荧光二氧化硅纳米粒子的合成、修饰及其在细胞生物学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光二氧化硅纳米粒子具有独特的光学性质、易于进行表面修饰的特点,因此被广泛的应用于生物分析和生物检测领域,而磁性纳米粒子有磁力靶点和热力转化的性质,可以应用于肿瘤热疗,将二者性质相结合得到的二氧化硅磁性纳米粒子,具有相较磁性纳米粒子增强的化学稳定性、克服其易团聚的缺点,又可以实现对肿瘤细胞的双重靶向定位,或满足癌症的热化疗双重治疗。但是,目前仍甚少有研究针对二氧化硅磁性纳米粒子对细胞的生长状况及细胞表面结构和微结构的影响,因而,这就成为了本课题的一个研究重点。
     目前,传统的痕量重金属离子的检测方法,所需仪器昂贵、离子选择性差、检测灵敏度低,同时,利用荧光纳米感应器对Hg2+等痕量重金属离子进行检测的工作中,荧光二氧化硅纳米粒子还是一个空白,因此,本课题的另一个研究重点旨在发现一种利用荧光二氧化硅纳米粒子对Hg2+的超灵敏快速检测方法,以期进一步将该方法应用于细胞内Hg2+含量测定。
     (1)通过化学共沉淀法制备铁磁性纳米粒子(FeNPs),并以W/O反相微乳法制备包埋荧光染料三联吡啶钌配合物Ru(bpy)32+的二氧化硅纳米粒子(SiNPs)、二氧化硅磁性纳米粒子(Si/FeNPs)和氨基化二氧化硅纳米粒子(NH2NPs)。对制备FeNPs的后处理过程进行改进,使其更有利于进行二氧化硅壳层结构的包覆。本文通过改变反应物加样方式,解决了以往由于疏水性铁磁性纳米粒子制备条件苛刻、价格昂贵造成的实验费用高的问题。
     (2)用TEM、XRD、UV-Vis、FTIR、荧光光谱以及磁滞回线测定等方法,对Si/FeNPs、SiNPs、NH2NPs、FeNPs进行了表征。Si/FeNPs、SiNPs、NH2NPs,均为球形实体,粒径均一,表面致密光滑,单分散性良好,并且三种纳米粒子均成功的包埋了Ru(bpy)32+,并且很好的保留了其光学性质;Si/FeNPs为非晶态物质,成功的包埋了FeNPs,具有超顺磁性,但其磁性能较FeNPs有所降低;FeNPs为类球形非晶态纳米粒子,单分散性良好,具有超顺磁性。
     (3)研究了不同浓度的Si/FeNPs对肝癌细胞HepG2的生物效应,并以相同磁性能的FeNPs和相同硅含量的SiNPs作为参比。Si/FeNPs、SiNPs对HepG2细胞具有明显的促增殖作用,能够被通过包吞作用进入细胞,并未对细胞的表面形态和超微结构产生影响
     (4)成功制备了富胸腺嘧啶核酸序列修饰的荧光二氧化硅纳米粒子核酸探针,利用胸腺嘧啶与Hg2+的特异性结合,可以实现对Hg2+的快速灵敏检测。为进一步检测细胞中的痕量Hg2+奠定了基础。
Due to its unique optical properties and ease of surface modifications, fluorescent silica-based nanoparticles are widely used in biological analysis and detection applications; on the other hand, magnetic nanoparticles can be used for hyperthermia treatment, taking advantage of their magnetic properties and energy transfer schema. Thus, silica coated magnetic nanoparticles, combining features of both nanoparticles, not only with improved chemical stability than magnetic nanoparticles, having less aggregation in liquid, but also can fulfill the goal of dual targeting or thermochemotherapy of cancer cells. But there are still limited research on their effects on cell growth, influences on surface structure and micro-structure of cancer cells, so this is one important topic of this study.
     At present, the traditional detection method of trace heavy metal ions, has many defects, such as expensive equipments, low selectivity for ions and low sensitivity. Till now there is no fluorescent nano-sensors detection of Hg2+has been studied, therefore, to develop anultra-sensitive and rapid mercury-sensing method is another topic of this study, and next step is to apply this method to detect intracellular Hg
     A series of research have been performed in this study: (1) Synthesized iron magnetic nanoparticles (FeNPs) by coprecipitation, and prepared silica nanoparticles(SiNPs), silica coated magnetic nanoparticles(Si/FeNPs), amino group modified silica nanoparticles (NH2NPs) with Ru(bpy)32+fluorescent by W/O microemulsion method. Improvements made on the post-process of FeNPs, making it more suitable for Si/FeNPs preparation. Changed the reactant addition methods and resolved the problems encountered in the past, such as harsh synthetic conditions, high cost of nanoparticles preparation.
     (2) Si/FeNPs, SiNPs, NH2NPs, FeNPs were characterized by TEM, XRD, UV-Vis, FTIR, fluorescence spectroscopy and hysteresis analysis. Si/FeNPs, SiNPs, NH2NPs, were all spherical structure, had uniform particle size, single-well dispersed, and they were all successfully embedded with Ru(bpy)32-, retaining its optical properties; Si/FeNPs was superparamagnetic, amorphous material, and successfully embedded with FeNPs, although had relatively lower magnetic field than FeNPs; FeNPs amorphous nano-particles were spherical structure, single-well dispersed, and superparamagnetic.
     (3) Studied the biological effects of Si/FeNPs with different concentrations on HepG2 hepatoma cells, using FeNPs with same magnetic property and SiNPs with same silicon content as reference. Si/FeNPs, SiNPs could promote proliferation of HepG2 cells, could enter cells by endocytosis and had no harmful effects on cell morphology and micro-structure.
     (4) Successfully synthesized thymine-rich nucleic acid sequences modified silica-based fluorescent nanoparticles. As Hg2+can specific bind with thymidine, this nanoparticle-DNA sequence probe could be used to fast detect Hg2+ with high sensitivity. Further, this method could be applied to detection of intracellular Hg2+
引文
[1]刘吉平,廖莉玲. 无机纳米材料[M].北京:科学出版社,2003.
    [2]G. P Xiao, M. Laberato, D. Y Wei, et al. Shape control of CdSe nanocrystals[J]. Nature,2000,404: 59-61.
    [3]李新勇,李树本.纳米半导体研究进展[J].化学进展.1996,8:231-239.
    [4]M. C. Daniel, D. Astruc, et al. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chem. Rev.2004,104:293-346.
    [5]M. Qhobosheane, S. Santra, P. Zhang, et al. Biochemically functionalized silica nanoparticles[J]. Analyst,2001,126:1274-1278.
    [6]T. Steinkamp, U. Karst. Detection strategies for bioassays based on luminescent lanthanide complexes and signal amplification[J]. Anal. Bioanal. Chem.2004,380:1618-2642.
    [7]P. Huhtinen, et al. In:Recent Research and Developments in Bioconjugate Chemistry, Pandalai, S. G., (ed.), Research Signpost, Kerala, India,2005,2:85
    [8]F. Pinaud, X. Michalet, L.A. Bentolila, et al. Advances in fluorescence imaging with quantum dot bio-probes [J]. Biomaterials.2006,27:1679-1687.
    [9]X. H. Gao, L. Yang, J. A. Petros,et al. In vivo molecular and cellular imaging with quantum dots[J]. Current Opinion in Biotechnology,2005,16:63-72.
    [10]J. M. Klostranec,W. C. W. Chan. Quantum dots in biological and biomedical research:recent progress and present challenges [J]. Advanced Materials,2006,18:1953-1964.
    [11]E. R. Goldman, E. D. Balighian, H. Mattoussi, et al. Avidin:a natural bridge for quantum dot-antibody conjugates [J]. Am. Chem. Soc.2002,124:6378-6382.
    [12]E. R. Goldman, G. P. Anderson, P. T. Tran, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays[J]. Anal. Chem.2002,74:841-847.
    [13]E. Genin, O. Carion, B. Mahler, et al. CrAsH-quantum dot nanohybrids for smart targeting of proteins[J]. J. Am. Chem. Soc.2008,130:8596-8597.
    [14]R. Q. Liang, W. Li, Y. Li, et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe[J]. Nucleic Acids Res.2005,33:e17.
    [15]M. Nichkova, D. Dosev, A. E. Davies, et al. Quantum Dots as Reporters in Multiplexed Immunoassays for Biomarkers of Exposure to Agrochemicals[J]. Anal. Lett.,2007,40:1423-1433.
    [16]J. R. E. Shepard. Polychromatic Microarrays:Simultaneous Multicolor Array Hybridization of Eight Samples [J]. Anal. Chem.,2006,78:2478-2486.
    [17]Y. P. Ho,M. C. Kung, S. Yang, et al. Multiplexed Hybridization Detection with Multicolor Colocalization of Quantum Dot Nanoprobes[J]. Nano Lett.,2005,5:1693-1697.
    [18]E. L. Bentzen, I. D. Tomlinson, J. Mason, et al. Surface Modification To Reduce Nonspecific Binding of Quantum Dots in Live Cell Assays [J]. Bioconjug. Chem.,2005,16:1488-1494.
    [19]B. N. Travert, F. Dubois, O. Carion,et al. Oligomeric PEG-Phospholipids for Solubilization and Stabilization of Fluorescent Nanocrystals in Water [J]. Langmuir,2008,24:3016-3019.
    [20]J. E. Smith, L. Wang, W. Tan,et al. Bioconjugated silica-coated nanoparticles for bioseparation and bioanalysis[J]. Trends Anal. Chem.,2006,25:848-855.
    [21]G. Yao, L. Wang, Y.Wu, et al. FloDots:luminescent nanoparticles [J]. Anal. Bioanal. Chem.,2006,385: 518-524.
    [22]R. Freeman, T. Finder, I. Willner. Multiplexed Analysis of Hg2+and Ag+Ions by Nucleic Acid Functionalized CdSe/ZnS Quantum Dots and Their Use for Logic Gate Operations [J]. Angew. Chem. Int. Ed.2009,121:7958-7961.
    [23]M. Montalti, L. Prodi, N. Zaccheroni. Fluorescence Quenching Amplification in Silica Nanosensors for Metal Ions[J]. Mater. Chem.,2005,15:2810-2814.
    [24]H. Xu, Z. J. Zhang. Functionalized Fluorescent Core-shell Nanoparticles used as a Fluorescent Labels in Fluoroimmunoassay for IL-6[J]. Biosensors and Bioelectronics,2007,22:2743-2748.
    [25]J. E. Smith, C. D. Medley, Z. W Tang, et al. Aptamer-Conjugated Nanoparticles for the Collection and Detection of Multiple Cancer Cells[J]. Anal. Chem.2007,79:3075-3082.
    [26]L. H. Zhang, et al.. Electrogenerated Chemiluminescence Sensors Using Ru(bpy)32+Doped in Silica Nanoparticles [J]. Anal.Chem.2006,78:5119-5123.
    [27]L. M. Rossi, L. F. Shi, N. Rosenzweig, et al.. Fluorescent Silica Nanospheres for Digital Counting Bioassay of the Breast Cancer Marker HER2/nue[J]. Biosensors and Bioelectronics,2006,21: 1900-1906.
    [28]S. Santra, R. P. Bagwe, D. Dutta, et al. Synthesis and Characterization of Fluorescent,Radio-Opaque and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications[J]. Adv. Mater.2005, 17:2165-2169.
    [29]S. Santra, P. Zhang, K. Wang, et al. Conjugation of Biomolecules with Luminophore-Doped Silica Nanoparticles for Photostable Biomarkers[J]. Anal. Chem.2001,73:4988-4993.
    [30]M. Qhobosheane, S. Santra, P. Zhang, et al. Biochemically Functionalized Silica Nanoparticles [J]. Analyst,2001,126:1274-1278.
    [31]M. J. Li, Z. F. Chen, Y. B. Zu, et al. Multifunctional Ruthenium(II) Polypyridine Complex-Based Core-Shell Magnetic Silica Nanocomposites:Magnetism, Luminescence, and Electrochemilumine science[J]. ACS Nano,2008,2:905-912.
    [32]W. H. Tan, K. M. Wang, X. X. He, et al. Bionanotechnology Based on Silica Nanoparticles [J]. Medicinal Research Reviews,2004,24:621-638.
    [33]S. Santra, P. Zhang, K. M. Wang, et al.Conjugation of Biomolecules with Luminophore-Doped Silica Nanoparticles for Photostable Biomarkers[J]. Anal. Chem.,2001,73:4988-4993.
    [34]X. X. He, K. M. Wang, W H. Tan, et al. Bioconjugated Nanoparticles for DNA Protection from Cleavage[J]. J. Am. Chem. Soc.,2003,125:7168-7169.
    [35]H. Ow, D. R. Larson, M. Srivastava, et al.Bright and Stable Core-Shell Fluorescent Silica Nanoparticles [J]. Nano Lett.,2005,5:113-117.
    [36]S. Santra, H. Yang, D. Dutta, et al.TAT conjugated, FITC doped silica nanoparticles for bioimaging applications [J]. Chem.Commun.2004,2810-2811.
    [37]M. Qhobosheane, S. Santra, P. Zhang, et al.Biochemically functionalized silica nanoparticles [J]. Analyst,2001,126:1274-1278.
    [38]X. X. He, J. Duan, K. M. Wang, et al.A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition [J]. J. Nanosci. Nanotechnol.2004,4:585-589.
    [39]H. Kalish, A. S. Arbab, B. R. Miller, et al.Combination of transfection agents and magnetic resonance contrast agents for cellular imaging:Relationship between relaxivities, electrostatic forces, and chemical composition[J]. Magn. Reson. Med.2003,50:275-282.
    [40]E. Schulze, J. T. Ferrucci, K. Poss, et al.Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro[J]. InVest. Radiol.1995,30:604-610.
    [41]A. Moore, E. Marecos, A.Bogdanov, et al.Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model [J].2000,214:568-574.
    [42]J. C. Sipe, M. Filippi, G. Martino, et al.Method for intracellular magnetic labeling of human mononuclear cells using approved iron contrast agents Reson[J]..Imaging.1999,17:1521-1523.
    [43]M. Zhao, D. A. Beauregard, L. Loizou, et al.Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent[J]. Nat. Med.2001,7:1241-1244.
    [44]A. D. Frankel, C. O. Pabo, et al.Cellular uptake of the tat protein from human immunodeficiency virus [J]. Cell 1988,55:1189-1193.
    [45]A. M. Koch, F. Reynolds, M. F. Kircher, et al.Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLacells[J]. Bioconjugate Chem.2003,14:1115-1121.
    [46]M. Zhao, M. F. Kircher, R. Josephson, et al.Differential Conjugation of Tat Peptide to Superparamagnetic Nanoparticles and Its Effect on Cellular Uptake [J].Bioconjugate Chem.,2002,13: 840-844.
    [47]J. W. M. Bulte, T. Douglas, B. Witwer, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells [J]. Nat. Biotechnol.2001,9:1141-1147.
    [48]Y. Gao, C. Kumar. Nanotechnologies for the Life Sciences[M]. Wiley:New York,2005.
    [49]J. Fan, J. Lu, R. Xu. et al. Use of water-dispersible Fe2O3nanoparticles with narrow size distributions in isolating avidin [J]. J Colloid Interface Sci.2003,266:215-218.
    [50]C. Xu, K. Xu, H. Gu, et al.Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles [J]. J. Am. Chem. Soc.,2004,126:9938-9939.
    [51]R. Massart, E. Dubois, V. Cabuil, et al. Preparation and properties of monodisperse magnetic fluids[J]. J. Magn. Magn Mater.1995,149:1-5.
    [52]A. Jordan, R. Scholz, P. Wust, et al. Magnetic fluid hyperthermia (MFH):Cancer treatment with AC magnetic Held induced excitation of biocompat-ible superparamagnetic nanoparticles [J]. Magn.Magn. Mater.1999,210:413.
    [53]M. Y. Han, X. H. Gao, J. Z. Su, et al., Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nat. Biotechnol.2001,19:631-635.
    [54]R. A. Sperling, P. R. Gil, F. Zhang, et al. Parak Biological applications of gold nanoparticles [J]. Chem. Soc. Rev.,2008,37:1896-1908.
    [55]M. C. Daniel, D. Astruc, et al. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev.2004,104:293-346.
    [56]D. A. Schultz, Plasmon resonant particles for biological detection[J]. Curr. Opin. Biotechnol.2003,14: 13-22.
    [57]C. A. Mirkin, R. L. Letsinger, R. C. Mucic, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature,1996,382:607-609.
    [58]R. Elghanian, J. J. Storhoff, R. C. Mucic, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science,1997,277: 1078-1080.
    [59]N. L. Rosi, D. A. Giljohann, C. S. haxton, et al. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation [J]. Science,2006,312:1027.
    [60]J. F. Lutz, S. Stiller, A. Hoth, et al., One-Pot Synthesis of PEGylated Ultrasmall Iron-Oxide Nanoparticles and Their in Vivo Evaluation as Magnetic Resonance Imaging Contrast Agents [J]. Biomacromolecules.2006,7:3132-3138.
    [61]P. Gould. Nanomagnetism shows in vivo potential[J]. Nano Today,2006,1:34-39.
    [62]J. Dobson. Research Overview Magnetic nanoparticles for drug delivery[J]. Drug. Dev. Res.2006,67: 55-60.
    [63]R. Hergt, S. Dutz, R. Muller, et al. Magnetic particle hyperthermia:nanoparticle magnetism and materials development for cancer therapy [J]. J. Phys. Condens. Matter 2006,18:S2919-2934.
    [64]E. Beaurepaire, V. Buissette, M.P. Sauviat, et al. Functionalized Fluorescent Oxide Nanoparticles: Artificial Toxins for Sodium Channel Targeting and Imaging at the Single-Molecule Level[J]. Nano Lett.2004,4:2079-2083.
    [65]M. Nichkova, D. Dosev, S. J. Gee, et al. Microarray Immunoassay for Phenoxybenzoic Acid Using Polymer Encapsulated Eu:Gd2O3 Nanoparticles as Fluorescent Labels[J]. Anal. Chem.2005,77: 6864-6873.
    [66]V. Vaisanen, H. Harma, H. Lilja, et al. Time-resolved fluorescence imaging for quantitative histochemistry using lanthanide chelates in nanoparticles and conjugated to monoclonal antibodies [J]. Luminescence,2000,5:389-397.
    [67]X. X. He, K. M. Wang, W. H. Tan, et al. Bioeonjugated Nanoparticles of rDNA Protection from Cleavage[J]. JACS,2003,125:7168-7169.
    [68]X. X.He, K. M.Wang, W H.Tan, et al. Photostable luminescent nanoparticles as biological label for cell recognition of system lupus erythematosus patients [J]. Journal of Nanoscience and Nanotechnology,2002,2:217-230.
    [69]何晓晓,王柯敏,谭蔚乱等.静电相互作用对微乳液法制备核壳纳米颗粒的影响研究[J].科学通报,2005,50:2155-2190.
    [70]王柯敏,何晓晓,谭蔚私等.超顺磁性DNA纳米富集器应用于痕量寡核昔酸的富集[J].高等学校化学学报,2003,24:40-42.
    [71]X. J. Zhao, R. T. Dytioco, K. M. Wang, et al. Collection of Trace Amounts of DNA/mRNA Molecules Using Genomagnetic Nanocapturers[J]. Analytical Chemistry,2003,75:3476-3483.
    [72]X. X. He, K. M. Wang, W H. Tan,et al. A novel method of reffieient gene delivery using amino-modified silicacoated magnetie nanopartieles[J].Review of Advaneed Material Seienee,2002,5: 375-380.
    [73]X. X. He, K. M. Wang, W H. Tan,et al. A novel gene carrier based on amino-modified silica nanoparticles [J]. Chinese Science Bulletin,2003,48:223-228.
    [74]段著华,王柯敏,谭蔚乱等.新型有机荧光染料嵌合的核壳荧光纳米材料的研制[J].高等学校化学学报,2003,24:255-259.
    [75]王柯敏,谭蔚私,彭妓凤等.具有内参比的硅壳荧光纳米传感器的制备方法以及用于活细胞内pH的无创伤监测.中国专利:2004100467941,申请日期:2004-09-24.
    [76]K. E. Sapsford, T. Pons, I. L. Medintz, et al. Biosensing with Luminescent Semiconductor Quantum Dots[J]. Sensors,2006,6:925-953.
    [77]F. Zapata, A. Caballero, A. Espinosa, et al. A Selective Redox and Chromogenic Probe for Hg(Ⅱ) in
    Aqueous Environment Based on a Ferrocene-Azaquinoxaline Dyad[J]. Inorg.Chem.2009,8: 11566-11575.
    [78]E. Navarro, F. Piccapietra, B. Wagner, et al. Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii[J]. Environ. Sci. Technol.,2008,42:8959-8964.
    [79]S. Kubitschko, J. Spinke, T. Bruckner, et al. Sensitivity Enhancement of Optical Immunosensors with Nanoparticles[J]. Anal. Biochem.1997,253:112-122.
    [80]S. Santra, R. Tapec, N. Theodoropoulou, et al. Synthesis and Characterization of Silica-coated Iron Oxide Nanoparticles in Microemulsion:The effect of Nonionic Surfactants[J].Langmuir.2001,17: 2900-2906
    [81]J. Wang, G. Liu, Y. Lin, et al. Electroactive Silica Nanoparticles for Biological Labeling [J]. Small, 2006,2:1134-1138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700