3毫米波振荡器的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波振荡器是雷达、通信、电子对抗等微波系统中最基本的组成部件,其作用是将直流功率转变成射频功率。随着三端器件的发展,相对于毫米波二端器件振荡器而言,毫米波三端器件振荡器具有工作频带宽、效率高、工作稳定和集成度好等优点,特别是用PHEMT和HBT器件制作的振荡器,具有更低的噪声,更大的动态范围,更好的集成度,可以工作在更高的频段,所以固态器件毫米波振荡器已逐步向三端器件振荡器发展。
     本文主要是在国内首次用化合物磷化铟(InP)完成单管工艺流片的实现,通过外推法测试得到截止频率为220GHz,提出在InP晶体管上搭建振荡器电路的方案,并进行了电路仿真设计,版图制作等。
     本文是根据对InP PHEMT流片成功,针对973项目的演示性实验,在InP PHEMT有源器件上,搭建振荡器电路。此电路采用负阻型振荡器,采用共源极电路拓扑结构,用一个简单的T型结构作为反馈回路,采用并联谐振的方案进行振荡器的谐振分析,使振荡器在设定的中心频率起振。鉴于工艺设备有一定的局限性,因而全部采用共面波导作为传输线。利用有源器件的小信号S参数达到起振和振荡平衡条件,调谐电路并作具体的优化。
     本文还简要介绍InP PHEMT单管的工艺制作流程及分析。
     依照前期的理论分析,文中对振荡器进行了仿真设计与版图绘制,实现在94GHz的单频点上的振荡。
Millimeter-wave oscillator is the basic components of millimeter-wave systems such as radar, communication system, and electronics rivalry. It turns DC power into RF power. Recent years, tri-terminal devices develop fast, compared with bi-terminal devices, they have more advantages: much higher working frequency; more efficient, steadier and higher level of integration, etc. An oscillator fabricated on PHEMT or HBT is even better at noise reduction, higher dynamic range, working frequency and level of integration. ALL solid-state device oscillator has been migrating to tri-terminal device technology.
     Based on the successful taping-out of single transistor on InP ( 220GHz threshold frequency), this paper proposes a design of oscillating circuit on InP with PHEMT active devices, including simulation results and layout. The circuit uses a negative-resistance oscillator, and common-source topology comprising a simple T type structure as feedback path. This paper uses parallel connection harmonic oscillating as analyzing method, makes the oscillator start to oscillate at the central frequency. Use coplanar waveguides as transmission lines. Optimize the circuit according to the active devices small-signal S parameter, the starting-state and the balance of oscillating.
     The oscillator proposed in this paper achieved oscillating at the single frequency of 94 GHz.
引文
1 谢永桂.超高速化合物半导体器件-InP基高电子迁移率晶体管.电子元器件应用.2003.5(2):57-58
    2 L.D.Nguyen.50 nm Self-Aligned Gate Pseudomorphic AllnAs/GaInAs.High Electron Mobility Transistors IEEETrans.Electron Devices.1992,39(9):2007-2014
    3 T.Enoki.Jpn Journd Appl.Phys.1994,33(9):798-803
    4 M.Wojtowicz.0.10 pm Graded InGaAs Channel InPHEMT with 305 GHz ft and 340 GHz fmax.IEEE Electron Device Lett.1994,15(7):477-479
    5 T.Suemitsu.30-nm Gate InAlAslInGaAs HEMT's Lattice-Matched to InP Substrates.IEDM Technical Digest.1998:223-226
    6 A.Endoh.High ft 50-nm-Gate'Lattice-MatchedInNAs/InGaAs HEMTs.12th Int.Conf.on InP and Related Mtls.2000:87-90
    7 K.Shinohara.547-GHz ft-In_(0.7)GaO_(3)As_In_(0.52)Al_(0.4A)As HEMTs with reduced source and drain resistance.IEEE Elctron Device Letters.2004;25(5):241-243
    8 P.M.Smith.W-Band High Efficiency InP-Based Power HEMT with 600 GHz fmax.IEEE Microwave and Guided Wave Lett.1995,5(7):230-232
    9 M.Matloubian.Submillimeter Wave InP-Rased HEMTs with fmax over 600 GHz OSA Trends in Optics and Photonics.Ultrafast Electronics and Optoelectronics.1999,28(9):2-4
    10 黄火石.InP基器件与电路的应用备受瞩目.世界产品与技术.2003,11(3):61-66
    11 李涵秋.微波半导体材料及器件技术创新发展战略.电子机械工程.2004,7(4):77-79
    12 P.M.Smith.Advances in InP HEMT Technology for High Frequency Application.13th Int.Conf.on InP and related Mtls.2001:5-9
    13 李和委.InP-HEMT的发展现状及其应用.半导体情报.2000,37(3):17-18
    14 U.K.Mishra.DC and RF performance of O.1 μm gate length A10.48In 0.52As-Ga0.38In0.62As pseudomorphic HEMTS.IEDM Tech.Digest.1988:180-183
    15 R.L.Ross.Pseudomorphic HEMT Technology and Applications.Dordrecht:Kluwer Academic Publishers.1996:1-2
    16 P.M.Smith.Microwave InAlAs/InGaAs/InP HEMTs.status and application,2ed Int.Conf.on InP and related Mtls.1990:39-43
    17 T.Enoki.InGaAs/InP double channel HEMT on InP.4th Int.Conf.on InP and related Mils.1992:14-17
    18 金长林.Ka频段三端器件压控振荡器的研究:[硕士学位论文].成都:电子科技大学无线电物理专业,2002
    19 薛良金.毫米波工程基础.北京:国防工业出版社,1991:66-78
    20 An-Ban Chen,Arden Sher.Semiconductor Alloys.Plenum Press.1995:384-386
    21 R.Dingle,H.Stormer.Electron mobilities in modulation doped semiconductor heterojunction superlattices,Appl.Phys.Lett.1978,33(7):665-667
    22 Minura.T,Hiyamizu.S,Fujii.Tand Nanbu.K.A new field-effect transistor with selectively doped GaAs/n-AlxGal-xAs heterojunctions.Jap.J.Appl.Phy.1980,19(2):225-227
    23 Rosenberg.J.J,Benlamri.M,Kirchner.P.D,et al.An In0.15Ga0.85As/GaAs pseudomorphic single quantum well HEMT.IEEE Electron Device Lett.1985,6(5):491-493
    24 陈俊.GaAs高电子迁移率晶体管(HEMT)及低噪声单片放大器的研究.[博士学位论文].北京:中国科学院微电子研究所,2000
    25 王良臣.半导体量子器件物理讲座.2001,30(4):1-3
    26 李效白.平面掺杂异质结场效应管的二维电子气浓度和材料结构尺寸之间的关系,半导体学报.1995,20(5):36-38
    27 Nguyen.L.D,Larson.L.E,and Mishra.U.K.Ultra-High-Speed Modulation-Doped Field-Effect Transistors.A Tutorial Review.Proc of the IEEE80.1992:494-518
    28 Ando.Y and Itoh.T.Analysis of Charge Control in Pseudomorphic two-dimensional electron gas field -effect transistors.IEEE Trans.Electron Devices.1988:2295-2301
    29 高葆新.微波集成电路.北京:国防工业出版社,1995:189-201
    30 Baric.A.On the two-dimensional electron gas of HEMT's,Electro technical Conference,1991,Proceedings,6~(th) Mediterranean 22-24.1991:134-137
    31 D.Delagebeaudeuf and N.T.Linh.Metal-(n)AlGaAs-GaAs two-dimensional electron gas FET,IEEE Trans.Electron Device.1982,29(5):955-960
    32 Hughes.W.A,Snowden.C.M.Nonlinear charge control in AlGaAs/GaAs modulation-doped FET's,Electron Devices,IEEE Transactions on.1987,34(8):1617-1625
    33 F.stern and S.D.Sarma.Electron energy levels in GaAs/Gal-xAlxAs heterojunctions.Phy.Rev.B.1984,30(6):840-848
    34 Drummond.T.J,Morkoc.H,Lee.K et al.Model for modulation doped field effect transisor.Electron Device Letters,IEEE.1982,3(11):338-341
    35 Kwyro.Lee,Shur.M.S,Drummond.T.J,et al.Current-Voltage and capacityance-voltage characteristics of modulation-doped field-effect transistors.Electron Devices,IEEE Transactions.1983,30(3):207-212
    36 William Liu.Fundamentals of Ⅲ-Ⅴ Devices:HBTs,MESFETs,and HFETs/HEMTs.Wiley,John and Sons,Incorporated.1999:36-40
    37 尹军舰.InP基复合沟道HEMT器件研究:[硕士研究生学位论文].北京:中科院微电子所微波与化合物实验室,2005
    38 M.Fossi.The role of inefficient charge modulation in limiting the current-gain cutoff frequency of the MODFET,IEEE Trans.Electron Device.1988:871-878
    39 Heedt C,Gottwald P,Buchali F,et al.On the optimization and reliability of ohmic and Schottky contact s to InAlAs2InGaAs HFET.Fourth International Conference on Indium Phosphide and Related Materials.1992:21-24
    40 吴鼎芬,颜本达.金属2半导体界面欧姆接触的原理、测试与工艺.上海:上海交通大学出版社,1989:23-26
    41 Nissim Y I,Gibbons J F,Gold R B.Nonalloyed ohmic contact s to n-GaAs by CWlaserassisted Diffusion from a SnO2/ SiO2 source.IEEE Trans Electron Devices.1981,28(5):607-609
    42 Reinhold Ludwig Pavel Bretchko.王子字等译.射频电路设计--理论与应用.北京:电子工业出版社,2002:189-191
    43 高峰.W频段混合集成VCO研究:[硕士学位论文].成都:电子科技大学电磁场与微波技术专业,2004
    44 Seonghan Ryu,Huijung Kim,Jounghyun Yim.Ka-BAND pHEMT MMIC VCO WITH WIDE TUNING RANGE.MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.2003,39(5):21-24
    45 周希朗.变型共面波导的保角变换分析.通信学报.1997,18(11):65-70
    46 Paucel R.A.Design considerations for monolithic microwave circuits.IEEE Trans.MTT.1981,29(5):513-534
    47 Y.C.Shih and T.Itoh.Analysis of conductor-backed coplanar waveguide.Electron.Lett.1982,18(12):538-540
    48 阮成礼.非对称共面线的特性阻抗.电子科技大学学报.2000,29(2):136-139
    49 V. F. Hanna , and D. Thebault . Theoretical and experimental investigation of asymmetric coplanar waveguide. IEEE Trans. MTT. 1984, 32(12): 1649-1651
    
    50 T. Kitazawa. Quasi - static characteristic of asymmetrical and coupled coplanar type transmission lines. IEEE Trans. MTT. 1985, 33(10): 771-778
    
    51 G. Ghione , and C. Naldi. Coplanar waveguides for MMIC applications: Effect of upper shielding , conductor backing , finite extent ground planes , and line - to -line coupling. IEEE Trans. MTT. 1987, 35(3): 260-267

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700