低维系统中声学极化子及其自陷转变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文讨论低维系统中声学极化子及其自陷转变的相关问题.
     指出了Farias等人在文献[66]中给出的二维声学极化子自陷转变的临界电子—声子耦合常数为定值,不随声子截止波矢的改变而变化的结论不符合声学极化子自陷的一般规律.我们采用与该文相同的哈密顿量,运用Huybrechts变分法重新计算了二维声学极化子基态能量和有效质量.通过改进自陷转变点的确定方式,得出了二维声学极化子自陷的转变点随声子截止波矢的增大向电子—声子耦合较弱的方向移动的结论.该结论与三维声学极化子自陷的结论定性一致,在物理上较为合理.
     导出了描述二维电子—纵声学声子相互作用的新哈密顿量,通过计算基态能量和有效质量及其对电子—声子耦合常数的数值导数,考察了二维声学极化子自陷的条件,获得了自陷转变的判据.为便于比较,重新计算并给出了三维声学极化子基态能量及其导数的数值结果.比较后发现,我们的三维结果与前人采用Feynman路径积分方法所得结果基本一致.声子截止波矢相同的条件下,声学极化子在二维系统中自陷的临界电子—声子耦合常数比在三维情形要小得多.运用本文获得的判据,理论判断了几种实际材料中声学极化子自陷的可能性.结果表明:虽然GaN中的空穴、AlN中的电子和轻空穴不会在三维结构中发生自陷转变,但有可能在二维系统中自陷.
     考虑到极化子自陷时的局域特性,我们采用高斯型束缚波函数计算了二维声学极化子基态能量.结果表明:采用高斯型束缚波函数的变分计算结果与运用类Huybrechts变分法引入坐标、动量线性组合算符描述所得结果相同.从理论推导和数值计算两方面佐证了Huybrechts变分法适用于整个电子—声子耦合区间,是研究声学极化子自陷行之有效的方法.
     进一步导出了一维电子—声学声子相互作用哈密顿量.通过计算一维声学极化子基态能量和有效质量,以及基态能量对电子—声子耦合常数的一阶、二阶导数,考察了一维声学极化子自陷的相关问题,获得了一维声学极化子自陷转变的判据.类似于二维和三维结果,其临界电子—声子耦合常数与声子截止波矢的乘积趋于定值,但比二维和三维情形的相应值都小得多.比较后发现:声学极化子自陷的可能性随其维度的降低而增大.理论判定声学极化子在GaN和AlN,以及碱卤化物的一维结构中能够自陷.
     根据Yu等人给出的电子—声子相互作用哈密顿量,采用变分法计算了不同半径的柱型量子线中声学极化子基态能量及其对电子—声子耦合常数的数值导数,考察了柱型量子线中声学极化子自陷的可能性,获得了相应的判据.结果表明:量子线中声学极化子自陷的临界电子—声子耦合常数随着声子截止波矢的增大向耦合较弱的方向变化;声学极化子在量子线中自陷的临界点介于在一维和三维系统中自陷的临界点之间;半径越小,量子线中声学极化子的自陷转变越容易发生.
Self-trapping transition of acoustic polarons in lower dimensional systems and the relative problems are studied in this thesis.
     Farias et al pointed out that the critical electron-longitudinal acoustic-phonon (e-LA-p) coupling constant of the self-trapping transition of acoustic polarons in two dimensional(2D) systems is a certain value and independent of the cut-off wave vector.This conclusion is doubtful in Physics.The ground-state energy and effective mass of acoustic polarons in 2D systems are recalculated by using Huybrechts-like approach.The new self-trapping transition point is determined by a modified method. It is found that the critical point of the transition shifts toward the weaker e-LA-p coupling with increasing the cut-off wave vector.The results are qualitatively consistent with the previous works of the 3D acoustic polarons and more intelligible physically than that given by Farias et al.
     A new 2D e-LA-p interaction Hamiltonian is derived.The numerical results for the ground-state energy and effective mass of the acoustic polarons in 2D system and their derivatives with respect to the e-LA-p coupling constant are obtained and used to investigate the criterion of the self-trapping transition.For ease of comparison,the ground-state energies of the acoustic polarons in 3D and their derivatives are also calculated here.The 3D results agree with those obtained by using the Feynman path-integral approach.It is found that the critical coupling constant of the transition from the quasi-free state to the self-trapped state in the 2D case is much smaller than that in 3D for the given cut-off wave vector.The theory has been used to judge the possibility of the self-trapping transition for several real materials.The results indicate that the self-trappings of the electrons and light holes in A1N and the holes in GaN are expected to be observed in 2D systems.
     Considering the localization of the self-trapped states of acoustic polarons,the ground-state energy of the 2D acoustic poalron as a function of the e-LA-p coupling constant is investigated by using the localized Gaussian wave function.The results indicated that the Huybrechts-like approach is equivalent to the variational approach by using the Gaussian wave function.It is confirmed that the Huybrechts approach is an effective method to calculate the ground-state energies of acoustic polarons in the whole coupling range and investigate the self-trapping.
     The ground-state energy and effective mass of the 1D acoustic polarons are calculated by using an e-LA-p interaction Hamiltonian derived here.The first and second derivatives of the ground-state energy are calculated.The self-trapping of the acoustic polarons is discussed.It is found that the products of the critical coupling constant by the cut-off wave vector tend to a certain value.The critical coupling constant of the transition from quasi-free state to the self-trapped state in 1D case is much smaller than that in 3D and 2D systems for a given cut-off wave vector.The self-trapping transition of acoustic polarons is expected to be observed in the one dimensional systems of alkali halides and wide-band-gap semiconductors.
     The ground-state energies and their derivatives of the acoustic polarons in cylindrical quantum wire with different radius are variationally calculated by using the e-LA-p coupling Hamiltonian given by Yu et al.The possibility of self-trapping transition of the acoustic polarons is investigated.It is indicated that the critical coupling constant shifts toward the weaker e-LA-p coupling with increasing the cut-off wave vector.The critical value of self-trapping transition of the acoustic polarons in the quantum wire is between those in ID and 3D systems.The self-trapping transition of acoustic polarons occurs easier with decreasing the radius of the quantum wire.
引文
[1] S. S. Manoharan, M. S. Hegde, K. M. Satyalakshimi, V. Prasad and S. V. Subramanyam. Metal-insulator transition and giant magnetoresistance in La_(1-x)MnO_(3-&) thin films and superlattices. Thin Solid Films., 1996, 275(1): 244- 246.
    [2] T. Kingetsu, Y. Kamada and M. Yamamoto. Epitaxial growth of binary and ternary metallic strained superlattices and their magnetic properties. Sci. Tech. Adv. Mater., 2001, 2: 331.
    [3] P. Nordblad, A. Broddefalk, R. Mathieu, P. Blomqvist, O. Eriksson and R. Wappling. Fe/V and Fe/Co (001) superlattices: growth, anisotropy, magnetisation and magnetoresistance. Physica B: Condensed Matter., 2003, 327(2-4): 344- 348.
    [4] A. M. H. Gosnet and J. P. Renard. CMR manganites: physics, thin films and devices. J. Phys. D: Appl. Phys., 2003, 36(8): R127- R150.
    [5] K. Yoh, A. Nishida, H. Kunitomo, T. Ogura and M. Znone. Fabrication of InAs Single-Crystal Free-Standing Wires for the Study of Electron and Thermal Transport. Jpn. J. Appl. Phys., 1993, 32(12): 6237- 6241.
    [6] K. Hiruma, M. Yazwa, K. Haraguchi, K. Ogawa, T. Katsnyama, M. Koguchi and H. Kakibayashi. GaAs free-standing quantum-size wires. J. Appl. Phys., 1993, 74(5): 3162- 3171.
    [7] J. C. Yong, N. Shigeru, O. Yoshitaka and K. Mitsuo. The role of atomic hydrogen for formation of quantum dots by self-organizing process in MBE. Physica B: Cond. Matt., 1996, 227(1-4): 299- 302.
    [8] R. Notzel, J. Temmyo, A. Kozen, T. Tamamura, T. Fukui and H. Hasegawa. Self-organized growth of quantum-dot structures. Solid-State Electronics., 1996, 40(1-8): 777- 783.
    [9] R. J. Cook and H. J. Kimble. Possibility of Direct Observation of Quantum Jumps. Phys. Rev. Lett., 1985, 54(10): 1023- 1026.
     [10] N. Bannov, V. V. Mitin and M. A. Stroscio. Confined acoustic phonons in a free-standing quantum well and their interaction with electrons. Phys. Status. Solidi. B., 1994, 183(1): 131- 142.
    [11] N. Bannov, V. Aristov, V. V. Mitin and M. A. Stroscio. Electron relaxation times due to the deformation-potential interaction of electrons with confined acoustic phonons in a free-standing quantum well. Phys. Rev. B., 1995, 51(15): 9930- 9942.
    [12] N. Bannov, V. Aristov and V. V. Mitin. Electron momentum relaxation time and mobility in a free-standing quantum well. J. Appl. Phys., 1995, 78(9): 5503- 5510.
    [13] M. Nirmal, B. O. Dabbousi, M.G.Bawendi, J. J. Machlin, J. K. Trautman, T. D. Harris and L. E. Brus. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature., 1996, 383: 802- 804.
    [14] A. L. Efros and M. Rosen. Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot. Phys. Rev. Lett., 1997, 78(6): 1110- 1113.
    [15] N. Nishiguchi, Y. Ando and M. N. Wybourne. Acoustic phonon modes of rectangular quantum wires. J. Phys: Condens. Matt., 1997, 9(27): 5751- 5764.
    [16] A. Svizhenko, A. Baldandin, S. Bandyopadhyay and M. A. Stroscio. Electron interaction with confined acoustic phonons in quantum wires subjected to a magnetic field. Phys. Rev. B., 1998, 57(8): 4687- 4693.
    [17] Y. Li, B. Jiang, H. Deng, S.W. Jiang and X. Y. Zhou. Research on Low Dimension Materials. Materials Review., 2004, 18(3): 9- 12. (in Chinese).
    [18] S. S. Kubakaddi. Effect of acoustic-phonon confinement on the phonon-drag thermopower of a two-dimensional electron gas in a semiconductor thin film. Phys. Rev. B., 2004, 69: 035317.
    [19] L. Landau. The motion of electrons in a crystal lattice. Phys. Zeits. d. Sowjetunion., 1933, 3: 664- 665.
    [20] A. J. Fisher, W. Hayes and A. M. Stoneham. Theory of the structure of the self-trapped exciton in quartz. J. Phys: Cond. Matt., 1990, 2(32): 6707- 6720.
    [21] M. I. Klinger and S. N. Taraskin. Hybridization-induced electron self-trapping in soft local structures in non-metallic solids. Phys. Lett. A., 1995, 203(1): 47- 52.
    [22] Z. Ivic, Z. Przulj, D. Kapor and M. Skrinjar. On the relevance of self-trapping as the mechanism for charge and energy transfer in biological systems. Bioelectrochemistry and Bioenergetics., 1996, 41(1): 43- 46.
    [23] W. Beck, V. V. Fedorov, D. Ricard, C. Flytzanis and T. T. Basiev. Electron trapping by self-trapped hole pairs and small rare-earth clusters in Sm-doped CaF_2. J. Lumin., 1998, 79(4): 241- 248.
    [24] A. Shelkan, V. Hizhnyakov and E. Sigmund. self-trapping Barrier for Phonon Polaron in Anisotropic Crystal. Journal of Superconductivity Incorporating Novel Magnetism., 2000, 13(1): 21- 25.
    [25] W. B. Herrmannsfeldt. Electron trapping in high-current ion beam pipes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment., 2001, 464(1-3): 305- 309.
    [26] L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski. Electron self-trapping in a discrete two-dimensional lattice. Physica D: Nonlinear Phenomena., 2001, 159(1-2): 71- 90.
    [27] S. Serra, S. Iarlori, E. Tosatti, S. Scandolo, M. C. Righi and G. E. Santoro. Self-trapping vs. non-trapping of electrons and holes in organic insulators: polyethylene. Chem. Phys. Lett., 2002, 360(5-6): 487- 493.
    [28] A. F. Borghesani and M. Santini. High-temperature electron localization in dense He gas. Phys. Rev. E., 2002, 65(5): 056403.
    [29] H. Meskine, T. Saha-Dasgupta and S. Satpathy. Does the Self-Trapped Magnetic Polaron Exist in Electron-Doped Manganites?. Phys. Rev. Lett., 2004, 92(5): 056401.
    [30] A. S. Mishchenko and N. Nagaosa. Electron-Phonon Coupling and a Polaron in the t-J Model: From the Weak to the Strong Coupling Regime. Phys. Rev. Lett., 2004, 93(3): 036402.
    [31] M. I. Auslender and M. I. Katsnelson. Electron self-trapping and the fluctuation density-of-states tail at the critical point. Phys. Rev. B., 2005, 72(11): 113107.
    [32] M. I. Auslender and M. I. Katsnelson. Electron self-trapping at quantum and classical critical points. Ann. Phys., 2006, 321(8): 1762- 1789.
    [33] L. S. Brizhik, A. A. Eremko, B. Piette and W. Zakrzewski. Electron self trapping on a nanocircle. Physica D: Nonlinear Phenomena., 2006, 218(1): 36- 55.
    
    [34] Frohlich, Pelze and Zienau. Phil. Mag., 1952, 41: 221.
    [35] J. J. Markham and F. Seitz. The Binding Energy for a Self-Trapped Electron in NaCl. Phys. Rev., 1948, 74(9): 1014- 1024.
    [36] W. H. Duerig. An Experimental Search for Self-Trapped Electrons in the Alkali Halides. Phys. Rev., 1952, 86(4): 565.
    [37] S. V. Nistor, E. Goovaerts and D. Schoemaker. Direct observation of electron self-trapping in PbCl_2 crystals. Phys. Rev. B., 1993, 48(13): 9575- 9580.
    [38] S. V. Nistor, E. Goovaerts, M. Stefan and D. Schoemaker. Electron and hole trapping in PbCl_2 and PbCl_2:Tl crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms., 1998, 141(1-4): 538- 541.
    [39] M. Iwanaga, M. Watanabe and T. Hayashi. Charge separation of excitons and the radiative recombination process in PbBr_2 crystals. Phys. Rev. B., 2000, 62(16): 10766- 10773.
    [40] M. Iwanaga, J. Azumma , M. Shirai, K. Tanaka and T. Hayashi. Self-trapped electrons and holes in PbBr_2 crystals. Phys. Rev. B., 2002, 65(21): 214306.
    [41] X. W. Li, R. J. Liu, A. C. Geng, S. P. Yang and G. S. Fu. The influence of K_4Fe(CN)_6 on the photosensitivity of cubic AgCl microcrystal. Chin. Phys., 2005, 14(2): 404- 408.
    [42] X. W. Li, R. X. Zhang, R. J. Liu, S. P. Yang, L. Han and G. S. Fu. The influence of trapping centres on the photoelectron decay in silver halide. Chin. Phys., 2006, 15(3): 624- 630.
    [43] R. Mahka. The first-order phase transition in the large polaron ground state. Phys. Lett. A., 1978, 67(4): 311- 312.
    [44] R. Mahka. The large polaron phase transiton in the strong coupling limit. Phys. stat. stol. (b)., 1979, 93: 53- 58.
    [45] R. Mahka and M. Suffczyhski. The large polaron first-order phase transition. J. Phys: Solid. State. Phys. C., 1980, 13(34): 6369- 6379.
    [46] G. I. Thorbergsson and J. Sak. Mobility of an acoustic polaron at very low temperatures. Phys. Lett. A., 1986, 116(7): 325- 328.
    [47] M. Grinberg. Electron-lattice-interaction-induced localization in semi-conduct ing compounds. Phys. Rev. B., 1989, 39(12): 8443- 8449.
    [48] J. Adamowski and S. Bednarek. Stability of large bipolarons. J. Phys: Cond. Matt., 1992, 4(11): 2845- 285.
    [49] G. Wellein and H. Fehske. Self-trapping problem of electrons or excitons in one dimension. Phys. Rev. B., 1998, 58(10): 6208- 6218.
    [50] L. Brizhik, L. Cruzeiro-Hansson, A. Eremko and Y. Olkhovska. Polaron dynamics and Peierls-Nabarro barrier in a discrete molecular chain. Synthetic. Metals., 2000, 109(1-3): 113- 116.
    [51] A. H. Romero, D. W. Brown and K. Lindenberg. Electron-phonon correlations, polaron size, and the nature of the self-trapping transition. Phys. Lett. A., 2000, 266(4-6): 414- 420.
    [52] N. Kirova and M. N. Bussac. Self-trapping of electrons at the field-effect junction of a molecular crystal. Phys. Rev. B., 2003, 68(23): 235312.
    
    [53] Y. Toyozawa. Self-trapping of an electron by the acoustical mode of lattice vibration. Prog. Theor. Phys., 1961, 26(1): 29- 44.
    [54] A. Sumi and Y. Toyozawa. Discontinuity in the polaron ground state. J. Phys. Soc. Jpn., 1973, 35(1): 137- 145.
    [55] G. Whitfield and P. B. Shaw. Interaction of electrons with acoustic phonons via the deformation potential in one dimension. Phys. Rev. B., 1976, 14(8): 3346-3355.
    [56] M. Rona and S. Ayasli. Acoustic deformation-potential polaron. Phys. Rev. B., 1977, 15(10): 4822-4829.
    [57] H. Shoji and N. Tokuda. Phase-transition-like behaviour in the problems of different types of polaron. J. Phys: Solid. State. Phys. C, 1981, 14(9): 1231- 1242.
    [58] M. Matsuura. Discontinuity of the surface polaron. Solid. State. Coramun., 1982, 44(11): 1471- 1475.
    [59] F. M. Peeters and J. T. Devreese. On the existence of a phase transition for the Frohlich polaron. Phys. Status. Solidi. B., 1982, 112(1): 219- 229.
    [60] F. M. Peeters and J. T. Devreese. Acoustical polaron in three dimensions: The ground-state energy and the self-trapping transition. Phys. Rev. B., 1985, 32(6): 3515- 3521.
    [61] H.Lowen. Absence of phase transitions in Holstein systems. Phys. Rev. B., 1988, 37(15): 8661-8667.
    [62] B. Gerlach and H. L6wen. Proof of the nonexistence of (formal) phase transitions in polaron systems. I. Phys. Rev. B., 1987, 35(9): 4291- 4296.
    
    [63] P. A. Knipp and T. L. Reinede. Coupling between electrons and acoustic phonons in semiconductor nanostructures. Phys. Rev. B., 1995, 52(8): 5923- 5928.
    [64] F. M. Peeters and J. T. Devreese. Acoustical polaron in three dimensions: The impedance function. Phys. Rev. B., 1987, 35(8): 3745- 3752.
    [65] T. G. Castner and W. Kanzig. The electronic structure of V-centers. Journal of Physics and Chemistry of Solids., 1957, 3(3-4): 178- 195.
    [66] G. A. Farias, W. B. da Costa and F. M. Peeters. Acoustical polarons and bipolarons in two dimensions. Phys. Rev. B., 1996, 54(18): 12835- 12840.
    [67] A. L. Magna and R. Pucci. One particle interacting with the acoustical phonons in a discrete chain. Phys. Rev. B., 1997, 55(10): 6296- 6303.
    [68] V. I. Pipa, N. Z.Vagidov, V. V. Mitin and M. Stroscio. Electron-acoustic phonon interaction in semiconductor nanostructures: Role of deformation variation of electron effective mass. Phys. Rev. B., 2001, 64(23): 235322.
    [69] G. A. Farias, R. N. Costa Filho, F. M. Peeters and N. Studart. Polaron effects in electron channels on a helium film. Phys. Rev. B., 2001, 64(10): 104301.
    
    [70] Z. Ivic, S. Zekovic and Z. PrzuljRadiative. Decay of the one-dimensional large acoustic polaron. Phys. Lett. A., 2002, 306(2-3): 144- 152.
    [71] V. Ryzhii and V. Vyurkov. Absolute negative conductivity in two-dimensional electron systems associated with acoustic scattering stimulated by microwave radiation. Phys. Rev. B., 2003, 68(16): 165406.
    [72] S. A. Jackson and P. M. Platzman. Polaronic aspects of two-dimensional electrons on films of liquid He. Phys. Rev. B., 1981, 24(1): 499- 502.
    [73] M. Saitoh. Theory of strongly coupled ripplonic polarons at finite temperatures. Journal of Physics C: Solid State Physics., 1983, 16(36): 6995- 7002.
    [74] S. A. Jackson and F. M. Peeters. Magnetic field detrapping of polaronic electrons on films of liquid helium. Phys. Rev. B., 1984, 30(8): 4196- 4202.
    [75] F. M. Peeters, X. G. Wu and J. T. Devreese. Ground-state energy of a polaron in n dimensions. Phys. Rev. B., 1986, 33(6): 3926- 3934.
    [76] M. H. Degani and G. A. Farias. Polaron effects in one-dimensional lateral quantum wires and parabolic quantum dots. Phys. Rev. B., 1990, 42(18): 11950- 11952.
    [77] M. A. Stroscio, K. W. Kim, S. G. Yu and A. Ballato. Quantized acoustic phonon modes in quantum wires and quantum dots. J. Appl. Phys., 1994, 76(8): 4670- 4675.
    [78] S. G. Yu, K. W. Kim, M. A. Stroscio, G. J. Iafrate and A. Ballato. Electron acoustic phonon scattering rates in rectangular quantum wires. Phys. Rev. B., 1994, 50(3): 1733- 1738.
    [79] N. Nishiguchi. Rseonant acoustic-phonon modes in a quantum wire. Phys. Rev. B., 1995, 52(7): 5279- 5288.
    [80] S. G. Yu, K. W. Kim, M. A. Stroscio and G. J. Iafrate. Electron acoustic phonon scattering rates in cylindrical quantum wires. Phys. Rev. B., 1995, 51(7): 4695-4698.
    [81] S. G. Yu, K. W. Kim, M. A. Stroscio, G. J. Iafrate and A. Ballato. Electron interaction with confined acoustic phonons in cylindrical quantum wires via deformation potential. J. Appl. Phys., 1996, 80(5): 2815- 2822.
    [82] W. X. Li, K. Q. Chen, W. H Duan, J. Wu and B. L. Gu. Phonon transport and thermal conductivity in dielectric quantum wire. J. Phys. D., 2003, 36(23): 3027- 3033.
    [83] S. S. Kubakaddi. Electron-phonon interaction in a quantum wire in the Bloch-Gruneisen regime. Phys. Rev. B., 2007, 75: 075309.
    [84] G. F. J. Garlick and A. F. Gibson. The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc. Phys. Soc, 1948, 60(6): 574- 590.
    [85] W. Hayes and T. J. L. Jenkin. Charge-trapping properties of germanium in crystalline quartz. J. Phys: Solid. State. Phys. C, 1986, 19(31): 6211- 6219.
    [86] D. Emin. Optical properties of large and small polarons and bipolarons. Phys. Rev. B., 1993, 48(18): 13691- 13708.
    [87] R. G. Kaercher, E. F. da Silveira, J. F. Blankenship and E. A. Schweikert. Solid-state luminescence: Probe for ion-solid interactions. Phys. Rev. B., 1995, 51(11): 7373- 7376.
     [88] R. Horiba, M. Sato, A. Takazawa, T. Kunimoto and K. Nagasaka. A method to determine the rate of nonradiative relaxation to radiative relaxation following sub gap photo excitation in polythiophene and poly(3-methylthiophene) films. Infrared Physics & Technology., 1997, 38(5): 311- 322.
    [89] G. Pacchioni and A. Basile. Calculated spectral properties of self-trapped holes in pure and Ge-doped SiO_2. Phys. Rev. B., 1999, 60(14): 9990- 9998.
    [90] A. Lushchik, M. Kirm, Ch. Lushchik, I. Martinson and G. Zimmerer. Luminescence of free and self-trapped excitons in wide-gap oxides. J. Lumin., 2000, 87-89: 232- 234.
    [91] M. Klintenberg, S. E. Derenzo and M. J. Weber. First-principles calculations of hole trapping and transport: Effects on scintillator luminescence. J. Lumin., 2000, 87-89: 546- 548.
    [92] M. Iwanaga, M. Shirai, K. Tanaka and T. Hayashi. Self-trapped states and related luminescence in PbCl_2 crystals. Phys. Rev. B., 2002, 66(6): 064304.
     [93] M. A. Khan, M. S. Shur, J. N. Kuznia, Q. Chen, J. Burm and W. Schaff. Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300℃. Appl. Phys. Lett., 1995, 66(9): 1083- 1085.
     [94] D. L. Barton and M. Osinski. Degradation mechanisms in GaN/AlN/InGaN LEDs and LDs. IEEE. Proc. Spie., 1998, 3279: 259- 262.
    [95] M. Osinski, D. L. Barton and P. Perlin. Effects of high electrical stress on GaN/InGaN/AlGaN single-quantum-well light-emitting diodes. Journal of Csystal Growth., 1998, 189/190: 808- 811.
    [96] D. L. Barton, M. Osinski and P. Perlin. single quantum well InGaN green light emitting diode degration under high electrical stress. Microelectronics Reliability., 1999,39(8): 1219- 1227.
    [97] C. Bungaro, K. Rapcewicz and J. Bernholc. Ab initio phonon dispersions of wurtzite A1N, GaN, and InN. Phys. Rev. B., 2000, 61(10): 6720- 6725.
    [98] T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D'Astuto, T. Suski, I. Grzegory and M. Leszczynski. Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering. Phys. Rev. Lett., 2001, 86(5): 906- 909.
    [99] X. Gu and Z. Z. Yie. Processing technique of Ill-nitrides-based light emitting diodes. Micronanoelectronic Technology., 2003, 2: 6- 9. (in Chinese).
    [100] R. H. Jiang and S. Z. Xiao. Growth Methods of GaN - Based Materials and Their Applications in Optoelectronic Fields. World Nonferrous Metals., 2003, 2: 35- 39. (in Chinese).
    [101] H. B. Yu, H. Chen, D. S. Li and J. M. Zhou. Structural and Optical Characteristics of InGaN/GaN Multi-Quantum Wells Grown on a- and c-Plane Sapphire Substrates. Chin. Phys. Lett., 2004, 21(7): 1323- 1326.
    [102] Y. W. Lu, L. Cai and S. Liang. Strained and Piezoelectric Characteristics of Nitride Quantum Dots. Chin. Phys. Lett., 2006, 23(4): 956- 959.
    [103] W. W. Ai, X. Guo, B. Liu, Y. P. Song, Y. Liu and G. D Shen. Research and Progress in Reliability of GaN-Based LED. Semiconductor Technology., 2006, 31(3):161-165. (in Chinese).
    [104] D. S. Zou, X. L. Gu, C. Q. Sun, J. M. Zhang, L. M. Huang, X. Guo, Y. C. Song, G. D. Shen, C. L. Ding and X. C. Wang. Manufacture of GaN-based High-power Blue Light Emission Diode. Aser & Optoelectronics Progress., 2006, 43(8): 45- 47. (in Chinese).
    [105] M. Q. Liu, D. C. Zhou and Y. Mei. The Comparison of Light Efficacy between LED and Traditional Light Sources. China Illuminating Engineering Journal., 2006, 17(4): 41- 45. (in Chinese).
    [106] M. X. Chen, X. B. Luo, Z. T. Ma and S. Liu. Advances in Packaging Design and Research on High-power White LED. Semiconductor Optoelectronics., 2006, 27(6): 653- 658. (in Chinese).
    [107] Y. T. Tian, Z. H. Zhang, W. L. Guo and G. D. Shen. Highly Reliability and Brightness AlGaInP Light-emitting Diodes. Research & Progress of Solid State Electronics., 2006, 26(2): 205- 208. (in Chinese).
    [108] D. M. Cheng, F. Y. Ma, M. T. Guo and Z. Y. Duan. Fabrication of New-type Organic Micro-cavity Blue-emitting Diodes. Semiconductor Optoelectronics., 2006, 27(6): 717- 720. (in Chinese).
    [109] M. Greg and C. S. Seth. Quantum-Dot Light-Emitting Devices for Displays. Advaced Display., 2006, 70: 44- 48. (in Chinese).
    [110] Y. H. Xing, J. Han, J. P. Liu, N. H. Niu, J. Deng and G. D. Shen. Investigation of P-GaN Thermal Annealing and Light Emitting Diode. Research & Pregress of SSE., 2007, 27(2): 186- 189. (in Chinese).
    [111] J. H. Hou and X. X. Liang. The ground state energy and effective mass of the acoustic polaron in two dimensions. Submitted to Chinese Journal of Luminescence.
    [112] J. H. Hou and X. X. Liang. On the possibility of Self Trapping transition of acoustic polarons in two dimensions. Chin. Phys., 2007, 16(10): 3059- 3066.
    [113] S. D. Sarma and B. A. Mason. Optical phonon interaction effects in layered semiconductor structures. Ann. Phys., 1985, 163(1): 78- 119.
    [114] X. X. Liang and J. H. Hou. Electron-phonon coupling effects in quasi-2D ternary mixed crystals of polar semiconductors. Phys. Stat. Sol. (c)., 2004, 1(11): 2803- 2807.
    [115] J. H. Hou and X. X. Liang. Characters of effective masses for the self trapping of 3D and 2D acoustic poalrons in polar crystals. Acta Scientiarum Naturalium Universitatis Neimongol.2007, 38(5): 517- 521. (in Chinese).
    [116] W. R. L. Lambrecht, K. Kim, S. N. Rashkeev and B. Segall. Electronic and optical properties of the group-Ill nitrides, their heterostructures and alloys. Mat. Res. Soc. Symp. Proc., 1996, 395: 455- 466.
    [117] V. W. L. Chin, T. L. Tansley and T. Osotchan. Electron mobilities in gallium, indium, and aluminum nitrides. J. Appl. Phys., 1994, 75(11): 7365- 7372.
    [118] X. h. Wu, J. S. Speck and Z. q. Wu. Growth of High Quality Epitaxial GaN Thin Films Physics., 1999, 28(1): 44- 51.
    [119] J. A. Majewski, M. Stadele and P. Vog. Electronic structure of biaxially strained wurtzite crystals GaN and A1N. Mat. Res. Soc. Symp. Proc, 1997, 449: 887- 892.
    [120] J. H. Hou and X. X. Liang. The calculating of ground state energy of the two dimensional acoustic polaron by using bound state wave function. Acta Scientiarum Naturalium Universitatis Neimongol. Accepted. (in Chinese). [121] J. H. Hou and X. X. Liang. Self-trapping of acoustic polaron in one dimension. Chin. Phys. Lett., 2007, 24(11): 3222- 3224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700