光参量啁啾脉冲放大系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来发展起来的光参量啁啾脉冲放大(Optical Parametric Chirped Pulseamplification,简称OPCPA)技术,具有大增益带宽、高增益、介质长度小、热效应小、高脉冲对比度等优点,是实现更短脉宽、更高峰值功率激光脉冲输出的新技术。OPCPA系统的一个重要应用是取代高能拍瓦系统中的钛宝石再生高增益系统。为了从OPCPA高增益系统得到高输出稳定性和高光束质量的放大信号光,提出了以光参量放大器系统优化设计为基础,稳定且高光束质量的泵浦光为保证的解决思路。泵浦光通常是产生放大后再经倍频过程获得的,因而泵浦光的产生、放大、倍频过程都将影响泵浦光特性,需对各个环节进行研究优化。另外,OPCPA高增益系统输出信号光将作为后续放大系统的种子光源,为了抑制后面放大过程中的增益窄化效应,种子光源还必须进行频谱整形。所以本论文主要致力于光参量放大器系统设计技术、与信号光精确同步的泵浦光产生和放大技术、泵浦光稳定倍频技术、利用OPCPA过程进行脉冲频谱整形技术等关键技术的研究,取得了较多具有创新意义的成果。
     论文主要内容有:
     1.光参量啁啾脉冲放大器设计技术研究
     在推导出描述光参量啁啾脉冲放大过程三波耦合方程的基础上,建立了三种简化模拟计算模型:单色平面波模型、平面波模型和单色光模型。这些模型既能单独应用于光参量啁啾脉冲放大过程中相关问题研究,也能综合应用于非线性晶体长度确定等问题研究,为光参量放大器系统设计研究奠定了理论基础。在这些模型基础上,先系统地分析研究了光参量放大器系统设计中的两个根本问题——单级光参量放大器设计问题和光参量放大器级间耦合问题,确立了有效的优化设计方法,得到了一系列规律性结论;然后分别就光参量啁啾脉冲放大输出信号光的稳定性、近场分布、信噪比的影响因素进行分析,并分别提出有效的解决措施。
     2.泵浦光产生和放大技术研究
     在多个关键单元技术取得创新性研究成果的基础上,设计了焦耳级泵浦光产生和放大系统,该系统能对泵浦光进行稳定、均匀放大。这些成果包括:
     1)利用锁相同步方案,实现了泵浦光种子脉冲与高能拍瓦系统种子光之间的精密同步;
     2)分别就二极管阵列侧面抽运钕玻璃棒状放大器和二极管阵列端面抽运钕玻璃片状放大器中的储能沉积分布提出一套评价分析方法。这两套评价方法为泵浦光放大系统中关键放大器单元的优化设计提供了评价指标体系;
     3)完成二极管阵列侧面抽运钕玻璃棒状放大器抽运过程模拟计算软件,就二极管阵列侧面抽运钕玻璃放大器的抽运构型和其它相关参数进行优化。根据优化设计结果加工的二极管阵列抽运φ2mm、φ3mm钕玻璃放大器,在抽运功率为7.4kW时分别得到了40倍、10倍的高增益。这些放大器抽运耦合效率高且增益均匀性好;
     4)就二极管阵列端面抽运大口径放大器提出了拟球面二极管阵列加空心导管耦合的耦合方式,建立了三维模拟程序对这种耦合方式的特点进行模拟分析并完成了25KW二极管阵列泵浦钕玻璃片状放大器耦合结构的优化设计。完成片状钕玻璃器中ASE分析软件,对二极管阵列端面抽运钕玻璃片状放大器增益介质的相关参数进行优化;
     5)将最简化的非线性薛定谔方程与考虑热化效应和下能级弛豫效应的速率方程组结合起来,对设计的泵浦光放大系统输出能量和波形变化进行模拟分析。将泵浦光放大系统输出方波时所需初始入射波形指导任意波形发生器整形脉冲产生调试过程,能实现理想方形泵浦光输出。
     6)针对增益介质内增益具有一定空间分布、光束斜入射至增益介质等复杂情况下的放大过程,建立了相应的物理模型进行模拟分析。利用该模型完成了十二程钕玻璃片状放大器光路的优化设计。
     3.泵浦光稳定倍频技术研究
     用理论分析和数值模拟方法对位相失配法、偏振失谐法和倍频注入法等三种能实现倍频泵浦光稳定输出方法的可行性进行分析研究,结果表明:这三种倍频稳定输出方法除了能改进输出倍频光强稳定性外,还能有效减小倍频光的空间调制和时间波形调制,提高倍频泵浦光的光束质量,泵浦光时间波形调制的减小最终能提高光参量啁啾脉冲放大系统的输出信噪比。
     4.光参量啁啾脉冲放大过程脉冲频谱整形技术研究
     利用光参量啁啾脉冲放大过程来实现脉冲频谱整形,其主要特点在于能将光参量啁啾脉冲放大过程和脉冲频谱整形结合起来,属于无损耗光谱整形方法,并且能简化整个高能拍瓦系统结构。根据该思想,提出了过饱和放大法和位相失配法两种频谱整形方法。分析和计算结果证明了这两种频谱整形方法的可行性,通过分析还发现每种整形方法中均能通过调整光参量啁啾脉冲放大过程的相关参量对频谱整形效果进行控制,因而利用光参量啁啾脉冲放大过程实现脉冲频谱整形方法具有灵活、方便的优点。
     本论文的创新点和进步点主要体现在如下几个方面:
     1.就光参量啁啾脉冲放大系统中非线性晶体长度确定问题,创新性地提出三步走逐步逼近方案。利用这种三步走方法确定最佳非线性晶体长度,不仅效率高,而且精度高。并提出在光参量啁啾脉冲放大过程中引入适当的相位失谐角对最稳输出时所需晶体长度进行调谐,以弥补晶体长度加工精度不够的缺点,从而真正能够在实际光参量啁啾脉冲放大系统中获得稳定输出。
     2.分别就二极管阵列侧面抽运钕玻璃棒状放大器和二极管阵列端面抽运钕玻璃片状放大器中的储能沉积分布提出一套评价分析方法。在二极管阵列端面抽运钕玻璃片状放大器设计研究过程中,提出了拟球面二极管阵列加导管耦合的新型耦合方式。通过对这种耦合方式的耦合特性进行模拟分析的基础上发现:这种耦合方式不但能实现较高的耦合效率,在增益介质中能实现均匀的抽运储能分布,而且这种耦合方式灵活方便,对许多参数具有较大的容限。这种新型耦合方式的提出将为大能量、高功率激光器的研制起到积极的促进作用;
     3.将二维增益分布放大模型扩展到三维增益分布放大模型,此模型能对增益有三维空间分布、光束沿一定角度入射至增益介质等复杂情况下的放大过程进行模拟分析,该模型中:当光束在自由空间传输时,应用自由空间传输算法对该过程进行模拟计算;当光束进入增益介质进行传输放大时,应用光线追迹算法对光束在增益介质中的传输放大过程进行模拟计算。相对于已有的只考虑增益二维分布的放大物理模型,该物理模型能对实际激光系统输出光束近场进行更准确的模拟计算。
     4.为了解决光参量啁啾脉冲放大系统泵浦光稳定性问题,创新性地提出了位相失配方法、偏振失谐方法、倍频注入方法等三种能实现倍频泵浦光稳定输出的方法。由于倍频稳定方法能减小泵浦光时间波形调制,而近年来的研究表明泵浦光脉冲时间波形上的调制是减小光参量啁啾脉冲放大系统输出信噪比的重要原因,本文还提出了利用稳定倍频输出方法提高光参量啁啾脉冲放大系统输出信噪比的新思路。
     5.提出了与光参量啁啾脉冲放大过程相结合的过饱和放大法和位相失配法两种新的频谱整形方法。
     虽然本文是针对OPCPA高增益系统开展研究的,但其中的许多分析研究方法和研究成果能应用于全OPCPA超强超短激光系统中。
Optical Parmetric Chirped Pulse Amplifier (OPCPA) is a kind of technique that was developed in recent years. OPCPA has advantages such as large gain band, high gain, short medium, low heat deposition and high contrast. OPCPA will be used in the system for shorter and more intense pulses. One important application of OPCPA is to replace Ti:sapphire high-gian system. To get stable and good-beam-quality output from OPCPA high-gain system, optimized design of nonlinear Amplifier system and stable and good-beam-quality pump are needed. Pump usually is the second harmonic of amplified laser. All the courses of generation, amplification and harmonic generation are important for pump. To compensate gain-narrowing effect in the followed amplifiers, spectra of signal out from OPCPA high-gain system should be shaped. So this thesis study on the key techniques for OPCPA such as design of Optical Parametric Amplifiers (OPA), generation and amplification of pump, second harmonic conversion of pump, spectra shaping by OPCPA. A lot of innovations are obtained.
     The major research work can be listed as follows:
     1. Design of the nonlinear amplifier system.
     After the three-wave coupling equations are deduced, three kinds of simplified models are set up. They are homochromatic-and-plane-wave model, plane-wave model and homochromatic wave model. These models can be used separately to solve different questions and can be used together to solve some other questions such as make certain the length for the nonolinear amplifier. All these models are theoretical basis for design of the nonlinear amplifier system. Using these models, two basic questions to design the nonlinear amplifier system are studied. These two questions are how to design a single nonlinear amplifier and how two nonlinear amplifiers coupling. The design method is established and lots of laws are obtained. Then the characteristics of amplified signal are studied. Ways to improve stability, intensity distribution and contrast of amplified signal are found out.
     2. Generation and amplification of the pump.
     After lots of innovations on key techniques, the system to gererate joules of pump is designed. The system can get stable and uniform pump pulses. These innovations are:
     1) The pump and the signal are synchronized with high resolution using phase-locking synchronization systems.
     2) Two sets of valuating specificatios are put foreward for laser diode (LD) array side-pumped rod amplifiers and LD array end-pumped disk amplifiers. These specifications will impove the design of these two kinds of amplifiers.
     3) The soft to model the pumping course of LD array side-pumped rod amplifiers is finished. The pumping structure and many other paramtrics are optimized using this soft. The manufactured Φ2mm、Φ3mm Nd:glass rod amplifiers based on the optimized design can get gain 40 and 10. These amplifiers also have unifiorm pumping intensity.
     4) A new kind of coupling method is put forward for LD array end-pumped amplifiers. In this new way, LD array is arranged on a sphetic face and a duct is followed. The soft to simulate this coupling way is finished. Characteristics of this new method are obtained and an ampilifer pumped by 25kW LD array is optimized using the soft. The soft to study ASE in LD array end-pumped Nd:glass amplifiers are finished and using this soft the parameters of the Nd:glas disk is optimized.
     5) The model is set up to simulated multi-pass amplifier. This model consists of simplest nonlinear Schn(o|¨)dinger equation and rate equations considering thermo effect and relaxing effect. Using this model changing of energy and waveform in the pump amplifying system is studied. The input waveform for sqrare output waveform can be obtained using this model and it can be to condition this arbitrary waveform generator which will be used to shape the waveform of input pump seed. As a result, square output pump waveform can be expected.
     6) The model is set up to simulate the amplifying course in systems such as three dimensional gain distribution and tilted incident laser pulse. The model is used to optimize the 12-pass Nd:glass amplifier.
     3. Stabilizing the second harmonic generation of pump
     Theorectical analysis and numerical simulation are done on three ways to stabilize the second harmonic generation of pump. Study results show that these ways can improve the stability of the second harmonic generation of pump. It is also found that these ways can improve beam quality of the second harmonic generation of pump bying reduced spatial and time modulation. Base on the reduced time modulation of the pump, higher contrast from OPCPA system can be achieved.
     4. Spectral shaping in OPCPA
     The idea is put forward that the amplifying course of OPCPA is used as a way of spectral shaping. In this way, there is no loss in it and the PW system can be simplified. Two methods such as supersaturating and phase mismatching are studied. Results show that both kinds of methods can work well and a lot of parameters can be tuned in OPCPA to get different spectral shaping results.
引文
1 Strickland D,Mourou G A.Compression of amplified chirped optical pulses[J].Opt.Comm.,1985; 56:219-222.
    2 杨宏,张铁桥,手树峰,等.钛蓝宝石飞秒超快光谱技术及其应用进展.物理学报,2000,49:1292-1296.
    3 克希耐尔.固体激光工程.孙文,江泽文,程国祥,译.5版.北京:科学出版社,2002:454-508。
    4 S.-W.Bahk,P.Rousseau,T.A.Planchon,V.Chvykov,et al.Generation and characterization of the highest laser intensities(1022 W/cm2).2004 / Vol.29,No.24 / OPTICS LETTERS 2837-2389.
    5 Pennington D M,Perry M D.The Pctawatt Laser System[R],UCRL-JC-124492,March,1997.
    6 Perry M D,Stuart B C,Pennington D,et al.The Production of Petawatt Laser Pulses[R]. UCRL-JC- 129760,February,1998.
    7 Aoyama M,Yamakawa K,Akahane Y,et al.0.85-PW,33-fs Ti:sapphire laser[J].Opt.Lctt.2003;28: 1594~1596.
    8 W.Koechner著,孙文等译,固体激光工程[M].第五版,北京:科学出版社,2002.
    9 Perry M D.Crossing the petawatt threshold[J].Science & Technology Review,1996,4.
    10 Brent C.Stuart,Jim D.Bonlie,Jerry A.Bretten,et al.The Titan Laser at LLNL[R]. UCRL-CONF-221530.
    11 Mikael Martinez,Erhard Gaul,Todd Dtmire,at al.The Texas Petawatt Laser.2005,SPIE,5991: 59911N-1-59911N-9.
    12 Y.Kitagawa,R.Kodama,H.Yoshida.GEKKO Ⅻ petawatt module(PWM) project[R].ILE Osaka Uni.Ann.Progr.Rep.,1998,17.
    13 Y.Kitagawa,H.Fujita,H.Fujita,R.Kodama.Prepulse-free patawatt laser for fast ignitor[R].ILE Osaka Univ.Ann.Progr.Rep.,2002.12-21.
    14 P.A.Norreys,S.Sakabe,K.A.Tanaka,et al.Fast heating scalable to fast fusion ignition[J].Nature, 2002,418:933.
    15 M.Miyanaka,H.Azechi,K.A.Tanaka,et al.FIREX petawatt laser development for fast ignition research at ILE,Osaka[C].IFSA2003,Montery Sept.7~12,2003,507~511.
    16 W.Seka,J.M.Sourse.OMEGA EP Project[R].Progr.Rep.,Lab.for laser Energetics,2003,Feb.
    17 C.Hemandez-Gomez,P.A.Brumitt,D.J.Canny,et al.Vulcan petawtt-operation and development[J]. J.Phys.Ⅳ France,266,133:555-559.
    18 Ji-Ping Zou,Anne-Marie Sautivet,Jerome Fils,et al.Optimization of the dynamic wavefront control of a pulsed kilojoule/nanosecond-petawatt laser facility.
    19 Roth M,et al.PHELIX-a petawatt high-energy laser for heavy-ion experiments[A].ⅩⅩⅥ European Conference on Laser Interaction with Matter[C],2000,12~16.
    20 G.R.Bennett,O.I.Landen,R.F.Adams,eal.X-ray imaging techniques on Z using the Z-beamlet laser[J].Rev.Sci.Instrum.,2001,72(1):657-662.
    21 C.P.J.Barty,M.Key,J.Britten,et al.Technical challenges and motivations for high energy petawart lasers on NIF[C].IFSA2003,Monterey Sept.7~12,2003:612-615.
    22 N.Blanchot,E.Bignon,H.Gulin,et al.Technical issues in the multi-petawatt laser facility project on Line Integration Laser(LIL)[C].IFSA2003,IFSA2003,Monterey Sept.7~12,2003:642-645.
    23 Bonlie J D,Patterson,Price D,et al.Production of>1021W/cm2 from a large-aperture Ti:sapphore laser system[J].App.Phy.B,2000;S155~159.
    24 Yamakawa K,Aoyama M,Batty C P J,et al.Generation of 16-fs,10-TW pulses at a 10-Hz repetition rato with efficient Ti:sapphire amplifiers[J].Opt.Lett.,1998;23(7):525~527.
    25 Yamakawa K,Aoyama M,S.Matsuoka,etal.100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate[J].Opt.Lett..1998,23:1468-1470.
    26 Yamakawa K,Aoyama M,Akahane Y,Ma J L.Generation of 0.55oPW,33-fs Laser pulse from a Ti:sapphire Laser system[J].The Rewiew of Laser engineering,2002;30(12):747~748.
    27 徐冰,周建平,王益民等.自启动、长时间稳定、低功率泵浦的超短脉冲掺钛蓝宝石激光器[J]. 光学学报,1996;16(7):1023~1024.
    28 徐至展,杨晓东,Vigroux L,et al.5.4TW/46fs级台式钛宝石超短超强激光系统[J].中国科学(A), 2000;30(1):63~69.
    29 Yang,Xiaodong;Xu,Zhi-Zhan;Leng,Yu-Xin,et al.Multiterawatt laser system based on optical parametric chirped pulse amplification[J].Opt.Lett.,2002;27(13):1135~1137.
    30 魏志义,张杰,夏江帆等,高效率掺钛蓝宝石激光装置(极光Ⅰ号)[J].物理,2000;29(6):321~322.
    31 王勇.自启动飞秒太瓦级激光放大系统的研究.博士学位论文.天津:天津大学,2000.
    32 黄小军,彭翰生,魏晓峰等.20TW超短脉冲激光装置研制[J].强激光与粒子束,2003;15: 1191~1194.
    33 黄小军,彭翰生,魏晓峰等.百太瓦级钛宝石超短脉冲激光装置[A].激光聚变研究中心第二届 青年科技学术交流会论文集[C],2004,150~154.
    34 彭翰生.超强固体激光及其在前沿学科中的应用(1)[J].中国激光,2006,33(6):721-7
    35 I.N.Ross,P.Matousek,M.Towrie,etal.The prospect for ultralshort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification[J].Opt Comm,1997,144:125-133.
    36 A.Dubietis,G.Jonusauskas,andA.Piskarskas,Opt.Commun.88,437(1992).
    37 A Piskarskas,A Stabinis and A Yankauskas,Highly efficient parametric generation during pumping with high-power sub-nanosecond pulses[J].Sov.Phys.Usp.1986,12:78-79.
    38 R.A.Baumgartner,R.L.Byer.Optical parametric amplification.IEEE,Journal of Quantum Electronics. 1979,15(6):432-444.
    39 I.N. Ross, J.L. Collier, Pavel Matousek, et al. Generation of terawatt pulses by use of optical parametric chirped pulse amplification. APPLIED OPTICS, 2000,39(15): 2422-2427.
    40 Xiaodong Yang, Zhi-zhan Xu, Yu-xin Leng,et al. Multiterawatt laser system based on optical parametric chirped pulse amplification. OPTICS LETTERS, 2002,27(13):1135-1137.
    41 Zhizhan Xu, Xiaodong Yang, Yuxin Leng,et al. high_power optput from a compact OPCPA laser system. CHINESE OPTICS LETTERS,2003,1(1):24-27.
    42 V.V. Lozhkarev, G.I. Freidman, V.N. Ginzburg, et al. 200 TW 45 fs laser based on optical parametric chirped pulse amplification. OPTICS EXPRESS, 2006,14(1): 446-454.
    43 O. V. Chekhlov, J. L. Collier, I. N. Ross, et al. 35 J broadband femtosecond optical parametric chirped pulse amplification system. OPTICS LETTERS, 2006, 31(24):3665-3667.
    44 A.Khazanov, V. V. Lozhkarev, G. I. Friedman,et al. Compact 0.56 Petawatt Laser System Based on OPCPA[conference]. Nonlinear Optics: Materials, Fundamentals and Applications 2007,July 30, 2007-August 3,2007. Hawaii, U.S.A.
    45 Ian N. Ross, Pavel Matousek, Geoffrey H. C. New, Karoly Osvay. Analysis and optimization of optical parametric chirped pulse amplification. J. Opt. Soc. Am. B, 2002,19(12): 2945-2956.
    46 O. Chekhlov, J. L. Collier, I. N. Ross, et al. High energy broadband ultrashort pulse OPCPA system. Central Laser Facility Annual Report 2004/2005:253-255.
    47 H. Yoshida, E. Ishii, R. Kodama, H. Fujita, Y. Kitagawa, Y. Izawa, and T. Yamanaka High-power and high-contrast optical parametric chirped pulse amplification in b-BaB2O4 crystal. OPTICS LETTERS, 2003, 28( 4): 257-259.
    48 Yoneyoshi Kitagawa, Hisanori Fujita, Ryosuke Kodama, et al. Prepulse-Free Petawatt Laser for a Fast Ignitor. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40(3): 281-293.
    49 Yasushi FUJIMOTO, Erina MIYAJI and Hidetsugu YOSHIDA. The 3rd OPCPA system in the LFEX laser. IFSA 2007, Japan.
    50 L.J.Waxer, D.N.Maywer, J.H.Kelly, et al. High-Energy Petawatt Capability for the Omega Laser. Obtained from WWW.
    51 Vincent Bagnoud, Ildar A. Begishev, Mark J. Guardalben, et al. 5 Hz, 250 mJ optical parametric chirped-pulse amplifier at 1053 nm. OPTICS LETTERS, 2005, 30(14): 1843-1845.
    52 L. J. Waxer, V. Bagnoud, I. A. Begishev, et al. High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses. OPTICS LETTERS, 2003, 28(14): 1245-1247.
    
    53 Igor Jovanovic, Brian J. Comaskey, Christopher A. Ebbers and Randal A. Bonner. Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers. APPLIED OPTICS, 2002,41(15): 2923-2929.
    
    54 Igor Jovanovic,Jason R.Schmidt,and Christopher A.Ebbers.Optical parametric chirped-pulse amplification in periodically poled KTiOPO4 at 1053 nm.APPLIED PHYSICS LETTERS,2003, 83(20):4125-4127.
    55 I.Jovanovic,N.Forget,C.G.Brown,et al.Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4.aLawrence Livermore National Laboratory,UCRL-JRNL-207023.
    56 Jovanovic,5.Waffellier,C.P.J.Barfy.Parametric Techniques for Extreme-Contrast,High-Energy Petawatt Pulses.aLawrence Livermore National Laboratory,UCRL-JC-152486.
    57 Emmanuel Hugonnot,Jacques Luce,and Herve Coic.Optical parametric chirped-pulse amplifier and spatiotemporal shaping for a petawatt laser.APPLIED OPTICS,2006,45(2):377-382.
    58 康俊,陈绍和,朱健强,伟辉.高稳定高换效率光参变放大器倍频抽运光源研究.光学学报, 2006,26(4):611-615.
    59 S.K.Zhang,M.Fujita,M.Yamanaka,et al.Study of the stability of optical parametric amplifier. Optics Communications,2000,184:451-455.
    60 黄小军,张树葵,袁小东,等.光参量啁啾脉冲放大过程中脉冲特性理论研究.强激光与粒子束, 2001,13(6):757-760.
    61 朱鹏飞,钱列加,薛绍林,等.基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性 分析与系统设计.物理学报,2003,52(3):587-594.
    62 朱鹏飞,钱列加,林尊琪.啁啾脉冲参量放大特性的数值模拟研究.强激光与粒子束.2001, 13(4):408-412.
    63 曾小明,魏晓峰,朱启华.光参量啁啾脉冲放大中时间同步抖动对增益稳定性的影响.强激光与 粒子束,2006,18(4):529-532.
    64 I.V.Ross,P.Matousek,et al.Analysis and optimization of optical parametric chirped pulse amplification.J.Opt.Soc.Am.B,2002,19(12):2945-2956.
    65 M.J.guardalben,J.Keegan,L.J.Waxer.Design of a highly stable,high-conversion-efficiency,optical parametric chirped-pulse amplification system with good beam quality.Optics Express,2003, 1(20):2511-2524.
    66 Kanamori H,Yokota H,tanaka G,et al.J.Lightwave Technol.,1986,J-LT-4(8):1140.
    67 姚建铨.非线性光学频率变换及激光调谐技术.科学出版社,1995.
    68 M.J.Guardalben,J.Keegan,L.J.Waxer,et al.Design of a highly stable,high-conversion-efficiecy, optical parametric chirped-pulse amplification system with good beam quality.Optic Express,2003, 11(20):2511-2524.
    69 刘红军,陈国夫,赵卫,等.光学学报,2002,22(2):129-133.
    70 刘军.超短脉冲激光放大理论和实验研究[硕士论文].2003,西北大学.
    71 刘红军.光学参量啁啾脉冲放大技术的理论和实验研究[博士论文].2002,中国科学院西安光学 精密机械研究所.
    72 L.J.Waxer,V.Bagnoud,I.A.Begishev,et al.High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses.Optics Letters,2003, 28(14):1245-1247.
    73 S.K.Zhang,M.Fujita,M.Yamanaka.Study of the stability of optical parametric amplification.Optics Communications,2000,184:451-455.
    74 Ian N.Ross and Pavel Matousek,Geoffrey H.C.New,Karoly Osvay..Analysis and optimization of optical parametric chirped pulse amplification.J.Opt.Soc.Am.B,2002,19(12):2945-2956.
    75 M.J.Guardalben,J.Keegan,L.J.Waxer,et al.Design of a highly stable,high-conversion-efficiecy, optical parametric chirped-pulse amplification system with good beam quality.Optic Express,2003, 11(20):2511-2524.
    76 朱鹏飞,钱列加,林尊琪.啁啾脉冲参量放大特性的数值模拟研究.强激光与粒子束,2001, 13(4):408-412.
    77 刘红军,陈国夫,赵卫,王屹山.高质量高效率高稳定性参量放大光产生的研究.物理学报, 2004,53(1):105-113.
    78 V.Bagnoud,J.D.Zuegel,N.Forget and C.Le Blanc.High-dynamic-range temporal measurements of short pulses amplified by OPCPA.OPTICS EXPRESS,2007,15(9):5504-5511.
    79 N.Forget,A.cotel,E.Brambrink,et al.Pump-noise transfer in optical parametric chirped-pulse amplification.Optics Letters,2005,30(21):2921-2923.
    80 I.N.Ross,G.H.C.New,P.K.Bates.Contrast limitation due to pump noise in an optical parametric chirped pulse amplification system.Optics Communications,2007,273:510-514.
    81 Peter J.Wisoff,Mark W.Bowers,Gaylen V.Erbert,et al.NIF injection laser sytem.SPIE,5341: 146-155.
    82 V.Bagnoud,M.J.Guardalben,J.Puth,et al.High-energy,high-average-power laser with Nd:YLF rods corrected by magnetorheological finishing.Applied Optics,2005,44(2):282-188.
    83 宁继平,蔡志强,陈志强,等.LD侧面抽运的Nd:YAG激光器抽运均匀性研究.中国激光,2004, 31(4):390-394.
    84 王建华,翟刚,金锋.LD直接侧面泵浦棒状介质的光场研究.激光技术,2004,28(1):376-41.
    85 赵鸿,姜东升,王建军,等.二极管侧面抽运条件下工作物质增益分布特性研究.光学学报, 2003,23(1):57-62.
    86 谌霖,侯霞,陆雨田.激光二极管列阵侧面直接抽运方式的模拟计算和效果评估.光学学报, 2002,22(7):825-828.
    87 Y.Hirano,Y.Koyata,S.Yamamoto,et al.208-W TEM00 operation of a diode-pumped Nd:YAG rod??laser.Optics Letters,1999,24(10):679-681.
    88 王海林 黄维玲,周卓尤,曹红兵.二极管侧面泵浦连续固体激光器的研究.激光杂志 2001;22(5):31-32.
    89 刘媛媛.大功率激光二极管泵浦技术的研究[博士论文].中国科学院半导体研究所,2003.
    90 D.Golla,S.Knoke,W.SchOne,et al.300-W cw diode-laser side-pumped Nd:YAG rod laser.Optics Letters,1995,20(10):1148-1150.
    91 Y.Hirano,T.Yanagisawa,S.Ueno,et ai.All-solid-state high-power conduction-cooled Nd:YLF rod laser.Optics Letters,2000,25(16):1168-1170.
    92 Tetsuo,Kojima and Koji Yasui.Efficient diode side-pumping configuration of a Nf:YAG rod laser with a diffusive cavity.Applied Optics,1997,36(21):4981-4984.
    93 K.Du,J.Zhang,M.Quade,et al.Neodymium:YAG 30-W cw laser side pumped by three diode laser bars.
    94 刘媛,方高瞻,马骁宇,等.大功率二极管泵浦固体激光器.激光与红外,2002,32(3):139-142.
    95 S.Lee,S.K.Kim,M.Yun.Design and fabrication of a diode-side-pumped Nd:YAG laser with a diffusive optical cavity for 500-W output power.Applied Optics,2002,41(6):1089-1094.
    96 J.Yi,H.J.Moon,J.M.Lee.Diode-pumped 100-W green Nd:YAG rod laser.Applied Optics,2004, 43(18):3732-3737.
    97 H.J.Moon,J,H.Yi,J.Han,et al.Efficient diffusive reflector-type diode-side-pumped Nd:YAG rod laser with an optical slope efficiency of 55%.Applied Optics,1999,38(9):1772-1776.
    98 R.Kandasamy,S.Raghavachari,P.Misra,et al.Highly efficient continuous-wave operation of a Nd:YAG rod laser that is side pumped by p-polarized diode laser bars.Applied Optics,43(31): 5855-5859.
    99 I.N.Ross,M.Csatari,S.Hutchins.High-performance diode-pumped Nd:YLF amplifier.Applied Optics,2003,42(6):1040-1047.
    100 N.Pavel,Y.Hirano,S.Yamamoto,Improved pumped-beam distribution in a diode side-pumped solid-state laser with a highly diffuse,cross-axis beam delivery system.Applied Optics,2000,39(6): 986-992.
    101 翟群 吕百达,蔡邦维,等.激光二极管端面泵浦耦合技术研究.激光杂志,1997,18(6):10-13.
    102 D.Krach,M.Frede,R.Wilhelm,et al.Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping.Optics Express,2005,13(16):6212-6216.
    103 R.A.Fields,M.Birnbium,C.L.Fincher.Highly efficient Nd:YVO4 diode-laser end-pumped laser. Appl.Phys.Lett.,1987,51(23):1885-1886.
    104 Beach R J.Theory and optimization of lens ducts[J].Appl.Opt.,1995,35(12):2005-2015.
    105 Honea E C,Beach R J,Mitchell S C,Skidmore J A,Emanuel M A,Sutton S B,Payne S A,Avizonis P??V,Monroe R S,Harris D G..High-power dual-rod Yb:YAG laser[J].Opt.Lett.,2000,25(11):805-807.
    106 Fu R L,Wang G J,Wang Z Q,Ba,E X,Mu GD,Hu X H.Design of efficient lens ducts[J].Appl.Opt., 1998,37(18):4000-4003.
    107 C.Bibeau,A.J.Bayramian,R.J.Beach,R.W.Campbell,A.DeWald,W.H.Davis,J.W.Dawson,L.E. Dimercurio,C.A.Ebbers,B.L.Freitas,M.R.Hill,K.M.Hood,V.K.Kanz,J.A.Menapace,S. A.Payne,M.H.Randles,J.E.Rankin,K.I Schaffers,C.J.Stoltz,J.B.Tassano,S.J.Telford,and E. J.Utterback.Initial Operation of the Mercury Laser-A Gas Cooled,10 Hz,Yb:S-FAP System.SPIE Photonics West 2004,San Jose,CA,January 24-29,2004.
    108 Jean Maignan,Brigitte Marchesin,Luc Martin,Alain Michard,Arnold Migus,Jean-Luc Paillard, Alexandre Pichot,Matthieu Pluvinage,Jean-Rene Rullier,Sylvain Savalle,Christian Sauteret, Corinne Sen'a,Danielle Smadja,Pierre Untereiner,Edouard Veuiliot,Bernard Vincent,HaiwuYu, Ji-Ping Zou.Lucia Current Status.3rd international workshop on high energy class diode pumped solid state lasers.Livermore,California,USA,May 17-19,2006.
    109 刘晓娟,傅汝廉,琴华,等.LDA耦合系统透镜导管的理论与实验研究.光学 精密工程,2006, 14(2):167-172.
    110 W.克希耐尔.固体激光工程.科学出版社,2002.
    111 刘欢,姚建铨,郑芳华,路洋,王鹏.LD端面抽运Nd:YAG 1319nm/1338nm双波长激光器研究.物 理学报,2008,57:230-237.
    112 过振,许启明,杨永明.不同抽运光分布下端面抽运固体激光器中晶体的端面温度分布研.物 理学报,2008,57(1):223-229.
    113 Du S F,Feng B H,Wang S M,Zhang L,Zhang C Y,Zhang D X,Zhang S W,Zhang Z G.Diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG/KTP green laser.Chinese Physics,2008, 2006,15(7):1522-1525.
    114 Beach R J.Theory and optimization of lens ducts[J].Appl.Opt.,1995,35(12):2005-2015.
    115 Honea E C,Beach R J,Mitchell S C,Skidmore J A,Emanuel M A,Sutton S B,Payne S A,Avizonis P V,Monroe R S,Harris D G..High-power dual-rod Yb:YAG laser[J].Opt.Lett., 2000,25(11):805-807.
    116 Fu R L,Wang G J,Wang Z Q,Ba,E X,Mu GD,Hu X H.Design of efficient lens ducts[J].Appl.Opt., 1998,37(18):4000-4003.
    117 贾伟.大口径激光二极管阵列的高效泵浦耦合技术研究[博士论文].国防科学技术大学研究生 院,2005.
    118 Gong M L,Lu F Y,Liu Q,Gong W P,Li C.Efficient comer-pumped Yb:YAG_YAG composite slab laser[J].Appl.Opt.,2006,45(16):3806-3810.
    119 郜洪云,傅汝廉,陈德胜,秦华,刘娟,史新刚,巴恩旭.LDA端泵浦固体激光器的耦合系统-空??心导管的设计[J].光电子·激光,2005,16(5):541-544.
    120 张克从,王希敏.非线性光学晶体材料科学.北京:科学出版社,2005.
    121 A.Fragemann,V.Pasiskevicius,and F.Laurell.Broadband nondegenerate optical parametric amplification in the mid infrared with periodically poled KTiOPO4.OPTICS LETTERS,2005,30 (17):2996-2998.
    122 Tournois P.Acousto-optic programmable dispersive filter for adaptive compensation of group delautime dispersion in laser systems[J].Opt.Comm.,1997;140:245~247.
    123 J.Armstrong,N.BIoembergen,J.Ducuing,and B.Pershan.Interactions between light waves in a nonlinear dielectric[J].Phys.Rev.1962,127:1918-1939
    124 R.Baumgartner,R.Byer.Optical parametric amplification[J].IEEE Journal of Quantum Electronics, 1979,15(6):432-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700