H19/IGF2印迹模型中miR-483和miR-675功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H19/Igf2(胰岛素样生长因子2,insulin-like growth factor 2)印迹基因隶属于一个基因印迹群,分别位于人染色体11P15.5,在进化上具有高度的保守性。H19基因为母源性印迹基因,而Igf2基因为父源性印迹基因,两者相距90kb,表达调控相关,对个体的生长、发育及行为发展有重要的作用。H19/Igf2印迹基因在基因结构和类型上涉及到了编码基因、非编码基因、印迹基因、宿主基因、内含子基因、microRNA基因和反义基因,是研究基于RNA介导的遗传信息表达调控网络模式的最佳模型之一。
     首先,为研究H19/Igf2印迹基因模型中miR-483、miR-675及其宿主基因Igf2、H19之间在不同遗传背景、不同生理病理状态下共同的表达模式和表达调控规律,我们选取各种不同的细胞系,同时利用不同实验手段,检测分析上述各基因之间的表达调控关系,建立其表达调控模型。其次,本研究同时关注了miR-483的靶基因的预测和筛选,筛选获得了miR-483的一个靶基因-PDGFB (血小板来源的生长因子,platelet-derived growth factor beta polypeptide),为下一步继续研究miR-483的功能以及调控奠定基础。
     取得的主要进展有:
     1.Igf2及H19基因除在少数细胞系中皆低表达外,在多数细胞系中其表达呈拮抗关系;而miR-483及miR-675在各细胞系中的表达与其宿主是协同一致的。结果显示,Igf2基因在HEK-293T、A549细胞中表达相对较高,而在HepG2、HeLa、HCC-Lm3及BEL-7402细胞中表达水平较低;H19基因在HepG2和HeLa、HCC-Lm3及BEL-7402细胞中表达相对较高,而在HEK-293T和A549细胞中表达水平较低;而在K562细胞中两者皆低表达;miR-483及miR-675在各细胞系中的表达与其宿主是协同一致的。
     2.miR-483很可能参与IGF2信号通路介导的肿瘤细胞的增殖和凋亡调控。结果显示,Chromeceptin处理HEK-293T、A549和HepG2细胞6h后,IGF2与miR-483在各细胞中表达变化不一致,IGF2在各细胞中的表达水平无明显变化,而miR-483则表达明显下调。Chromeceptin很可能通过抑制IGF2信号通路抑制了miR-483的生成过程,从而使成熟miR-483的表达下调。
     3.miR-483及miR-675表达会受其他因子的调控而与其宿主基因的表达不一致。结果显示,CoCl_2诱导HepG2、HeLa和A549细胞缺氧24h后,miR-483及miR-675在各细胞系中的表达与其宿主基因Igf2及H19的表达皆不一致。HepG2和HeLa细胞中H19表达无明显变化,A549细胞中H19的表达有所下调,而各细胞中miR-675的表达明显上调;各细胞中IGF2表达皆下调,而miR-483的表达明显上调。缺氧上调miR-483与miR-675的表达很可能是通过介导其生成,促进其表达水平上调。miR-483与miR-675具有其各自独特的加工机制。
     4.Igf2是miR-483的宿主基因,miR-483却能反馈下调Igf2基因的mRNA表达水平; miR-675能够抑制其宿主基因H19对IGF2的下调,而上调IGF2的表达。结果显示,过表达miR-483后IGF2的表达水平下调,而对H19的表达没有影响。同时,过表达miR-675后,H19表达无明显变化,而IGF2则表达上调。初步认为,miR-675可能负反馈调节其宿主基因H19的功能,促进IGF2的表达。
     5.筛选得到了miR-483的一个靶基因-PDGFB。过表达miR-483后PDGFB的mRNA水平下调初步认为PDGFB是miR-483的候选靶基因;双荧光素酶报告基因证实,miR-483能够直接作用于PDGFB的3’UTR区;过表达miR-483后可以显著抑制HepG2细胞中内源PDGFB蛋白的表达;Chromeceptin处理HepG2细胞6h及12h后,PDGFB的表达明显上调;而CoCl_2缺氧诱导处理HepG2细胞6h及24h后,PDGFB的表达明显下调。
     综上,本研究揭示了H19/Igf2印迹模型中,miR-483,miR-675及其宿主基因Igf2,H19在不同细胞系中的共同的表达规律以及调控关系,同时筛选获得了miR-483的一个靶基因-PDGFB。
The H19/Igf2(insulin-like growth factor 2)genes belong to an imprinted cluster, conserved on human chromosome 11p15.5. H19 is maternally expressed and Igf2 gene is transcribed from the paternal allele. These genes are 90kb apart and play important role during embryonic growth, development and behavior development. This locus is one of best paradigms to study and research the expression regulation networks by RNA, which contains coding gene, non-coding gene, imprinted gene, host gene, sequence gene, microRNA and antisense gene.
     First of all, to study a common mechanism and mode of regulation between miR-483, miR-675 and their host genes Igf2, H19 in different backgrounds of heredity and physiological, pathologic status, we chose different types cell lines and used different experimental methods to identify the expression of these genes for finding a common mode of regulation. Secondly, our study focused on predicting and screening target genes of miR-483. We identified PDGFB (platelet-derived growth factor beta polypeptide) as one of miR-483 target genes to establish foundation for identifying miR-483 function.
     The main progresses are listed:
     1. Igf2 and H19 genes were expressed antergically in most of cell lines except that these genes are all low expression in a few cell lines;miR-483,miR-675 and their host genes Igf2,H19 were coordinate expressed in all cell lines we chose. Results showed that IGF2 was high expression in HEK-293T and A549 but low expression in HepG2, HeLa, HCC-Lm3 and BEL-7402; H19 was high expression in HepG2, HeLa, HCC-Lm3 and BEL-7402 but low expression in HEK-293T and A549; IGF2 and H19 were all low expression in K562; miR-483, miR-675 and their host genes Igf2, H19 were coordinate expressed in all cell lines.
     2. miR-483 involved probably in the pathway of IGF2 signals mediated tumor cell proliferation and apoptosis regulation. Results showed that miR-483 and its host gene Igf2 were not coordinate expressed in HEK-293T, A549 and HepG2 after 6h using Chromeceptin.IGF2 was detected no visible change but miR-483 was detected down regulation in HEK-293T, A549 and HepG2. It was probable that Chromeceptin inhibited miR-483 generating process by inhibiting the pathway of IGF2 signals so that make mature miR-483 down regulation.
     3. miR-483 and miR-675 regulated by other factors so that they were not completely coordinate expressed and their host genes. Results showed that miR-483 and miR-675 were not coordinate expressed in HepG2, HeLa and A549 after 24h under hypoxic conditions by CoCl_2.H19 was detected no visible change in HepG2 and HeLa, down regulation in A549 but miR-675 was obvious up-regulation in all cell lines we chose; IGF2 was detected down regulation in all cell lines but miR-483 was obvious up-regulation. These results indicated that miR-483 and miR-675 generating processes were all promoted under hypoxic conditions so that their expression levels were all up-regulated; miR-483 and miR-675 had their respective generating process regulated by other factors.
     4. Igf2 gene was miR-483 host gene but Igf2 mRNA was feedback down regulated by miR-483; H19 could down regulated IGF2 but miR-675 inhibited H19 function to up-regulate IGF2. Results showed that ectopic expression of miR-483 could down regulate Igf2 expression level and had no effect to H19 .Meanwhile, ectopic expression of miR-675 had also no effect to its host gene H19 but could up-regulate Igf2 gene. It is probable that miR-675 was feedback its host gene H19 to up-regulate Igf2 gene.
     5. We gained one target gene of miR-483, PDGFB. Ectopic expression of miR-483 down regulated PDGFB mRNA level; Dual luciferase reporter experiments showed that miR-483 directly targeted the 3’-untranslated region of PDGFB. Ectopic expression of miR-483 inhibited PDGFB protein level in HepG2; PDGFB was detected up-regulation after 6 h and 12h using Chromeceptin in HepG2; PDGFB was detected down regulation after 6h and 24h under hypoxic conditions by CoCl_2.
     On the whole, our investigation revealed a common mechanism and mode of regulation between miR-483, miR-675 and their host genes Igf2, H19 in different cell lines. Meanwhile, we identified PDGFB as one of miR-483 target genes.
引文
[1] Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature, 1991, 351(6322):153-155.
    [2] Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev, 1998, 12(23):3693-3702.
    [3] Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 1987, 51(6):987-1000.
    [4] Pachnis V, Belayew A, Tilghman SM. Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci U S A, 1984, 81(17):5523-5527.
    [5] Wiles MV. Isolation of differentially expressed human cDNA clones: similarities between mouse and human embryonal carcinoma cell differentiation. Development, 1988, 104(3):403-413.
    [6] Poirier F, Chan CT, Timmons PM, et al. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development, 1991, 113(4):1105-1114.
    [7] Brannan CI, Dees EC, Ingram RS, et al. The product of the H19 gene may function as an RNA. Mol Cell Biol, 1990, 10(1):28-36.
    [8] Schoenfelder S, Smits G, Fraser P, et al. Non-coding transcripts in the H19 imprinting control region mediate gene silencing in transgenic Drosophila. EMBO Rep, 2007, 8(11):1068-1073.
    [9] Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA, 2007, 13(3):313-316.
    [10] Berteaux N, Aptel N, Cathala G, et al. A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol, 2008, 28(22):6731-6745.
    [11] Tremblay KD, Saam JR, Ingram RS, et al. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet, 1995, 9(4):407-413.
    [12] Tremblay KD, Duran KL, Bartolomei M. A 5' 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Biol, 1997, 17(8):4322-4329.
    [13] Pathak S, Saxena M, D'Souza R, et al. Disrupted imprinting status at the H19 differentially methylated region is associated with the resorbed embryo phenotype in rats. Reprod Fertil Dev, 2010, 22(6):939-948.
    [14] Thorvaldsen JL, Mann MR, Nwoko O, et al. Analysis of sequence upstream of the endogenous H19 gene reveals elements both essential and dispensable for imprinting. Mol Cell Biol, 2002, 22(8):2405-2462.
    [15] Yoo-Warren H, Pachnis V, Ingram RS, et al. Two regulatory domains flank the mouse H19 gene. Mol Cell Biol, 1988, 8(11):4707-4715.
    [16] Davies K, Bowden L, Smith P, et al. Disruption of mesodermal enhancers for Igf2 in the minute mutant [J]. Development, 2002, 129(7):1657-1668.
    [17] Drewell RA, Arney KL, Arima T, et al. Novel conserved elements upstream ofthe H19 gene are transcribed and act as mesodermal enhancers. Development, 2002, 129(5):1205-1213.
    [18] Ainscough JF, Dandolo L, Surani MA. Appropriate expression of the mouse H19 gene utilises three or more distinct enhancer regions spread over more than 130 kb. Mech Dev, 2000, 91(1-2):365-368.
    [19] Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature, 2000, 405(6785):482-485.
    [20] Bergstr?m R, Savary K, Morén A, et al. Transforming Growth Factorβpromotes complexes between Smad proteins and the CCCTC-binding Factor on the H19 Imprinting Control Region Chromatin. J Biol Chem, 2010, 285(26) 19727–19737.
    [21] Hitomi M, Eiichi O, Akiyoshi F, et al. CTCF binding is not the epigenetic mark that establishes post-fertilization methylation imprinting in the transgenic H19 ICR [J]. Human Molecular Genetics, 2010, 19 (7) 1190–1198.
    [22] Weber M, Hagège H, Aptel N, et al. Epigenetic regulation of mammalian imprinted genes: from primary to functional imprints. Prog Mol Subcell Biol, 2005, 38:207-236.
    [23] Hagège H, Klous P, Braem C, et al. Quantitative analysis of chromosome conformation capture assays(3C-qPCR). Nat Protoc, 2007, 2(7):1722-1733.
    [24] Banerjee S, Smallwood A. A chromatin model of IGF2/H19 imprinting. Nat Genet, 1995, 11(3):237-238.
    [25] Qiu X, Vu TH, Lu Q, et al. A complex deoxyribonucleic acid looping configuration associated with the silencing of the maternal Igf2 allele. Mol Endocrinol, 2008, 22(6):1476-1488.
    [26] Han L, Lee DH, SzabóPE. CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region. Mol Cell Biol, 2008, 28(3):1124-1135.
    [27] Gebert C, Kunkel D, Grinberg A, et al. H19 imprinting control region methylation requires an imprinted environment only in the male germ line. Mol Cell Biol, 2010, 30(5):1108–1115.
    [28] Maher ER, Reik W. Beckwith-Wiedemann Syndrome imprinting in clusters revisited. J Clin Invest, 2000, 105(3):247-252.
    [29] Julie D, Mansur ES, Sylvie R, et al. Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Human Molecular Genetics, 2010, 19(5): 803–814.
    [30] Dao D, Wslsh CP, Yuan L, et al. Multipoint analysis of human chromosome 11p15/mouse distal chromosome 7: inclusion of H19/IGF2 in the minimal WT2 region, gene specificity of H19 silencing in Wilms' tumorigenesis and methylation hyper-dependence of H19 imprinting. Hum Mol Genet, 1999, 8(7):1337-1352.
    [31] Juan V, Crain C, Wilson C. Evidence for evolutionarily conserved secondary structure in the H19 tumor suppressor RNA. Nuclear Acids Res, 2000, 28(5):1221-1227.
    [32] Lustig-Yariv O, Schulze E, Komitowski D, et al. The expression of the imprinted genes H19 and IGF-2 in choriocarcinoma cell lines. Is H19 a tumor suppressor gene? Oncogene, 1997, 15(2):169-177.
    [33] Ariel I, Sughayer M, Fellig Y, et al. The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma [J]. Mol Pathol, 2000, 53(6):320-323.
    [34] Matouk IJ, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One, 2007, 2(9):e845.
    [35] Leghton PA, Ingram RS, Eggenschwiler J, et al. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature, 1995, 375(6526):34-39.
    [36] Ripoche MA, Kress C, Poirier F, et al. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev, 1997, 11(12):1596-1604.
    [37] Gabory A, Ripoche MA, Yoshimizu T, et al. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res, 2006, 113(1-4):188-193.
    [38] Leighton PA, Saam JR, Ingram RS, et al. An enhancer deletion affects both H19 and Igf2 expression.Genes, 1995, 9(17):2079-2089.
    [39] Hao Y, Crenshaw T, Moulton T, et al. Tumour-suppressor activity of H19 RNA. Nature, 1993, 365(6448):764-767.
    [40] Yoshimizu T, Miroglio A, Ripoche MA, et al. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A, 2008, 105(34):12417-12422.
    [41] FornéT, Oswald J, Dean W, et al. Loss of the maternal H19 gene induces changes in Igf2 methylation in both cis and trans. Proc Natl Acad Sci U S A, 1997, 94(19):10243-10248.
    [42] Gabory A, Ripoche MA, Le Digarcher A, et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development, 2009, 136(20):3413-3421.
    [43] Wilkin F, Paquette J, Ledru E, et al. H19 sense and antisense transgenes modify insulin-like growth factor-II mRNA levels. Eur J Biochem, 2000, 267(13):4020-4027.
    [44] Li YM, Franklin G, Cui HM, et al. The H19 transcript is associated with polysomes and may regulate IGF2 expression in trans. J Biol Chem, 1998, 273(43):28247-28252.
    [45] Runge S, Nielsen FC, Nielsen J, et al. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein. J Biol Chem, 2000, 275(38):29562-29569.
    [46] Varrault A, Gueydan C, Delalbre A, et al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell, 2006, 11(5):711-722.
    [47] Hobert O. Gene regulation by transcription factors and microRNAs. Science, 2008, 319(5871):1785-1786.
    [48] Check Hayden E. Thousands of proteins affected by miRNAs. Nature, 2008, 454(7204):562.
    [49] Wu L, Fan J, Belasco JG. From the Cover: MicroRNAs direct rapiddeadenylation of Mrna. Natl Acad Sci U S A, 2006, 103(11):4033-4039.
    [50] Obernosterer G, Leuschner JF P, Alenius M, et al. Post-transcriptional regulation of microRNA expression. RNA, 2006, 12:1161-1167.
    [51] Perron MP, Provost P. Protein interactions and complexes in human microRNA biogenesis and function. Front Biosci, 2008, 13:2537-2547.
    [52] Gabory A, Jammes H, Dandolo L. The H19 locus: Role of an imprinted non-coding RNA in growth and development. Bioessays, 2010, 32(6):473-480.
    [53] Tsang WP, Ng EK, Ng SS, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis, 2010, 31(3):350-358.
    [54] Katarzyna AD, Je′ro?me E L Aida MS, et al. Type II Collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. The Journal of Biology Chemistry, 2010, 285(32)24381-24387.
    [55] Chen Y, Dhuphelia A, Schoenherr CJ. The Igf2/H19 imprinting control region exhibits sequence-specific and cell-type-dependent DNA methylation-mediated repression. Nucleic Acids Res. 2009, 37(3):793-803.
    [56] O’Dell SD, Day IN. Insulin-like growth factorⅡ(IGF-Ⅱ). Int J Biochem Cell Biol. 1998, 30(7):767-771.
    [57] Zhao Y, Samal E, Sribastava D. Serum response factor regulates a muscle-specific microRNAthat rargets Hand2 druing cardiogenesis. Nature.2005, 436(7048):214-220.
    [58] Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell, 2005, 123(5):819-831.
    [59] Michael MZ, O’Connor SM, Young GP, et al. Reduced accumulaton of specific microRNAs in colorectal neoplasia. Mol Cancer Res.2003, 1(12):882-891.
    [60] Thomson JM, Newman M, Parker JS, et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev.2006, 20(16):2202-2207.
    [61] Vernoese A, Luqui L, Consiquio J, et al. Oncogenic Role of miR-483-3p at the IGF2/483 Locus. Cancer Rer, 2010, 70(8):3140-3149.
    [62] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993, 75(5):843-854.
    [63] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochromic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell.1993, 75(5):855-862.
    [64] Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 2006, 103(7):2257-2261.
    [65] Tomari Y, Zamore PD. MicroRNA biogenesis: drosha can’t cut it without a partner. Curr Biol.2005, 15(2):R61-64.
    [66] Ambros V. The functions of animal microRNAs.Nature,2004,431(7006):350-355.
    [67] Moss EG, Lee RC, Ambros V. The cold shock domain protein LIN-28 controlsdevelopmental timing in C. elegans and is regulated by the lin-4 RNA. Cell.1997, 88(5):637-646.
    [68] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature.2000, 403(6772):901-6.
    [69] Stark A, Brennecke J, Russell RB, et al. Identification of Drosophila MicroRNA targets. PLoS Biol. 2003, 1(3):E60.
    [70] Kawasaki H, Taira K. MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser. 2004, (48):211-212.
    [71] Zhao Y, Samal E, Sriastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005, 436(7048):214-220.
    [72] Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adiposity differentiation. J Biol Chem. 2004, 279(50):52361-52365.
    [73] Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer.2007, 121(5):1156-1161.
    [74] He L, Thosmson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature, 2005, 435(7043):828-833.
    [75] Fu H,Tie Y, Xu C,et al. Identifification of human fetal liver miRNAs by a novel method. FEBS Lett. 2005, 579(17):3849-3854.
    [76] Stratman A, Schwindt A, Malotte K, et al. Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood, 2010, 116(22):4720-4730.
    [77] Bruna A, Darken RS, Rojo F, et al. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell, 2007, 11(2):147-160.
    [78] Bezuidenhout L, Bracher M, Davison G, et al. Ang-2 and PDGF-BB cooperatively stimulate human peripheral blood monocyte fibrinolysis. J Leukoc Biol, 2007, 81(6):1496-503.
    [79] Matei D, Kelich S, Cao L,et al. PDGF BB induces VEGF secretion in ovarian cancer. Cancer Biol Ther, 2009, 6(12):1951-1959.
    [80] Tchougounova E, Jiang Y, Lindberg N, et al. Sox5 can suppress platelet-derived growth factor B-induced glioma development in Ink4a-deficient mice through induction of acute cellular senescence. Oncogene, 2009, 28(12):1537-1548.
    [81] Lau CK, Yang ZF, Ho DW, et al. An Akt/hypoxia-inducible factor-1alpha/platelet-derived growth factor-BB autocrine loop mediates hypoxia-induced chemoresistance in liver cancer cells and tumorigenic hepatic progenitor cells. Clin Cancer Res, 2009, 15(10):3462-3471.
    [82] Yongmun C, Hiroki S, Koji M, et al. Chemical Genetic Identification of the IGF-Linked Pathway that Is Mediated by STAT6 and MFP2. Chemistry & Biology, 2006, 13(3): 241–249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700