基于派系的复杂网络及其在公交网络上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂网络是近十年来随着计算机技术迅猛发展而兴起的一门综合信息学、数学、物理学、生物学、管理学等众多学科的交叉学科。对复杂网络理论和应用的研究,有助于人们更好的认识网络,鉴别存在于自然和社会中各式各样的实际网络;有助于人们了解网络,揭示实际网络的内在特性和形成规律;有助于人们改进网络,使各种实际网络更好的为人类服务。
     本文从实际网络出发,分别提出了一个无标度网络模型和一个加权演化网络模型;研究了实际公交网络的统计特性,揭示了其网络特征;设计了一个基于加权复杂网络的公交换乘算法;分析了公交网络的社团结构和传播行为。主要研究内容如下:
     提出了一个基于派系增长和优先连接的无标度网络模型。该模型演化的每一步有一个新的派系加入到网络中,并且这个新加入的派系优先与已存在的具有较多连接的派系相连接。仿真结果显示生成网络的节点度分布为无标度幂律分布。将派系视为节点,派系间连接视为边构成一个新的网络,此网络节点的度分布也符合无标度幂律分布。基于平均场理论,给出了该模型节点度分布的解析结果。
     提出了一个基于派系重叠增长的加权演化网络模型。该模型在两种不同的连接机制下(优先连接和随机连接)具有不同的网络特性。利用平均场方法,分别分析了在两种不同机制下产生的网络的节点所属派系数分布和节点强度分布。证明了在优先连接机制下,两种分布都符合幂律分布;在随机连接机制下,两种分布都符合指数分布,并且解析得到了其分布指数。数值模拟结果与解析结果很好地吻合。
     研究了space L描述下的公交网络的平均路径长度、聚类系数、度分布等特性,认为space L描述下的公交网络类似于规则网络,并不具备明显的小世界特性,而其度分布符合幂律分布。随后研究了space P描述下的公交网络的度分布、多重边分布、不同派系之间的重叠节点数分布、每个节点所属派系数分布等规律。并将每个派系看成为一个节点,派系间的重叠看成多重边,构成一个派系网络,研究了该派系网络的平均路径长度、聚类系数和度分布等特性。认为space P描述下的公交网络是一个高度派系重叠、高度派系聚类、具有指数型度分布的小世界网络。最后,根据space P描述下的公交网络的特性,提出一个公交网络演化模型,并基于平均场方法对其进行理论分析。模型的模拟结果和解析结果很好的解释了spaceP描述下的实际公交网络中所呈现的网络特性。
     用space P方法将公交网络建模成为一个无权复杂网络,然后利用广度优先搜索算法得到需换乘两公交站点间的所有最少次数换乘方案。在此基础上,引入了网络点权,即站点的经纬度,进而得到网络的边权,即站点间的直线距离,把公交网络进一步建模成一个加权的复杂网络模型。结合得到的最少换乘次数方案,最终得到一种在保证换乘次数最少的基础上站间总直线距离也最短的换乘方案。用杭州的实际数据验证了此算法的有效性。
     利用改进的社团结构划分方法(PKM凝聚算法)分别对space P和space L描述下的实际公交网络进行社团特性分析。得到的结果说明在space L描述下的公交网络具有明显的社团特性,而在space P描述下的公交网络并不具有社团特性。究其原因是由于space P描述下的公交网络具有高度重叠的性质,用以上方法不能有效辨识出此类型网络的社团结构。因此,我们提出一种新的社团的定义,称之为N-深度社团,并给出了这种社团结构的划分方法。将此定义和划分方法应用到一个公交网络模型上,取得了较好的效果。
     基于SIS传播模型分别在space P描述下的北京、上海和杭州三个实际公交网络上做了传播行为仿真,得到网络中感染节点的密度随时间的变化情况和感染节点的稳态密度随传染率的变化情况。在一个公交网络模型上做了传播行为的仿真研究。利用平均场理论,分析了此模型的传播临界值,与仿真结果一致。
Complex network is a new interdisciplinary science which sprang up with the swift and violent development of the computer technology in recent ten years. It colligates many subjects including information science, mathematics, physics, biology, management science and so on. The study on complex network theory and application can help us to recognize networks, identify the different kinds of practical networks in nature and society; realize networks, open out the internal characteristics and evolving rules; improve networks, make the practical networks service for human better.
     Form the practical networks in this dissertation, a novel scale-free network model and a weighted network model are proposed respectively. The statistic characteristics of the real bus transport networks are analyzed. An optimal bus transport transfer algorithm based on weighted complex network is designed. The community structure and spread behavior of the real bus transport networks are analyzed. The main contributions are as follows:
     Firstly, a novel scale-free network model based on clique (complete subgraph of random size) growth and preferential attachment is proposed. Every time step of the evolving procedure, a new clique is added into the network, and this new clique attaches preferentially to the old ones that are already well connected. This novel model evolves on the basis of cliques, not vertices. Simulation results show that the degree of vertices of the generating network follows a scale-free power-law distribution. Besides, the cliques also constitute a network, with the connections of the cliques being their links. The degree distribution of this clique network also has the scale-free power-law properties. And based on the Mean-field theory, the analytical results of this model are given.
     Secondly, a weighted evolving network model on the basis of clique overlapping growth is proposed. The model shows different characteristics under two different attachment mechanisms which are preferential attachment and random attachment respectively. By Mean-field theory, we analyze the distributions of so-called "the number of cliques a vertex joins" and "the vertex strength" of this model under different attachment mechanisms. We verify that both of the distributions follow the scale-free power-law distribution in preferential attachment mechanism while both of them follow the exponential distribution in random attachment mechanism. Simulation results are in agreement with the analytical results well. Besides, we present the empirical investigation results on the practical bus transport networks of three major cities in China. The results show that this kind of collaboration networks can be modeled by our model very well.
     Thirdly, the statistic characteristics of the practical bus transport networks described by space L are studied, including the average path length, clustering coefficient, degree distribution and so on. We consider that the bus transport network described by space L is similar to the regular network, which do not have the obvious small-world phenomenon, and whose degree distribution follows the power-law distribution. Then the statistic characteristics of the practical bus transport networks described by space P are studied, including the degree distribution, multiple edges' overlapping times distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belong to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering coefficient, average path length and so on. We propose that the bus transport network described by space P has the properties of random clique increment and random overlapping clique, at the same time, it is a small-world network with highly clique clustered and highly clique overlapped. Finally, we introduce an evolution model whose simulation results agree well the statistical laws which emerge in real bus transport networks described by space P.
     Fourthly, we use the method of space P to model the bus transport network, by which an unweighted complex network model is obtained. Then by using the breadth-first search algorithm, we get all the least transfer routes between two inquired stations. We introduce the vertex weight, namely every station's longitudes and latitudes. The edge weight——straight-line distance between every two stations——will be got by computing the vertex weight. Further we model the BTN to a weighted complex network. A final transfer route which has the shortest total straight-line distance on the basis of the least transfer is obtained by this weighted complex network model and all the least transfer routes are got in prior. The practical data of Hangzhou is used to testify the new algorithm's efficiency.
     Fifthly, by improved community dividing algorithm (PKM agglomerative algorithm), we did the community property analysis on the BTN which is described in space L and space P respectively. The results show that BTN which is described in space L has obvious community property, but the one described in space P hasn't. The reason is that the BTN described in space P has the intense overlapping property, which makes the algorithm used above noneffective. So, a new community definition called N-depth community is proposed. And the method of finding this kind of communities in networks is represented. We obtained very good effect by using this community definition and dividing method on a BTN model.
     Finally, based on the SIS spread model, the spread behavior on the practical bus transport networks described by space P of Beijing, Shanghai and Hangzhou is simulated. The variations of the infected vertices' density with the time and the infected vertices' steady density with the infection rate are obtained. And the spread behavior on a bus transport network model is simulated. By the Mean-field theory, we analyze the epidemic threshold of this model which agrees with the simulation result well.
引文
[1]Watts D J,Strogatz S H.Collective of‘small-world'networks[J].Nature,1998,393(6684):440-442.
    [2]Barabasi A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.
    [3]Strogatz S H.Exploring complex networks[J].Nature,2001,410(6825):268-276.
    [4]Newman M E J.The structure and function of complex networks[J].SIAM Review,2003,45(2):167-256.
    [5]Albert R,Barabasi A L.Statistical mechanics of complex networks[J].Reviews of Modern Physics,2002,74(1):47-97.
    [6]Dorogovtsev S N,Mendes J F F.Evolution of networks[J].Advances in Physics,2002,51(4):1079-1187.
    [7]Wang X F.Complex networks:Topology,dynamics and synchronization[J].Int.J.Bifurcation and Chaos,2002,21(5):885-916.
    [8]Wang X F,Chen G.Complex networks:Small world,scale free and beyond[J].IEEE Circuits and System Magazine,2003,3(1):6-21.
    [9]Jeong H,Mason S P,Barabasi A L,et al.Lethality and centrality in protein networks[J].Nature,2001,411(6833):41-42.
    [10]Eisenberg E,Levanon E Y.Preferential attachment in the protein network evolution[J].Phys.Rev.Lett.,2003,91(13):138701.
    [11]Fu B B,Gao Z Y,Liu F S et al.Express passenger transport system as a scale-free network[J].Modern Physics Letters B,2006,20(27):1755-1761.
    [12]Yin C Y,Wang B H,Wang W X,et al.Efficient routing on scale-free networks based on local information[J].Physics Letters A,2006,351(4-5):220-224.
    [13]Barabasi A L.Linked:The New Science of networks[M].Massachusetts:Persus Publishing, 2002.
    [14]Watts D J.The‘new'science of networks[J].Annual Review of Sociology,2004,30:243-270.
    [15]Erdos P,Renyi A.On random graphs[J].Publications Mathematicae,1959,6:290-297.
    [16]Erdos P,Renyi A.On the evolution of random graphs[J].Pub.Math.Inst.Hung.Acad.Sci.,1960,5:17-61.
    [17]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [18]http://www.visualcomplexity.com/.
    [19]郭雷,许晓鸣.复杂网络[M].上海:上海科技教育出版社,2006.
    [20]Mahadevan P.Krioukov D,Fomenkov M,et al.Lessons from three views of the internet topology[J].arXiv:cs/0508033,2005.
    [21]Maslov S,Sneppen K.Specificity and stability in topology of protein networks[J].Science,2002,296(5569):910-913.
    [22]Pastor-Satorras R,Vazquez A,Vespignani A.Dynamical and correlation properties of the Internet[J].Phys.Rev.Lett.,2001,87(25):258701.
    [23]Vazquez A,Pastor-Satorras R,Vespignani A.Large-scale topological and dynamical properties of the Internet[J].Phys.Rev.E,2002,65(6):066130.
    [24]Newman M E J.Assortative mixing in networks[J].Phys.Rev.Lett.,2002,89(20):208701.
    [25]Wang W X,Wang B H,Hu B,et al.General dynamics of topology and traffic on weithted technological networks[J].Phys.Rev.Lett.,2005,94(18):188702.
    [26]Gaertler M,Patrignani M.Dynamic analysis of the autonomous system graph[J].IPS 2004,Inter-Domain Performance and Simulation,2004,13-24.
    [27]Freeman L.A Set of measures of centrality based upon betweenness[J].Sociometry,1977,40(1):35-41.
    [28]Barthelemy M.Betweenness centrality in large complex networks[J].European Physical Journal B,2004,38(2):163-168.
    [29]Girvan M,Newman M E J.Community structure in social and biological networks[J].Proc.Natl.Acad.Sci.,2001,99(12):7821-7826.
    [30]Davidsen J,Ebel H,Bornholdt S.Emergence of a small world from local interactions:Modeling acquaintance networks[J].Phys.Rev.Lett.,2002,88(12):128701.
    [31]Jung S,Kim S,Kahng B.Geometric fractal growth model for scale-free networks[J].Phys. Rev.E,2002,65(5):056101.
    [32]Comellas F,Fertin G,Raspand A.Recursive graphs with small-world scale-free properties[J].Phys.Rev.E,2004,69(3):037104.
    [33]A modified earthquake model of self-organized criticality of small world networks[J].Communications in theoretical physics,2004,41(4):557-560.
    [34]Chandra A K,Dasgupta S.A small world network of prime numbers[J].Physica A,2005,357(3-4):436-446.
    [35]Li Y,Fang J Q,Liu Q,et al.Small-world properties generated by a new algorithm under same degree of all nodes[J].Communications in theoretical physics,2006,45(5):950-954.
    [36]Chandra A K,Hajra K B,Das P K,et al.Modeling temporal and spatial features of collaboration network[J].International journal of Modern Physics C,2007,18(7):1157-1172.
    [37]Wang X T.The modeling of weighted complex networks[J].International journal of Modern Physics B,2007,21(16):2813-2820.
    [38]Markogova M.Network model of human language[J].Physica A,2008,387(2-3):661-666.
    [39]Wang J W,Rong L L.Evolving small-world networks based on the modified BA model[C].Proceedings of the international conference on computer science and information technology,2008,143-146.
    [40]Yang X H,Wang B,Wang W L,et al.A novel small-world network model:keeping connectivity without adding edges[J].International journal of Modern Physics B,2008,22(29):5229-5234.
    [41]Newman M E J,Watts D J.Renormalization group analysis of the small-world network model [J].Phys.Lett.A,1999,263:341-346.
    [42]王波,王万良,杨旭华.WS与NW两种小世界网络模型的建模及仿真研究[J].浙江工业大学学报,2009,37(2):179-182.
    [43]Monasson R.Diffusion,localization and dispersion relations on‘small-world'lattices[J].European Physical Journal B,1999,12(4):555-567.
    [44]Barabasi A L,Albert R,Jeong H.Mean-field theory for scale-free random networks[J].Physica A,1999,272(1-2):173-187.
    [45]Chen Q H,Shi D H.The modeling of scale-free networks[J].Physica A,2004,335(1-2):240-248.
    [46]Stefancic H, Zlatic V.Preferential attachment with information filtering-node degree probability distribution properties [J].Physica A, 2005, 350(2-4): 657-670.
    [47]Kim H J, Choi Y M.Modeling of cyslic topology in scale-free networks [J].Modern Physics Letter B, 2006, 20(23): 1489-1496.
    [48]Geng X M, Wen G H, Wang Y, et al.Evolving model of scale-free networks with intrinsic links [J].International Journal of Modern Physics C, 2008, 19(7): 1129-1144.
    [49]Li J, Diao Y F, Yin X, et al.Evolving scale-free network model with tunable clustering and APL [C].Chinese Control and Decision Conference, 2008, 1-11: 4399-4404.
    [50]Tao S H, Guo C F, Gao J J, te al.BA extended model based on the competition factors [C].Workshop on power electronics and intelligent transportation system proceedings, 2008,561-564.
    [51]Bianconi G, Barabasi A L.Bose-Einstein condensation in complex networks [J].Phys.Rev.Lett., 2001, 86(24): 5632-5635.
    [52]Li X, Chen G.A local world evolving network model [J].Physica A, 2003, 328(1-2): 274-286.
    [53]Dorogovtsev S N, Mendes J F F.Effect of the accelerating growth of communication networks on their structure [J].Phys.Rev.E, 2001, 63(2): 025101.
    [54]Shi D H, Chen Q H, Liu L M.Markov chain-based numerical method for degree distribution of growing networks [J].Phys.Rev.E, 2005, 71(3): 036140.
    [55]Pollner P, Palla G, Vicsek T.Preferential attachment of communities: The same principle, but a higher level [J].Europhys.Lett., 2006, 73(3): 478-484.
    [56]Wang B, Yang X H, Wang W L.A novel scale-free network model based on clique growth [J].Journal of Central South University of Technology, 2008, accepted.
    [57]Muller B, Reinhardt J.Neural networks: an introduction [M].Berlin: Springer-Verlag, 1991.
    [58]Kalisman N, Silberberg G, Markram H.The neocortical microcircuit as a tabula rasa [J].PNAS, 2005, 102(3): 880-885.
    [59]Boccaletti S, Latora V, Moreno Y et al.Complex networks: structure and dynamics [J].Physics Reports, 2006, 424(4-5): 175-308.
    [60]Li C G, Chen G R.A comprehensive weighted evolving network model [J].Physica A, 2004,343: 288-294.
    [61]Xie Z, Li X, Wang X F.Weighted evolving networks with self-orgnized communities [J]. Communications in theoretical physics, 2008, 50(1): 261-266.
    [62]Zheng J F, Gao Z Y.A weighted network evolution with traffic flow [J].Physica A, 2008,387(24): 6177-6182.
    [63]Xiong W H, Zhang S Y, Gao Q S.Weighted evolving network with geographical constraints [C].Chinese control and decision conference, 2008, 1-11: 4814-4817.
    [64]Yook S H, Jeong H, Barabasi A L, et al.Weighted evolving networks [J].Phys.Rev.Lett.,2001, 86(25): 5835-5838.
    [65]Zheng D F, Trimper S, Zheng B, et al.Weighted scale-free networks with stochastic weight assignments [J].Phys.Rev.E, 2003, 67(4): 040102.
    [66]Antal T, Krapivsky P L.Weight-driven growing networks [J].Phys.Rev.E, 2005, 71(2):026103.
    [67]Barrat A, Barthelemy M, Vespignani A.Weighted evolving networks: coupling topology and weight dynamics [J].Phys.Rev.Lett., 2004, 92(22): 228701.
    [68]Dorogovtsev S N, Mendes J F F.Minimal models of weighted scale-free networks[J].arXiv:cond-mat/0408343, 2005.
    [69]Wang W X, Wang B H, Hu B, et al.General dynamics of topology and traffic on weighted technological networks [J].Phys.Rev.Lett., 2005, 94(18): 188702.
    [70]Ideker T, Galitski T, Hood L.A new approach to decoding life: systems biology [J].Annu Rev Genomics Hum Genet, 2001,2: 343:372.
    [71]Kitano H.Systems biology: a brief overview [J].Science, 2002,295(5560): 1662-1664.
    [72]Maslov S, Sneppen K.Detection of topological patterns in protein networks [J].Genet Eng (N Y), 2004,26: 33-47.
    [73]Jiao X, Chang S, Li C H, et al.Construction and application of the weighted amino acid network based on energy [J].Phys.Rev.E, 2007, 75(5): 051903.
    [74]de la Fuente A, Fotia G, Maggio F, et al.Insights into biological information processing: structural and dynamical analysis of human protein signalling network [C].Journal of Physics A-Mathematical and Theoretical, 2008,41(22): 224013.
    [75]Chang S, Jiao X, Gong X Q, et al.Evolving model of amino acid networks [J].Phys.Rev.E,2008, 77(6): 061920.
    [76]Barabasi A L, Jeong H, Neda Z, et al.Evolution of the social network of scientific collaborations[J].Physica A,2002,311(3-4):590-614.
    [77]Trimper S,Zheng D,Brandau M.Social networks and spreading of epidemics[C].Noise in complex systems and stochastic dynamics Ⅱ,2004,5471:289-297.
    [78]Rosvall M,Sneppen K.Modeling self-organization of communication and topology in social networks[J].Phys.Rev.E,2006,74(1):016108.
    [79]Fu F,Chen X J,Liu L H,et al.Social dilemmas in an online social network:The structure and evolution of cooperation[J].Physics Letters A,2007,371(1-2):58-64.
    [80]Grabowski A,Kosinski R.Mixing patterns in a large social network[J].ACTA Physica Polonica B,2008,39(5):1291-1300.
    [81]Li W,Cai X.Statistical analysis of airport network of China[J].Phys.Rev.E,2004,69(4):046106.
    [82]Guimera R,Mossa S,Turtschi A,et al.The worldwide air transportation network:Anomalous centrality,community structure,and cities'global roles[J].Proc.Nat.Acad.Sci.,2005,102(22):7794-7799.
    [83]Xu T,Chen J,He Y,et al.Complex network properties of Chinese power grid[J].International Journal of Modern Physics B,2004,18(17-19):2599-2603.
    [84]张培培,侯威,何阅等.淮扬菜系的网络描述[J].复杂系统与复杂性科学,2005,2(2):49-53.
    [85]Yang X H,Wang B,Wang W L,et al.Research on some bus transport networks with random overlapping clique structure[J].Communications in theoretical physics,2008,50(5):1249-1254.
    [86]Tan J X,Wang D J,Wang X,et al.The topological railway network of China constrained by the geographic factors[J].ACTA Physica Sinica,2008,57(11):6771-6776.
    [87]Tieri P,Valensin S,Latora V,et al.Quantifying the relevance of different mediators in the human immune cell network[J].Bioinformatics,2005 21(8):1639-1643.
    [88]Newman M E J.Scientific collaboration networks.I.Network construction and fundamental results[J].Phys.Rev.E,2001,64(1):016131.
    [89]Barrat A,Barthelemy M,Pastor-Satorras R,et al.The architecture of complex weighted networks[J].Proc.Natl.Acad.Sci.U.S.A.,2004,101(11):3747-3752.
    [90]赫南,淦文燕 李德毅等.一个小型演员合作网的拓扑性质分析[J].复杂系统与复杂 性科学,2006,3(4):1-10.
    [91]刘爱芬,付春花,张增平等.中国大陆电影网络的实证统计研究[J].复杂系统与复杂性科学,2007,4(3):10-16.
    [92]Faloutsos M,Faloutsos P,Faloutsos C.On power-law relationship of the Internet topology[J].Applications,Technologies,Architectures,and Protocols for Computer Communication archive.Proceedings of the conference on Applications,technologies,architectures,and protocols for computer communication,1999,29(4):251-262.
    [93]Siganos G,Faloutsos M,Faloutsos P,et al.Power laws and the AS-level Internet topology[J].IEEE/ACM Transactions on Networking,2003,11(4):514-524.
    [94]Latora V,Marchiori M.Is the Boston subway a small-world network[J].Physica A,2002,314(1-4):109-113.
    [95]Sen P,Dasgupta S,Chatterjee A,et al.Small-world properties of the Indian railway network [J].Phys.Rev.E,2003,67(3):036106.
    [96]Seaton K A,Hackett M.Stations,trains and small-world networks[J].Physica A,2004,339(3-4):635-644.
    [97]Kurant M,Thiran P.Extraction and analysis of traffic and topologies of transportation networks[J].Phys.Rev.E,2006,74(3):036114.
    [98]Li W,Cal X.Empirical analysis of a scale-flee railway network in China[J].Physica A,2007,382(2):693-703.
    [99]Liu C M,Li J W.Small-world and the growing properties of the Chinese railway network[J].Front.Phys.China,2007,2(3):364-367.
    [100]赵伟,何红生,林中材等.中国铁路客运网网络性质的研究[J].物理学报,2006,55(8):3906-3911.
    [101]Chi L P,Wang R,Su H,et al.Structural properties of US flight network[J].Chinese Physics Letters,2003,20(8):1393-1396.
    [102]Wang R,Cai X.Hierarchical structure,disassortativity and information measures of the US flight network[J].Chinese Physics Letters,2005,22(10):2715-2718.
    [103]刘宏鲲,周涛.中国城市航空网络的实证研究与分析[J].物理学报,2007,56(1):106-112.
    [104]Barthelemy M,Barrat A,Pastor-Satorras R,et al.Characterization and modeling of weighted networks[J],Physica A,2005,346(1-2):34-43.
    [105]Amaral L A N,Scala A,Barthelemy M,et al.Classes of small-world networks[J].Proc.Nat.Acad.Sci.,2000,97(21):11149-11152.
    [106]Sienkiewicz J,Holyst J A.Statistical analysis of 22 public transport networks in Poland[J].Phys.Rev.E,2005,72(4):046127.
    [107]von Ferber C,Holovatch T,Holovatch Y,te al.Network harness:Metropolis public transport [J].PhysicaA,380:585-591.
    [108]Zhang P P,Chen K,He Y,et al.Model and empirical study on some collaboration networks [J].Physica A,2006,360(2):599-616.
    [109]Chen Y Z,Li N,He D R.A study on some urban bus transport networks[J].Physica A,2007,376:747-754.
    [110]Chang H,Su B B,Zhou Y P,et al.Assortativity and act degree distribution of some collaboration networks[J].Physica A,2007,383(2):587-702.
    [111]Su B B,Chang H,Chen YZ,et al.A game theory of urban public traffic networks[J].Physica A,2007,379(1):291-297.
    [112]Xu X P,Hu J H,Liu F,et al.Scaling and correlations in three bus-transport networks of China[J].Physica A,2007,374(1):441-448.
    [113]Kleinberg J.Navigation in a small world-It is easier to find short chains between points in some networks than others[J].Nature,2000,406(6798):845-845.
    [114]Kleinberg J.The small-world phenomenon:An algorithmic perspective[J].Proceedings of the thirty-second annual ACM symposium on theory of computing,2000,163-170.
    [115]Watts D J,Dodds P S,Newman M E J.Identity and search in social networks[J].Science,2002,296(5571):1302-1305.
    [116]王波,王万良,杨旭华.一种基于加权复杂网络的最优公交换乘算法[J].武汉理工大学学报(交通科学与工程版),2008,32(6):1113-1116.
    [117]Hughes B D.Random walks and random environments[M].Oxford:Clarendon Press,1996.
    [118]Scala A,Amaral L A N,Barthelemy M.Small-world networks and the conformation space of a short lattice polymer chain[J].Europhysics Letters,2001,55(4):594-600.
    [119]Jasch F,Blumen A.Target problem on small-world networks[J].Phys.Rev.E,2001,63(4):041108.
    [120]Pandit S A, Amritkar R E.Random spread on the family of small-world networks [J].Phys.Rev.E, 2001, 63(4): 041104.
    [121]Lahtinen J, Kertesz J, Kaski K.Random spreading phenomena in annealed small world networks [J].PhysicaA, 2002, 311(3-4): 571-580.
    [122]Adamic L A, Lukose R M, Puniyani A R, et al.Search in power-law networks [J].Phys.Rev.E, 2001, 64(4): 046135.
    [123]Noh J D, Rieger H.Random walks on complex networks [J].Phys.Rev.Lett., 2004, 92(11):118701.
    [124]Tadic B.Exploring complex graphs by random walks[C].Modeling Complex Systems, AIP Conference Proceedings, 2002, 661: 24.
    [125]Newman M E J, Strogatz S H, Watts D J.Random graphs with arbitrary degree distribution and their applications [J].Phys.Rev.E, 2001, 64(2): 026118.
    [126]Adamic L A, Lukose R M, Huberman B A.Local search in unstructured networks.Handbook of Graphs and Networks [M].Berlin: Wiley-VCH, 2003.
    [127]Kim B J, Yoon C N, Han S K, et al.Path finding strategies in scale-free networks [J].Phys.Rev.E, 2002,65(2): 027103.
    [128]Gibson D, Kleinberg J, Raghavan P.Inferring Web communities from link topology [C].Proceedings of the ninth ACM conference on Hypertext and hypermedia, 1998,225-234.
    [129]Flake G W, Lawrence S R, Giles C L, et al.Self-organization and identification of Web communities [J].Computer, 2002, 35(3): 66-71.
    [130]Adamic A L, Adar E.Friend and neighbors on the Web [J].Social Networks, 2003, 25(3):211-230.
    [131]Shen-Orr S, Milo R, Mangan S, et al.Network motifs in the transcriptional regulation network of Escherichia coli [J].Nature Genetics, 2002, 31(1): 64-68.
    [132]Milo R, Shen-Orr S, Itzkovitz S, et al.Network motifs: Simple building blocks of complex networks [J].Science, 2002,298(5594): 824-827.
    [133]Holme P, Huss M, Jeong H.Subnetwork hierarchies of biochemical pathways [J].Bioinformatics, 2003, 19(4): 532-538.
    [134]Gleiser P, Danon L.Community structure in jazz [J].Advances in Complex Systems, 2003,6(4): 565-573.
    [135]Zhang P,Wang J L,Li X J,el al.Clustering coefficient and community structure of bipartite networks[J].Physica A,2008,387(27):6869-6875.
    [136]Gao Z K,Jin N D.Complex network community structure of two-phase flow pattern and its statistical characteristics[J].ACTA Physica Sinica,2008,57(11):6909-6920.
    [137]解(?),汪小帆.复杂网络中的社团结构分析算法研究综述[J].复杂系统与复杂性科学,2005,2(3):1-12.
    [138]Vragovic I,Louis E.Network community structure and loop coefficient method[J].Phys.Rev.E,2006,74(1):016105.
    [139]杜海峰,李树茁,Marcus W等.基于先验知识与模块性的网络社区结构探测算法[J].西安交通大学学报,2007,41(6):750-754.
    [140]Gregory S.A fast algorithm to find overlapping communities in networks[C].Machine learning and knowledge discovery in databases,Part Ⅰ,Proceedings,2008,5211:408-423.
    [141]Ye Z Q,Hu S N,Yu J.Adaptive clustering algorithm for community detection in complex networks[J].Phys.Rev.E,2008,78(4):046115.
    [142]Shen Y,Pei W J,Wang K,et al.Recursive filtration method for detecting community structure in networks[J].Physica A,2008,387(26):6663-6670.
    [143]Niu Y Q,Hu B Q,Zhang W,et al.Detecting the community structure in complex networks based on quantum mechanics[J].Physica A,2008,387(24):6215-6224.
    [144]Kernighan B W,Lin S.A efficient heuristic procedure for partitioning graphs[J].Bell system technical journal,1970,49(2):291-307.
    [145]Pothen A,Simon H,Liou K P.Partitioning sparse matrices with eigenvectors of graphs[C].SIAM Journal on matrix analysis and applications,1990,11(3):430-452.
    [146]Newman M E J.Fast algorithm for detecting community structure in networks[J].Phys.Rev.E,2004,69(6):066133.
    [147]Palla G,Derenyi I,Farkas I,et al.Uncovering the overlapping community structure of complex networks in nature and society[J].Nature,2005,435(7043):814-818.
    [148]Wu F,Huberman B A.Finding communities in linear time:A physics approach[J].Eur.Phys.J.B,2004,38(2):331-338.
    [149]Capocci A,Servedio V D P,Caldarelli G,et al.Detecting communities in large networks[J].Computer Science,2004,3243:181-187.
    [150]Newman M E J, Girvan M.Finding and evaluating community structure in networks [J].Phys.Rev.E, 2004, 69(2): 026113.
    [151]Tyler J, Wilkinson D, Huberman B.Email as spectroscopy: automated discovery of community structure within organizations [J].The Information Society, 2005, 21(2): 143-153.
    [152]Radicchi F, Castellano C, Cecconi F, et al.Defining and identifying communities in networks [J].Proc.Natl.Acad.Sci., 2004,101(9): 2658-2663.
    [153]Clauset A, Newman M E J, Moore C.Finding community structure in very large networks [J].Phys.Rev.E, 2004,70(6): 066111.
    [154]Clauset A.Finding local community structure in networks [J].Phys.Rev.E, 2005, 72(2):026132.
    [155]Muff S, Rao F, Caflisch A.Validation of network clusterizations [J].arXiv:cond-mat/0503252,2005.
    [156]Derenyi I, Palla G, Vicsek T.Clique percolation in random networks [J].Phys.Rev.Lett., 2005, 94(16): 160202.
    [157]Bailey N T J.The mathematical theory of infectious diseases and its applications [M].New York: Hafner Press, 1975.
    [158]Anderson R M, May R M.Infectious disease in humans [M].Oxford: Oxford University Press, 1992.
    [159]Diekmann O, Heesterbeek JAP.Mathematical epidemiology of infectious disease: model building, analysis and interpretation [M].New York: John Wiley & Son publisher, 2000.
    [160]Zhou T, Liu J G, Bai W J, et al.Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity [J].Phys.Rev.E, 2006, 74(5): 056109.
    [161]Guo W P, Li X, Wang X F.Epidemics and immunization on Euclidean distance preferred small-world networks [J].Physica A, 2007, 380: 684-690.
    [162]Wang L, Yan J R, Zhang J G, et al.Controlling disease spread on networks with feedback mechanism [J].Chinese Physics, 2007, 16(9): 2498-2502.
    [163]Huang C Y, Sun C T, Cheng C Y, et al.Resources, costs and epidemic thresholds in scale-free social networks [J].Seventh world congress on intelligent control and automation, 2008, 1-23: 1874-1879.
    [164]Fu X C, Small M, Walker D M, et al.Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization [J].Phys.Rev.E, 2008, 77(3): 036113.
    [165]Shi H J, Duan Z S, Chen G R.An SIS model with infective medium on complex networks [J].Physica A, 2008, 387(8-9): 2133-2144.
    [166]Pastor-Satorras R, Vespignani A.Epidemic dynamics and endemic states in complex networks [J].Phys.Rev.E, 2001, 63(6): 066117.
    [167]Pastor-Satorras R, Vespignani A.Epidemic dynamics in finite size scale-free networks [J].Phys.Rev.E, 2002, 65(3): 035108.
    [168]Boguna M, Pastor-Satorras R.Epidemic spreading in correlated complex networks [J]Phys.Rev.E, 2002, 66(4): 047104.
    [169]Pastor-Satorras R, Vespignani A.Immunization of complex networks [J].Phys.Rev.E, 2001,65(3): 036104.
    [170]Cohen R, Havlin S, Ben-Avraham D.Efficient immunization strategies for computer networks and populations [J].Phys.Rev.Lett., 2003, 91(24): 247901.
    [171]Dorogovtsev S N, Mendes J F F, Samukhin A N.Structure of growing networks with preferential linking [J].Phys.Rev.Lett., 2000, 85(21): 4633-4636.
    [172]Krapivsky P L, Redner S.Organization of growing random networks [J].Phys.Rev.E, 2001,63(6): 066123.
    [173]Krapivsky P L, Redner S, Leyvraz F.Connectivity of growing random networks [J].Phys.Rev.Lett., 2000, 85(21): 4629-4632.
    [174]Shiffrin RM, Borner K.Mapping knowledge domains[J].Proc.Natl Acad.Sci.USA 2004,101:5183-5185.
    [175]Everitt B S.Cluster Analysis [M].London: Edward Arnold, 1993.
    [176]Knudsen S.A Guide to Analysis of DNA Microarray Data [M].New York: Wiley-Liss, 2004.
    [177]Newman M E J.Detecting community structure in networks [J].Eur.Phys.J.B, 2004, 38(2):321-330.
    [178]Adamcsek B, Palla G, Farkas I, et al:.CFinder: Locating cliques and overlapping modules in biological networks [J].Bioinformatics, 2006, 22(8): 1021-1023.
    [179]Zhou T, Bai W J, Wang B H, et al.A brief review of complex networks [J].Physics, 2005,34(1):31-36.
    [180]Cardillo A, Scellato S, Latora V.A topologic analysis of scientific coauthor ship networks [J].Physica A, 2006, 372(2): 333-339.
    [181]Tomassini M,Luthi L.Empirical analysis of the evolution of a scientific collaboration network[J].Physica A,2007,385(2):750-764.
    [182]He N,Gan W Y,Li D Y,et al.The topological analysis of a small actor collaboration network [J].Complex Systems and Complexity Science,2006,3(4):1-10.
    [183]Liu A F,Fu C H,Zhang Z P,et al.An empirical statistical investigation on Chinese mainland movie network[J].Complex Systems and Complexity Science,2007,4(3):10-17.
    [184]He Y,Zhang P P,Tang J Y,et al.A collaboration network description on traditional Chinese medical prescription formulation system[J].Science & Technology Review,2005,23(11):36-39.
    [185]Ramasco J J,Dorogovtsev S N,Pastor-Satorras R.Self-organization of collaboration networks[J].Physical Review E,2004,70(3):036106.
    [186]Zhang Z Z,Rong L L,Zhou T.An evolving model for scale-free collaboration networks[J].Systems Engineering-Theory & Practice,2005,25(11):55-60.
    [187]http://www.8684.cn/.
    [188]Li K P,Gao Z Y,Mao B H.A weighted network model for railway traffic[J].International Journal of Modern Physics C,2006,17(9):1339-1347.
    [189]Wu Z H,Braunstein L A,Colizza V,et al.Optimal paths in complex networks with correlated weights:The worldwide airport network[J].Phys.Rev.E,2006,74(5):056104.
    [190]Marchiori M,Latora V.Harmony in the small-world[J].Physica A,2000,285(3-4):539-546.
    [191]Porta S,Crucitti P,Latora V.The network analysis of urban streets:A dual approach[J].Physica A,2006,369(2):853-866.
    [192]Rosvall M,Trusina A,Minnhagen P,et al.Networks and cities:An information perspective[J].Phys.Rev.Lett.,2005,94(2):028701.
    [193]Cardillo A,Scellato S,Latora V,et al.Structural properties of planar graphs of urban street patterns[J].Phys.Rev.E,2006,73(6):066107.
    [194]Palla G,Barabasi A L,Vicsek T.Quantifying social group evolution[J].Nature,2007,446(7136):664-667.
    [195]杨新苗,王炜,马文腾.基于GIS的公交乘客出行路径选择模型[J].东南大学学报,2000,30(6):88-91.
    [196]胡霍真,戴光明,李颖.公交车网络的最短路径算法及实现[J].微机发展.2005,15(9):21-25.
    [197]苏啸,曾子维.基于关联的城市公交换乘查询算法[J].计算机工程与设计.2006,27(3): 519-521.
    [198]廖楚江,蔡忠亮,杜清运等.基于最少换乘的公交最优路径算法的设计与实现[J].武汉大学学报,2006,31(10):904-907.
    [199]http://earth.google.com/.
    [200]http://hz.edushi.com/.
    [201]Du H F,Marcus W F,Li S Z,et al.An algorithm for detecting community structure of social networks based on prior knowledge and modularity[J].Complexity J.,2007,12(3):53-60.
    [202]杜海峰,李树茁,Marcus W F,et al.小世界网络与无标度网络的社区结构研究[J].物理学报,2007,56(12):6886-6893.
    [203]Marro J,Dickman R.Nonequilibrium phase transitions in lattice models[M].Cambridge:Cambridge University Press,1999.
    [204]Szabo G.Branching annihilating random walk on random regular graphs[J].Phys.Rev.E,2000,62(5):7474-7477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700