EJ, Barber JC, Brookes AJ, et al. Defensins and the dynamic genome: what we can learn from structural variation at human chromosome band 8p23.1. Genome Res,2008,18(11):1686-1697.
    [72]Groth M, Szafranski K, Taudien S, et al. High-resolution mapping of the 8p23.1 beta-defensin cluster reveals strictly concordant copy number variation of all genes. Hum Mutat,2008,29(10):1247-1254.
    [73]Paez MT, Yamamoto T, Hayashi K, et al. Two patients with atypical interstitial deletions of 8p23.1:mapping of phenotypical traits. Am J Med Genet A,2008, 146A(9):1158-1165.
    [74]Baynam G, Goldblatt J, Walpole I. Deletion of 8p23.1 with features of Cornelia de Lange syndrome and congenital diaphragmatic hernia and a review of deletions of 8p23.1 to 8pter? A further locus for Cornelia de Lange syndrome. Am J Med Genet A,2008,146A(12):1565-1570.
    [75]Gu JM, Lim SO, Park YM, et al. A novel splice variant of occludin deleted in exon 9 and its role in cell apoptosis and invasion. FEBS J,2008,275:3145-3156.
    [76]Arkblad E, Tulinius M, Kroksmark AK, et al. A population-based study of genotypic and phenotypic variability in children with spinal muscular atrophy. Acta Paediatr,2009,98:865-872.
    [77]Tsai F J, Tsai C H. Autosomal dominant inherited oculo-auriculo-vertebral spectrum:report of one family. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi,1993,34:27-31.
    [78]Stoll C, Viville B, Treisser A, et al. A family with dominant oculoauriculovertebral spectrum. Am J Med Genet,1998,78:345-349.
    [79]Tasse C, Majewski F, Bohringer S, et al. A family with autosomal dominant oculo-auriculo-vertebral spectrum. Clin Dysmorphol,2007,16:1-7.
    [80]Goodin K, Prucka S, Woolley AL, et al. Familial transmission of oculoauriculovertebral spectrum (Goldenhar syndrome) is not due to mutations in either EYA1 or SALL1. Am J Med Genet A,2009,149A:535-538.
    [81]Vendramini-Pittoli S, Kokitsu-Nakata NM. Oculoauriculovertebral spectrum: report of nine familial cases with evidence of autosomal dominant inheritance and review of the literature. Clin Dysmorphol,2009,18:67-77.
    [82]Kaye CI, Martin AO, Rollnick BR, et al. Oculoauriculovertebral anomaly: segregation analysis. Am J Med Genet,1992,43:913-917.
    [83]Cuervo R, Valencia C, Chandraratna RA, Covarrubias L.Programmed cell death is required for palate shelf fusion and is regulated by retinoic acid.Dev Biol.2002,245(1):145-56.
    [84]林可容,林文涛,余满松.医学综合征大全.北京:中国科学技术出版社,1994,937.
    [85]Krause U. The syndrome of Goldenhar affecting two siblings, Acta Ophthalmol. (Copenh.) 1970,48 (3):494-499.
    [86]Rollnick BR. and Kaye CI. Hemifacial microsomia and variants:pedigree data, Am J Med Genet,1983,15(2):233-253.
    [87]Summitt R, Familial Goldenhar syndrome, Birth Defects,1969,5(2):106-109.
    [88]Rooryck C, Vuphi Y, Souakri N, et al. Characterization of a de novo balanced translocation t(9;18)(p23;q12.2) in a patient with oculoauriculovertebral spectrum. Eur J Med Genet,2010 Feb 2.
    [89]Altshuler D, Pollara VJ, Cowles CR, et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature,2000,407 (6803):513-516.
    [90]Iafrate A J, Feuk L, Rivera M N, et al. Detection of large-scale variation in the human genome. Nat Genet,2004,36(9):949-951.
    [91]Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science,2004,305 (5683):525-528.
    [92]The International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature,2008,455(7210):237-241.
    [93]Vrijenhoek T, Buizer-Voskamp J E, van der Stelt I, et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J HumGenet,2008, 83(4):504-510.
    [94]Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism. Science,2007,316 (5823):445-449.
    [95]Weiss L A, Shen Y, Korn J M, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med,2008,358(7):667-675.
    [96]Bae J S, Cheong H S, Kim J O, et al. Identification of SNP markers for common CNV regions and association analysis of risk of subarachnoid aneurysmal hemorrhage in Japanese population. BiochemBiophys Res Commun,2008,373(4):593-596.
    [97]Yang T L, Chen X D, Guo Y, et al. Genome-wide copy-numbervariation study identified a susceptibility gene, UGT2B17, for osteoporosis. AmJ HumGenet, 2008,83(6):663-674.
    [98]Poswillo D.The pathogenesis of the first and second branchial arch syndrome. Oral Surg Oral Med Oral Pathol,1973,35(3):302-328.
    [99]Francis-West PH, Robson L, Evans DJ.Craniofacial development:the tissue and molecular interactions that control development of the head.Adv Anat Embryol Cell Biol, 2003,169:Ⅲ-Ⅵ,1-138.
    [100]Sun M, Li N, Dong W, et al. Copy-number mutations on chromosome 17q24.2-q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. Am J Hum Genet,2009,84(6):807-13.
    [1]Miller TD, Metry D. Multiple accessory tragi as a clue to the diagnosis of the oculo-auriculo-vertebral (Goldenhar) syndrome. J Am Acad Dermatol.2004,50 (2 Suppl):S11-13.
    [2]Tasse C, Bohringer S, Fischer S, et al.. Oculo-auriculo-vertebral spectrum (OAVS):clinical evaluation and severity scoring of 53 patients and proposal for a new classification. Eur J Med Genet.2005,48:397-411.
    [3]De Catte L, Laubach M, Legein J,et al.. Early prenatal diagnosis of oculoauriculovertebral dysplasia or the Goldenhar syndrome. UltrasoundObstet Gynecol.1996,8:422-423.
    [4]Gorlin R.J. Syndromes of the Head and Neck. Oxford University Press.New York (2001).
    [5]Tasse C, Majewski F, Bohringer S, et al.. A family with autosomal dominant oculo-auriculo-vertebral spectrum. Clin Dysmorphol.2007,16:1-7.
    [6]Kaye CI, Martin AO, Rollnick BR, et al.. Oculoauriculovertebral anomaly: segregation analysis. Am J Med Genet.1992,43:913-917.
    [7]Cousley R, Naora H, Yokoyama M,et al. Validity of the Hfm transgenic mouse as a model for hemifacial microsomia. Cleft Palate Craniofac J.2002,39:81-92.
    [8]黄雪霜,张建湘.Goldenhar综合征的研究现状.中国优生与遗传杂专.2006,14:123-124,39.
    [9]Kelberman D, Tyson J, Chandler D.C. Hemifacial microsomia:progress inunderstanding the genetic basis of a complex malformation syndrome.Hum Genet.2001,109:638-645.
    [10]潘博,林琳,蒋海越,等.先天性小耳畸形家系收集和遗传学研究.中国美容医学.2007,16:1023-1026.
    [11]Botzenhart EM, Bartalini G, Blair E, et al.. Townes-Brocks syndrome:twenty novel SALL1 mutations in sporadic and familial cases and refinement of the SALL1 hot spot region. Hum Mutat,2007,28:204-205.
    [12]Marszalek B, Wojcicki P, Kobus K, et al.Clinical features, treatment and genetic background of Treacher Collins syndrome. J Appl Genet.2002,43:223-233.
    [13]Kohlhase J, Taschner PE, Burfeind P, et al. Molecular analysis of SALL1 mutations in Townes-Brocks syndrome. Am J Hum Genet.1999,64:435-445.
    [14]Kosaki R, Fujimaru R, Samejima H, et al.Wide phenotypic variations within a
    family with SALL1 mutations:Isolated external ear abnormalities to Goldenhar syndrome.Am J Med Genet Part A.2007,143:1087-1090.
    [15]Keegan CE, Mulliken JB, Wu BL, et al..Korf BRTownes-Brocks syndrome versus expanded spectrum hemifacial microsomia:review of eight patients and further evidence of a "hot spot" for mutation in the SALL1 gene. Genet Med.2001,3:310-313.
    [16]Goodin K, Prucka S, Woolley AL, et al..Familial transmission of Oculoauriculovertebral spectrum (Goldenhar syndrome) is not due to mutations in either EYA1 or SALL1. Am J Med Genet Part A. 2009,149A:535-538
    [17]Huang XS, Jiang HO, Xiao L, et al.. Neither TCOF1 nor SALL1 is responsible for Goldenhar syndrome in a Chinese family. (Submitted)
    [18]Huang XS, Xiao L, Li X, et al.. A Novel Deletion on Chromosome 5q13.2 of a Child with Goldenhar Syndrome. (Submitted)
    [19]Su PH, Yu JS, Chen JY,et al.Mutations and new polymorphic changes in the TCOF1 gene of patients with oculo-auriculo-vertebral spectrum and Treacher-Collins syndrome. Clin Dysmorphol.2007 Oct;16(4):261-7
    [20]Thiel CT, Rosanowski F, Kohlhase J,et al.Exclusion of TCOF1 mutations in a case of bilateral Goldenhar syndrome and one familial case of microtia with meatal atresia.Clin Dysmorphol.2005 Apr; 14(2):67-71.
    [21]Splendore A, Passos-Bueno MR, Jabs EW, et al.TCOF1 mutations excluded from a role in other first and second branchial arch-related disorders..Am J Med Genet.2002 Aug 15;111(3):324-7.
    [22]Ala-Mello S, Siggberg L, Knuutila S, et al.Further evidence for a relationship between the 5p15 chromosome region and the oculoauriculovertebral anomaly. Am J Med Genet A.2008,146A:2490-2494.
    [23]Neu KW, Friedman JM, Howard-Peebles PN. Hemifacial microsomia in cri du chat (5p-) syndrome. J Craniofac Genet Dev Biol.1982,2:295-298
    [24]Ladekarl S. Combination of Goldenhar's syndrome with the Cri-Du-Chat syndrome, Acta Ophthalmol. (Copenh.) 1968,3:605-610
    [25]Josifova DJ, Patton MA, Marks K. Oculo-auriculo-vertebral spectrum phenotype caused by an unbalanced t(5;8)(p15.31;p23.1) rearrangement.Clin Dysmorphol.2004,13:151-153
    [26]Choong YF, Watts P, Little E, et al.. Goldenhar and cri-du-chat syndromes:a
    contiguous gene deletion syndrome?J AAPOS.2003,7:226-227
    [27]Descartes M. Oculoauriculovertebral spectrum with 5p15.33-pter deletion. Clin Dysmorphol.2006,15:153-4
    [28]Kobrynski L, Chitayat D, Zahed L,et al. Trisomy 22 and facioauriculovertebral (Goldenhar) sequence. Am J Med Genet.1993,46:68-71
    [29]Herman GE, Greenberg F, Ledbetter DH. Multiple congenital anomaly/mental retardation (MCA/MR) syndrome with Goldenhar complex due to a terminal del(22q). Am J Med Genet.1988,29:909-915.
    [30]Derbent M, Yilmaz Z, Baltaci V,et al..Chromosome 22q11.2 deletion and phenotypic features in 30 patients with conotruncal heart defects. Am J Med Genet A.2003,116A:129-135.
    [31]Balci S, Engiz O, Yilmaz Z, et al.. Partial trisomy (11;22) syndrome with manifestations of Goldenhar sequence due to maternal balanced t(11;22). Genet Couns.2006,17:281-289.
    [32]Xu J, Fan YS, Siu VM. A child with features of Goldenhar syndrome and a novel 1.12 Mb deletion in 22q11.2 by cytogenetics and oligonucleotide array CGH:Is this a candidate region for the syndrome? Am J Med Genet Part A. 2008,146A:1886-1889.
    [33]Wieczorek D, Shaw-Smith C, Kohlhase J,et al.. Esophageal atresia, hypoplasia of zygomatic complex, microcephaly, cupshaped ears, congenital heart defect, and mental retardation-New MCA/MR syndrome in two affected sibs and a mildly affected mother?. Am J Med Genet Part A.2007,143 A:1135-1142.
    [34]Inoue, K, Lupski, J.R. Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet.2002,3:199-242.
    [35]Padiath QS, Saigoh K, Schiffmann R, et al.. Lamin B1 duplications cause autosomal dominant leukodystrophy.Nat. Genet.2006,38:1114-1123.
    [36]Le Marechal C, Masson E, Chen JM, et al.. Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nat. Genet.2006,38:1372-1374.
    [37]Lee J.A., Lupski J.R. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron.2006,52:103-121.
    [38]Fan YS, Jayakar P, Zhu H, et al.. Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum Mutat.2007,9:1124-1132.
    [39]Frank B, Bermejo JL, Hemminki K, Copy number variant in the candidate
    tumor suppressor gene MTUS1 and familial breast cancer risk. Carcinogenesis. 2007,28:1442-1445.
    [40]Xu J, Fan YS, Siu VM.. A child with features of Goldenhar syndrome and a novel 1.12 Mb deletion in 22q11.2 by cytogenetics and oligonucleotide array CGH:Is this a candidate region for the syndrome? Am J Med Genet Part A.2008,146A:1886-1889.
    [41]Callier P, Faivre L, Thauvin-Robinet C, et al.. Array-CGH in a series of 30 patients with mental retardation, dysmorphic features, and congenital malformations detected an interstitial 1p22.2-p31.1 deletion in a patient with features overlapping the Goldenhar syndrome. Am J Med Genet Part A.2008,146A:2109-2115.
    [42]Fischer S, Ludecke HJ, Wieczorek D, et al..Histone acetylation dependent allelic expression imbalance of BAPX1 in patients with the oculo-auriculo-vertebral spectrum Human Molecular Genetics.2006,15:581-587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700